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Abstract The effect of anesthesia on the patient is referred to
as depth of anesthesia. Rapid classification of appropriate
depth level of anesthesia is a matter of great importance in
surgical operations. Similarly, accelerating classification algo-
rithms is important for the rapid solution of problems in the
field of biomedical signal processing. However numerous,
time-consuming mathematical operations are required when
training and testing stages of the classification algorithms,
especially in neural networks. In this study, to accelerate the
process, parallel programming and computing platform
(Nvidia CUDA) facilitates dramatic increases in computing
performance by harnessing the power of the graphics process-
ing unit (GPU) was utilized. The system was employed to
detect anesthetic depth level on related electroencephalogram
(EEG) data set. This dataset is rather complex and large.
Moreover, the achieving more anesthetic levels with rapid
response is critical in anesthesia. The proposed parallelization
method yielded high accurate classification results in a faster
time.

Keywords Anesthesia . Anesthetic depth level . Parallel
programming . Parallel processing . Neural networks . EEG

Introduction

General anesthesia means the suppression of activity in the
central nervous system. It has three main foundations: uncon-
sciousness, lack of movement (paralysis), and blunting of the
stress response [1]. The aim of anesthesia is to reach these
required endpoints with the minimum amount of risk possible
to the patient. The optimal anesthetic drug would be provided
hypnosis, amnesia, analgesia, and muscle relaxation without
unwanted changes in blood pressure, heartbeat, breathing etc.
[2]. General anesthetic drugs cause a depression in the central
nervous system, starting from cortical and psychic centers and
following basal ganglions, cerebellum, medulla spinalis and
medullary centers, respectively. In surgical operations, it is
important for the medical staff to have information regarding
the depth of anesthesia (DOA) in a reliable and non-invasive
manner thus, they can safely regulate the dose of the anesthet-
ic [3]. Keeping the patient at the optimum anesthesia level
during surgery is crucial and a challenging issue in clinical
practice [4, 5]. Because both inadequate and excessive use
of anesthetic drug are undesirable for anesthesia. Deep anes-
thesia can cause coma and death by depressing vital functions
and causing depression in bulbar centers in more advanced
stages. Whereas light anesthesia can be harmful because it
cannot prevent painful and harmful stimulus, neuroendocrine
and reflex responses given to them enough. For these reasons,
research the methods for the determination of the DOA pre-
cisely is still in progress [2, 6].

Traditional methods are used to understand the DOA in-
clude measurements such as the patient’s heart rate, oxygen
saturation level (SpO2), body movements, blood pressure, pu-
pil size and level of perspiration. However, these physical
symptoms vary depending on the type of surgery and from
patient to patient. Additionally, long-term operations such as
orthopedic surgery and operations on the brain, heart and
spine, traditional indicators may not be sufficient and this
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can result in a patient gaining consciousness. Thus, the com-
plexity of general anesthesia procedures requires the develop-
ment of computer assisted support systems functioning in sur-
gery [7].

Since anesthetic agents affect the brain′s cortex, the moni-
toring of brain activity using EEG is a noninvazive approach
to determine the DOA [8]. There are different EEG-based
approaches to determine the DOA. Bispectral index (BIS) is
the most commonly used brain monitor. BIS processes a sin-
gle frontal electroencephalograph signal to calculate a dimen-
sionless number for reflecting the patient′s level of conscious-
ness [9, 10]. The use of BIS monitoring helps in reducing
anesthetic requirements, ensuring proper maintenance of the
hypnotic state and it helps to avoid both extremely deep an-
esthesia and light anesthesia [11, 12].

Despite the widespread use; BIS index is also known to
have some certain omissions. For instance, Gurkan et al.
[8] reported that they observe different spectral features in
EEGs of different patients in the same BIS values. This is
caused by that BIS device updates 30-second EEG data
with 10-second intervals. Since the short-term instanta-
neous changes in EEG that reflected in the spectral anal-
ysis are not reflected to the BIS value, momentarily DOA
of the patient cannot be successfully estimated. In the
same study it was observed that BIS value was still
around the value of 70 when the patient became sober.
This situations make reliability of the BIS device question-
able for under some circumstances.

