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Abstract In order to overcome blurring due to microscope
optics in fluorescence microscopy, we propose a wavelet
transform-based non-iterative blind deconvolution method.
In our proposed deconvolution algorithm, we used wavelet-
based denoising algorithms. We compared discrete wavelet
transform (DWT) and wavelet packet transform (WPT) struc-
tures as denoising algorithms. WPT-based algorithm resulted
in less error than the DWT-based algorithm. Minimum error
was obtained for coif5 wavelet type. We compared our
denoising methods with several standard denoising methods.
Also, we compared our proposed deconvolution algorithm
with several standard deconvolution methods. Our proposed
wavelet transform-based deconvolution method resulted in
the least error compared to other methods. To test the effi-
cacy of our deconvolution method on cell images, we pro-
posed a wavelet entropy-based non-reference image quality
(contrast enhancement) metric. We tested our proposed met-
ric by increasing blurring ratio both for noiseless and noisy
images. Our metric is useful for evaluating image quality in
terms of deblurring.
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1 Introduction

Image quality obtained in fluorescence microscopy is lim-
ited by blurring due to microscope optics which can be mod-
eled as point spread function (PSF) and noise due to the
photo-detection process. Photon counting noise which results
from the probabilistic nature of photon emission is the major
source of noise in fluorescence imaging [1]. This inherent
randomness in the emission rate of photons is well described
by a Poisson process [2]. In addition to photon counting noise,
noise contributions, such as electronic thermal noise, read-
out noise, background noise, also exist. When all put together,
these noise contributions can be considered as normally dis-
tributed [2]. However, since live samples are often observed
at very low light levels, detector noise is often limited to only
photon counting noise [1].

Deconvolution and denoising can be used to restore the
images that were degraded by blurring and noise. On blur-
ring of microscopic images, researchers have applied sev-
eral algorithms: Linear, nonlinear, blind, non-blind, iterative,
non-iterative and statistical algorithms exist in the literature.
Due to large datasets in microscopy imaging, deconvolution
algorithms requiring less processing time are preferable.

Linear methods such as Inverse Filtering and Wiener Fil-
tering are the simplest deconvolution methods. They are use-
ful for moderate noise levels. Implementation efficiency in
the Fourier domain is one of the advantages of linear meth-
ods. Nevertheless, these methods are very sensitive to errors
in the PSF data used for the estimation of deconvolved images
[3].

In order to overcome the difficulties that present in linear
methods, nonlinear methods have been exploited; however,
they require incorporating constraints such as non-negativity.
Due to these constraints, computational complexity of non-
linear iterative algorithms increases. And these methods have
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limited noise reduction capabilities compared to statistical
methods.

Statistical methods such as maximum likelihood and
Bayesian methods are effective in the presence of high noise
levels. But they have larger computational requirements than
linear and nonlinear methods [4].

All algorithms mentioned above assume that the PSF is
known, which is difficult in practice. An experimentally mea-
sured PSF always exhibits some noise. Theoretically calcu-
lated PSF cannot foresee all microscopy-related parameters.
Blind deconvolution algorithms simultaneously estimate the
PSF and a sharp image from the degraded image. In the liter-
ature, the most discussed iterative blind deconvolution algo-
rithm is the Richardson–Lucy (RL) algorithm [5–7]. Sev-
eral researchers used the maximum a posteriori (MAP) esti-
mation approach to blind deconvolution [8,9]. Levin et al.
derived a simple approximated MAP algorithm [8] which
uses a different kernel update system from common MAP
approaches. Since these methods are iterative, additional
processing time is required compared to non-iterative meth-
ods.

SeDDaRA (self-deconvolving data reconstruction algo-
rithm) [10,11] is a Fourier-based, non-iterative, blind decon-
volution algorithm. The method does not require knowl-
edge of the point spread function. It is based on finding
a suitable representation of the scene [11]. Since SeD-
DaRA is non-iterative, it can be implemented quickly
while effectively deblurring the image [11]. Also, SeD-
DaRA can be performed without prior knowledge of the
detection system. Due to its advantages over Fourier trans-
form, the wavelet transform became popular for denoising
[12–14], image compression [15–17], edge detection [18]
and deconvolution [12,19,20] applications. In this study, in
order to combine the advantages of SeDDaRA and wavelet
transform, the SeDDaRA algorithm was modified using
wavelets.

Algorithms for deconvolution of microscopic images can
be two dimensional or three dimensional. Two-dimensional
methods apply an operation to each plane of a three-
dimensional image stack separately. In contrast, three-
dimensional methods operate simultaneously on every voxel
in a three-dimensional image stack. While our proposed
deconvolution method uses a two-dimensional approach,
other methods mentioned above can use either two- or
three-dimensional approach. Two-dimensional methods are
computationally economical because they involve relatively
simple calculations performed on single image planes. For
example, in confocal imaging, a single confocal image
can be rapidly deconvoluted with 2D deconvolution by
applying a 2D PSF [21,22]. Such an approach improves
the image quality because the depth of field of a con-
focal microscope is thin [23]. However, some 2D meth-
ods, such as neighboring methods, have several disadvan-

tages. For one, they are not efficient at removing the noise,
since noise from several planes tends to get added together
[24].

In order to overcome noise, our modified SeDDaRA algo-
rithm includes a wavelet-based denoising process. In gen-
eral, denoising methods based on the wavelet transform con-
sist of three steps: (1) calculate the wavelet transform of
the noisy image (decomposition), (2) modify the wavelet
coefficients according to some rule (thresholding) and (3)
calculate the inverse transform using the modified wavelet
coefficients (reconstruction). The main assumption of this
type of denoising (thresholding) is that the small coeffi-
cients are dominated by noise, while coefficients with a large
absolute value carry more signal information. Threshold-
ing of the coefficients might be global or level dependent,
hard or soft, based on a priori known or estimated noise
statistics [25].

There are several wavelet-based denoising methods appli-
cable for fluorescence microscopy when noise is described
by a Poisson process. One approach, called Pure-let, is
based on the minimization of an unbiased estimate of the
mean square error (MSE) for Poisson noise and the preser-
vation of Poisson statistics across scales within the Haar
discrete wavelet transform (DWT) [26]. Using a similar
approach, we determined threshold values for wavelet coef-
ficients based on approximation coefficients at the same
scale.

Mean square error (MSE) and peak signal to noise ratio
(PSNR) are image quality metrics which can be used only
when a noise-free reference image is known. But in practice,
it is often not possible to know such a reference image. There-
fore, we developed a wavelet entropy-based non-reference
image quality metric and also measured the performance of
our algorithm.

2 Materials and methods

The cells expressing fluorescent proteins and the test images
are used to evaluate the performance of the proposed decon-
volution model and image quality metrics.

2.1 Test images

In order to validate our methods, we used nine test images
(Fig. 1). Five of them are microscopic images that were
taken from Nikon and Olympus Fluorescence Microscopy
Digital Image Gallery websites (Madin-Darby Canine Kid-
ney Epithelial Cells, Mouse Kidney Tissue, African Water
Mongoose Skin Fibroblast Cells, Tahr Ovary Epithelial
Cells, Human Roundworm). Three of them are standard test
images (Peppers, Cameraman, Lena), and the last one is an
MRI.
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Fig. 1 Test images Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Image 7 Image 8 Image 9

2.2 Cells

Imaging of DsRed2 (Discosoma sp. Red Fluorescent Protein
variant 2) and eGFP (enhanced Green Fluorescent Protein)
labeled cells (MCF-7 breast cancer cells) was performed with
a single beam intravital microscope (TrimScope, LaVision
BioTec, Bielefeld, Germany, objective lens: 20 × NA:0.95,
XLUMPLFL, Olympus) and a Zeiss Laser Scanning Micro-
scope (LSM 510, Carl Zeiss Microscopy, Jena, Germany,
objective lens: 40 × NA:1.0 W.I. W Plan-Apochromat).
Cytosol was labeled with DsRed2 and the nucleus with eGFP.
Images were recorded over 40μm deep with a step size of
1μm.

2.3 Two-dimensional DWT

In classical signal processing, it is typical to assume the low-
pass content is signal and the high-pass content is noise.
Hence, the conventional fast Fourier transform (FFT)-based

image denoising is essentially based on applying a low-pass
filter to the noisy image. Unfortunately, many signals of inter-
est have important high-pass features, and simple low-pass
filtering diminishes or removes these features. The attenu-
ation of the high-frequency components would result in an
undesirable blurring of the edges [27,28]. Unlike Fourier
transform, wavelet transform shows localization in both time
and frequency. The localized nature of the wavelet transforms
both in time and frequency results in denoising with edge
preservation [29,30].

The discrete wavelet transform of function f (x, y) of size
M × N is

Wϕ( j0,m, n) = 1√
M N

m−1∑

0

n−1∑

0

f (x, y)ϕ j0,m,n(x, y)

W i
ψ( j,m, n) = 1√

M N

m−1∑

0

n−1∑

0

f (x, y)ψ j,m,n(x, y)

i = {H, V, D}

(1)
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where Wϕ and Wψ represent the approximation and detail
(wavelet) coefficients, ϕ and ψ are the basis functions,
index i identifies the horizontal, vertical and diagonal details,
j represents the scale, j0 is an arbitrary starting scale, and
m, n are the position-related parameters [31].

Denoised image is obtained by performing inverse DWT
after modifying the wavelet coefficients according to some
rules. Given the Wϕ and Wψ of Eq. 1, f (x, y) is obtained via
the inverse discrete wavelet transform

f (x, y) = 1√
M N

∑

m

∑

n

Wϕ( j0,m, n)ϕ j0,m,n(x, y)

+ 1√
M N

∑

i=H,V,D

∞∑

j= j0

∑

m

∑

n

W i
ψ
( j,m, n)ψ i

j,m,n(x, y) (2)

Wavelet packet transform (WPT) is a generalization of
DWT. While in DWT, only the approximations at each res-
olution level are decomposed to yield approximation and
detail information at a higher level, in the wavelet packet
analysis, both the approximation and details are decomposed
[32].

2.4 Denoising method used in modified SeDDaRa

Our proposed deconvolotion algorithm incorporates denois-
ing.

A two-level wavelet transform was performed on degraded
data. Detail coefficients were filtered using an e-median
(epsilon median) filter (3 × 3 window size based) for each
level. E-median filter can be defined as:

f (x, y) = gm(x, y)+ X (g(x, y)− gm(x, y))

X (x) =
{

x, |x | > λ

0 otherwise

(3)

where g(x, y) represents the degraded data, gm(x, y) repre-
sents the median filtered data, and λ represents the thresh-
old value [33]. The e-median filter preserves edges while
removing noise [33,34]. In Poisson processes, the noise is
stationary and completely described by its variance. Also,
approximation coefficients and detail coefficients are statis-
tically correlated [26,35]. Thus, we used square root of the
approximation coefficients as threshold values. This quan-
tity can be considered as an estimate of the local standard
deviation [26].

Tj = constant ×
√

a2
j1 + a2

j2 + · · · a2
jn

constant ∼ 1√
mn

(4)

where j, a j and mn represent the level of wavelet transform,
approximation coefficients and image size, respectively.

For Gaussian noise processes, our method uses the same
threshold values as for Poisson processes (formula 4).

When examining algorithms based on DWT, the mother
wavelet type was chosen by comparing the effect of different
mother wavelet types on our denoised images. The optimal
type was the mother wavelet that minimizes the error between
reference and denoised image.

Algorithms based on WPT used the same procedures as
the DWT algorithm; however, the required coefficients were
generated by two-level wavelet packet decomposition.

After thresholding of coefficients, images were recon-
structed with inverse discrete wavelet transform.

We compared our proposed denoising method with sev-
eral standard denoising approaches: DWT- and WPT-based
soft and hard thresholding denoising [36–38] and Pure-let
denoising [26].

2.5 Modified SeDDaRA

SeDDaRA is a Fourier-based, non-iterative, blind deconvolu-
tion algorithm. Derivation of SeDDaRA can be summarized
as follows:

Generally, in any imaging system, degraded data g(x, y)
can be modeled as;

g(x, y) = f (x, y)× d(x, y)+ w(x, y) (5)

where f (x, y) represents the ideal reference image, d(x, y)
represents the PSF, and w(x, y) denotes the noise com-
ponent, respectively. Objective is to find the best esti-
mate of f (x, y) from the degraded data g(x, y) when PSF
and noise are unknown. Taking the Fourier transform of
Eq. 5;

G(u, v) = F(u, v)D(u, v)+ W (u, v) (6)

The deconvolution with a pseudoinverse filter is given by

F(u, v) = G(u, v)D∗(u, v)
|D(u, v)|2 + K

(7)

where D∗ is the complex conjugate of D. The constant K acts
as a tuning parameter to guard against amplification of the
image noise. For SeDDaRA [10], D(u, v) is given by

D(u, v) = [KG S {|G(u, v)− W (u, v)|}]α(u,v) (8)

where α(u, v) is a tuning parameter and KG is a real, positive
scalar chosen to ensure |D(u, v)| ≤ 1. S{. . .} [35] means
application of smoothing filter. α(u, v) must be chosen as
0 ≤ α(u, v) < 1. D(u, v) is the Fourier transform of the
PSF.

By assuming W (u, v) is negligible Carron obtained
D(u, v) as:

D(u, v) = [KG S {|G(u, v)|}]α(u,v) (9)

where KG = 1/Max[S{|G(u, v)|}].
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Fig. 2 Flow diagram of image
enhancement

Method 

Several Deconvolution 
Methods 

Discrete wavelet
transform based modified
SeDDaRA 

Evaluation of test images
using deconvolution
methods with known PSF
and noise levels in terms of 
metrics RMSE 

Evaluation of test images
using proposed DWT
based deconvolution
method (includes
denoising) with known
PSF and noise levels in
terms of metrics RMSE 

b

Choice of optimum main
wavelet type for wavelet

ased denoising with
e-median filter. j=2 depth
tree decomposition 

b

Choice of optimum main
wavelet type for wavelet

ased denoising with
e-median filter. j=2 step
decomposition. 

Comparison of methods in 
terms of image quality 

metrics (RMSE) 

Evaluation of cell images with optimum method 

3D reconstruction of deconvolved and denoised images 

Evaluation of images in terms of entropy based image quality metrics 

Wavelet packet transform
based modified SeDDaRA 

Evaluation of test images
using proposed WPT
based deconvolution
method (includes
denoising) with known
PSF and noise levels in
terms of metrics RMSE 

Our proposed SeDDaRA uses wavelet transform instead
of a Fourier transform when applying a smoothing filter to
degraded data

gd(x, y) = Sw{g(x, y)} (10)

where gd(x, y) represents the denoised data and Sw{. . .}
means smoothing in wavelet domain. For obtaining an esti-
mation of the PSF and for denoising purposes, we used
smoothed data in Eqs. 7 and 9. If we rewrite Eqs. 7 and 9,
we obtain as follows:
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Table 1 Comparison of different mother wavelet types in our DWT-
based denoising method for poisson corrupted image

Wavelet type Noisy image RMSE Denoised
image RMSE

Haar 5.287 ± 0.026 5.299 ± 0.026

db2 5.288 ± 0.025 5.195 ± 0.023

db4 5.289 ± 0.025 5.195 ± 0.026

coif5 5.290 ± 0.025 5.100 ± 0.027

sym2 5.288 ± 0.023 5.195 ± 0.025

sym4 5.287 ± 0.026 5.122 ± 0.028

bior1.1 5.282 ± 0.023 5.299 ± 0.023

bior1.5 5.282 ± 0.027 5.432 ± 0.028

dmey 5.287 ± 0.024 5.47 ± 0.022

Table 2 Comparison of different mother wavelet types in our WPT-
based denoising method for Poisson corrupted image

Wavelet type Noisy image RMSE Denoised
image RMSE

Haar 5.286 ± 0.027 5.366 ± 0.027

db2 5.284 ± 0.024 5.201 ± 0.025

db4 5.287 ± 0.026 5.076 ± 0.026

coif5 5.285 ± 0.021 4.998 ± 0.023

sym2 5.285 ± 0.026 5.205 ± 0.026

sym4 5.286 ± 0.024 5.076 ± 0.026

bior1.1 5.289 ± 0.027 5.368 ± 0.029

bior1.5 5.287 ± 0.025 5.587 ± 0.025

dmey 5.288 ± 0.027 5.32 ± 0.022

D(u, v) = [KG� {gd(x, y)}]α(u,v)

F(u, v) = �{gd(x, y)}D∗(u, v)
|D(u, v)|2 + K

(11)

where � is the Fourier transform operator. Thus, our pro-
posed method combines denoising and the deconvolution
processes. Estimation of (D(u, v)) was obtained by substi-
tuting the smooth image �{|gd(x, y)|} into Eq. 11 while
α(u, v) was chosen as a constant number between (0,1).

Expressing the Eq. 9 as a power-law relation enables one
to approximate α(u, v) as a constant [10]. Substituting
D(u, v) and �{|gd(x, y)|} into Eq. 11 and taking the inverse
Fourier transform, we obtained an estimation of the ideal
image. In Eq. 11, K was chosen as 1 % of the average of
|D(u, v)|.

We used artificially blurred and noisy test images to com-
pare our deconvolution method with several standard decon-
volution methods in terms of RMSE.

2.6 Derivation of image quality metrics

Generally, image quality may be evaluated using MSE and
PSNR when a reference image is available.

M SE = 1

mn

m−1∑

i=0

n−1∑

j=0

[g (i, j)− f (i, j)]2 (12)

P SN R = 10 log10
max2

i

M SE
= 20 log10

maxi

RM SE
(13)

where maxi represents the maximum pixel value (255 for 8
bits e.g.) and root mean square error (RMSE) defined as the
square root of the MSE. For a good quality image, the PSNR
value should be high and the MSE value should be low. PSNR
is a good measure for comparing restoration results for the
same image, but between-image comparisons of PSNR are
meaningless.

In order to evaluate image quality without a reference
image, we need other quality metrics. One choice for non-
reference image quality assessment is entropy-based meth-
ods. Entropy-based methods [39,40] were modified, and a
quality assessment parameter was derived the following way:
For each pixel in the image, we obtained subimages using a
sliding window (size 9×9). The subimages were transformed
to one-dimensional vectors. A two-level DWT (L = 2) was
performed for each pixel vector. An entropy image was calcu-
lated with the wavelet entropy of pixel vectors. The wavelet
entropy is given by as follows:

Table 3 Comparison of denoising methods for Poisson corrupted images

Image 1 Image 2 Image 3 Image 4 Image 9

Noisy İmage 5.29 ± 0.025 9.58 ± 0.038 11.24 ± 0.038 7.62 ± 0.042 6.25 ± 0.034

DWT-hard thresholding 5.25 ± 0.025 7.39 ± 0.033 11.074 ± 0.042 11.44 ± 0.058 6.01 ± 0.062

WPT-hard thresholding 5.25 ± 0.025 9.58 ± 0.043 11.238 ± 0.037 7.61 ± 0.039 6.21 ± 0.035

DWT-soft thresholding 4.19 ± 0.020 7.88 ± 0.022 12.57 ± 0.025 14.37 ± 0.036 5.56 ± 0.24

WPT-soft thresholding 4.25 ± 0.021 9.58 ± 0.043 11.238 ± 0.037 7.61 ± 0.039 5.10 ± 0.035

Proposed DWT-based method 5.16 ± 0.026 7.70 ± 0.044 9.91 ± 0.045 7.47 ± 0.045 6.01 ± 0.037

Proposed WPT-based method 5.00 ± 0.024 7.57 ± 0.045 9.53 ± 0.041 7.23 ± 0.044 5.86 ± 0.039

Pure-Let 4.03 ± 0.019 6.40 ± 0.024 8.01 ± 0.027 6.52 ± 0.041 5.18 ± 0.028
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Blurred and noisy 
image

Wiener filter 
(NSR=0)

Wiener filter 
(NSR=0.01)

Richardson-Lucy Proposed method
(α=0.05)

RMSE: 
13,66±0,04

RMSE:
158,33±0,437

RMSE: 
20,62±0,124

RMSE:
15,06±0,11

RMSE:
13,52±0,055

Fig. 3 Comparison of proposed method with non-blind deconvolution methods for artificially blurred MRI corrupted by Poisson noise. Test image
was blurred by convolving image with a 5 × 5 Gaussian filter

Blurred and noisy 
image

Wiener filter 
(NSR=0)

Wiener filter 
(NSR=0.01)

Richardson-Lucy Proposed 
method (α=0.05)

RMSE: 
9,06±0,024

RMSE:
163,34±0,35

RMSE: 
16,69±0,088

RMSE:
11,95±0,086

RMSE:
8,76±0,037

Fig. 4 Comparison of proposed method with non-blind deconvolution methods for artificially blurred microscopic image corrupted by Poisson
noise. Test image was blurred by convolving image with a 5 × 5 Gaussian filter

Blurred and noisy
image

Wiener filter
(NSR=0)

Wiener filter
(NSR=0.01)

Richardson-Lucy Proposed method
(α=0.1)

RMSE: 
14,1±0,037

RMSE:
158,81±0,36

RMSE: 
21,54±0,11

RMSE:
17,33±0,12

RMSE:
16,01±0,07

Fig. 5 Comparison of proposed method with non-blind deconvolution methods for artificially blurred MRI corrupted by Gaussian noise. Test
image was blurred by convolving image with a 5 × 5 Gaussian filter

e = −
L∑

j=1

pj log2 p j

pj = E j

Et
= Ed j

EaL + ∑L
j=1 Ed j

Eaj = a2
j1 + a2

j2 + · · · a2
jn

Ed j = d2
j1 + d2

j2 + · · · d2
jn (14)

where E j , Et , a j and d j represent the wavelet energy of jth
level, total energy of all levels, approximation coefficients
and detail coefficients, respectively [41]. The wavelet energy
is defined as total square of the wavelet coefficients for the
corresponding level.
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Blurred and noisy 
image

Wiener filter
(NSR=0)

Wiener filter 
(NSR=0.01)

Richardson-Lucy Proposed method 
(α =0.1)

RMSE: 
10,08±0,029

RMSE:
164,21±0,30

RMSE: 
18,81±0,08

RMSE:
16,19±0,10

RMSE:
13,78±0,05

Fig. 6 Comparison of proposed method with non-blind deconvolution methods for artificially blurred microscopic image corrupted by Gaussian
noise. Test image was blurred by convolving image with a 5 × 5 Gaussian filter

Fig. 7 Comparison of proposed
method with blind
deconvolution methods for
artificially blurred MRI
corrupted by Poisson noise. Test
image was blurred by
convolving image with a 5 × 5
Gaussian filter
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Standard deviation of the entropy image σent can be
defined as a quality metric.

Also, in order to validate our proposed metric, we used
Renyi Entropy-based Anisotropic Quality Index (AQI) as
a reference quality metric [39]. AQI can evaluate image
quality when the images are degraded by both blur and noise.
For a sharp image, AQI andσent should be as high as possible.

2.7 Experiments

A flow diagram illustrating our steps is shown in Fig. 2.

Because our modified deconvolution method includes
denoising, we first need to choose the optimum wavelet type
for our wavelet-based denoising algorithm. Each of the algo-
rithms was run 100 times; the mean and the standard devi-
ation of the results were recorded. To choose the optimum
wavelet type for our proposed denoising approach, test image
1 was degraded with Poisson noise (Tables 1, 2). To com-
pare our proposed denoising approach with several standard
denoising approaches, images 1,2,3,4 and 9 were degraded
with Poisson noise (Table 3).

Then, we compared our deconvolution method with sev-
eral deconvolution methods by applying them on artificially
blurred and noisy test images. Test image 9 and 1 were

Fig. 8 Comparison of proposed
method with blind
deconvolution methods for
artificially blurred MRI
corrupted by Gaussian noise.
Test image was blurred by
convolving image with a 3 × 3
Gaussian filter
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Fig. 9 a, b 3D reconstructed
cell (nucleus) image for
different orientations

Table 4 Comparison of
computational times of the blind
methods for an image size of
226 × 186 pixels

Compared
methods

SeDDaRa RL (for 10–100
iterations)

MAP (for 11
iterations)

Proposed
method

Computational
time (s)

0.71 0.82–6.04 12.5 1.22

blurred by convolving images with a 5 × 5 Gaussian filter
and degraded with Poisson noise (Figs. 3, 4). Then, the same
images were blurred with a 5×5 Gaussian filter and degraded
with Gaussian noise (noise variance = 0.001) (Figs. 5, 6). To
compare proposed deconvolution method with blind decon-
volution methods, image 9 was blurred with 5 × 5 Gaussian
filter and degraded with Poisson noise. Then, the same image
was blurred with a 3 × 3 Gaussian filter and degraded with
Gaussian noise (noise variance = 0.001) (Figs. 7, 8).

Finally, to test our proposed quality metric images 1 to 8
were blurred with 3 × 3, 5 × 5 and 9 × 9 Gaussian filters
(Table 5). Then, the same images were blurred and degraded
with Gaussian noise (Table 6).

After validating our methods, we applied our proposed
methods to cell images obtained with confocal and two pho-
ton microscopy (Table 7). Using deblurred and denoised 2D
image frames, we reconstructed a three dimensionally illus-
tration of the data (nucleus) with ImageJ Volume Viewer [42]
(Fig. 9).

3 Results

3.1 Used denoising method

Our denoising approach is based on the e-median filter-
ing [33,34] in the wavelet domain by using the thresh-
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Table 5 Blurring ratio versus quality metrics for noise-free images

Test images PSF dimension AQI σent

Image 1 Ref. 1 1

3 0.5 0.94

5 0.42 0.92

9 0.36 0.88

Image 2 Ref. 1 1

3 0.23 0.87

5 0.02 0.74

9 0.01 0.54

Image 3 Ref. 1 1

3 0.2 0.62

5 0.05 0.41

9 0.01 0.22

Image 4 Ref. 1 1

3 0.22 0.70

5 0.06 0.51

9 0.01 0.29

Image 5 Ref. 1 1

3 0.23 0.92

5 0.14 0.80

9 0.08 0.51

Image 6 Ref. 1 1

3 0.34 0.87

5 0.13 0.76

9 0.04 0.57

Image 7 Ref. 1 1

3 0.35 0.89

5 0.14 0.70

9 0.04 0.60

Image 8 Ref. 1 1

3 0.18 0.61

5 0.06 0.45

9 0.01 0.27

old values obtained from the approximation coefficients
[26,35].

We first evaluated our e-median/wavelet-based denoising
method on Poisson and Gaussian corrupted test images. We
used different mother wavelet types in our denoising method
and compared them in terms of RMSE both for DWT and
WPT (Tables 1, 2). These comparisons were performed on
test image 1 which is degraded with Poisson noise. Minimum
error was obtained with coif5 wavelet type. WPT-based algo-
rithm resulted in less error than the DWT-based algorithm.

Also, we compared our method with Donoho’s soft and
hard thresholding methods and the Pure-let method (Table 3).
Standard soft and hard thresholding methods use the global
threshold value:

T = σ
√

2 log(N ) (15)

Table 6 Blurring ratio versus quality metrics for noisy images

Test images PSF Dimension AQI σent

Image 1 3 1 1

5 0.5 0.74

9 0.37 0.73

Image 2 3 1 1

5 0.51 0.90

9 0.51 0.71

Image 3 3 1 1

5 0.19 0.67

9 0.03 0.37

Image 4 3 1 1

5 0.55 0.74

9 0.42 0.45

Image 5 3 1 1

5 0.92 0.87

9 0.49 0.56

Image 6 3 1 1

5 0.73 0.88

9 0.02 0.67

Image 7 3 1 1

5 0.17 0.94

9 0.04 0.85

Image 8 3 1 1

5 0.34 0.76

9 0.02 0.48

where σ represents the noise variance and N represents the
size of the image. Our denoising method and Pure-let use
square root of the approximation coefficients at the same
scale for the threshold value of wavelet coefficients.

Our method and Pure-let successfully denoised all test
images which can be explained by the better threshold selec-
tion approaches of these methods.

3.2 Proposed deconvolution method

Our proposed deconvolution method was compared with
non-blind (inverse filter, wiener filter, RL-based algorithm)
and blind (SeDDaRa, RL-based blind algorithm, MAP based
algorithm) deconvolution methods. Comparisons with non-
blind methods were performed with blurred and noisy test
images in terms of RMSE (Figs. 3, 4 for Poisson and
Figs. 5, 6 for Gaussian noise). Also, same comparisons
were made with our proposed method and blind deconvo-
lution methods in terms of RMSE and computational time
(Figs. 7, 8). Since the inverse filter is a form of a high-
pass filter, inverse filtering amplifies the noise that is present
in the image. Our method gives the least RMSE for all
comparisons.
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Table 7 Image enhancement
results for cell images obtained
with confocal and two photon
microscopy

Image type Wavelet trans-
form type

Image quality
metric

Recorded cell
images

Deblurred image with
proposed method

Confocal fluorescence DWT AQI 0.0044 0.0197

σent 0.1528 0.2097

WPT AQI 0.0044 0.0172

σent 0.1528 0.2117

Two photon fluorescence DWT AQI 0.0029 0.0103

σent 0.0866 0.123

WPT AQI 0.0029 0.0140

σent 0.0866 0.123

The computational times of the methods for an image size
of 226 × 186 pixels are given in Table 4. The experiments
are performed on a laptop computer configured by Core 2
Duo T6600 2.2 GHz CPU with a 4 GB memory. Since our
method is wavelet based, it requires additional computational
time compared to the Fourier-based SeDDaRa. But it requires
less time than iterative methods (RL and MAP).

We varied α values to evaluate the relation between α and
contrast (α = 0.05 for Figs. 3, 4 and α = 0.1 for Figs. 5, 6).
Asα increases, contrast increases at the expense of increasing
RMSE.

3.3 Proposed image quality metrics

In order to test our proposed image quality metric, we
compared σent with AQI by increasing blurring ratio both
for noiseless and noisy images (Tables 5, 6). As blurring
increases, AQI and σent decrease. A correlation greater than
0.8 is generally described as strong, whereas a correlation
less than 0.5 is generally described as weak. We observed
strong correlations between blurring ratio and σent as well as
σent and AQI (|r | > 0.83 and r > 0.8, indicating that our
proposed metric can be used as image quality metric in terms
of deblurring.

3.4 Enhancement of cell images

Finally, we applied our deconvolution algorithm on cell
images. Evaluation of our method was performed with σent.
As can be seen from Table 7, our deconvolution method
allows to obtain improved image quality in terms of our pro-
posed metric σent and AQI. The results with our WPT-based
method and DWT method are similar.

After deconvolution of the 2D images of our cells (40
frames), we reconstructed a three-dimensional dataset by
using volume rendering with ImageJ Volume Viewer. In order
to show enhancement visually, a slice from the stack is given
in Fig. 9a, b which shows the recorded and restored image,
respectively.

4 Conclusions

Our proposed wavelet transform-based deconvolution
method resulted in the least error compared to other methods.
The error is minimal because our method includes a denois-
ing process. But our method needs further improvement for
better contrast enhancement without amplifying the noise.
This could done by modifying our denoising process in an
iterative manner.

We were successful in developing a new image qual-
ity metric σent because there is a good correlation between
our entropy-based metric and the blurring ratio. The lim-
itation of our metric is its inability of noise evaluation. It
is necessary to evaluate image degradation for both blur-
ring and noise effects. We need to develop a better quality
metric which can evaluate both blurring and noise effects
together.

Our results show that proposed deconvolution method is
applicable to fluorescence microscopy images.
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