In fact, the disadvantages such as sensitivity and slow re-
sponse rate on BIS index, can be resolved with faster systems
[13, 14]. It can be predicted that this situation may be over-
come by the systems with a lower response time, such as
pipeline systems operating simultaneously or in a parallel
configuration.

In this study, CUDA programming is applied to EEG data
to facilitate faster classification of anesthetic depth level. To
better display the effect of the approach, a multilayer
perceptron (MLP) neural network which requires intensive
mathematical operations was chosen as the classification al-
gorithm. Mathematical operations are fundamentally involv-
ing; forward computation steps, the calculation of the activa-
tion functions, and weight updates to achieve optimal
performance.

As a result of rapid development of the speed of
graphics cards compared with CPUs, GPU parallel pro-
gramming has become an important field of study. As
shown in Fig. 1, there is a tremendous increase in num-
ber of cores in graphics cards compared to number of
processors’ cores. Therefore, the GPUs provide high
processing performance this can be achieved by CUDA
which is a GPU architecture that allows parallel pro-
cessing of the codes, written in programming languages
such as C and C++, on the graphics processor unit [15].

Until the emergence of CUDA programming, parallel
programming was carried out through the CPU. However,
CPUs are originally serial processors thus complex software
is required to use a combination of more than one CPU.
With CUDA, parallel processing became easier with one of
the most important reasons being that CUDA provides for
parallelism manually. The program part written in CUDA is
called a kernel. GPU runs thousands of copies of this core
and makes it parallel. Since CUDA is an extension of the
C language, transforming a program written through the
CPU is easy.

There are some studies that investigated the reduction
of the computational time with CUDA. Jang et al. [16]
used CUDA and OpenMP to accelerate the neural net-
works. They worked on creating a text detection appli-
cation and they described the challenges and obstacles
that they faced in the process. They presented some sam-
ple codes related to the application. As a result, they
presented the positive effects and benefits of GPU pro-
gramming. Canto et al. [17] used parallel neural network
training with CUDA-basic linear algebra subroutines
(CUBLAS). The CPU and CUDA applications were
compared in experiments performed with different num-
bers of hidden layer neurons. They presented a perfor-
mance comparison of parallel and serial programming.
He et al. [18] used standard GPU features to train paral-
lel neural networks with CUDA They obtained good per-
formances by applying matrix and vector operations on
the GPU. Lahabar et al. [19] proposed a CUDA-based
parallel neural network for pattern recognition. They
compared the Matlab (CPU) version and their GPU ap-
plication and reported the accelerations on the GPU.

In this paper we report on the application of CUDA
and explored the features in relation to a parallelized sim-
ulation of a neural network based the automatic classifi-
cation of anesthetic depth levels. The process was simpli-
fied by using the CUBLAS. Since CUBLAS does not
have all the necessary libraries, the kernel function was
also used. Two different graphics cards were applied to

Fig. 1 Comparison of the number of cores on a CPU system and a GPU
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different configurations of neural networks in the experi-
ments. Hence, CUDA programming had a positive effect.
Several advantages of the proposed method are as
follows:

& In this study, in contrast to the aforementioned studies, a
parallel running neural network was implemented on EEG
data.

& Since the access speed of general memory is slower than
shared memory, active use of shared memory was
targeted.

& The proposed system aims to produce faster results in the
real-life implementation of biomedical signal processing
applications to be used in real-time.

& Selecting various features from different categories is im-
portant in terms of obtaining a better representation of the
incoming data thus achieving a successful performance.

Background

Multilayer perceptron neural network

The term feed forward back-propagation network has been
coined because the error reduction process is carried out by
spreading the error over the entire network. This is also called
the back-propagation of error. This algorithm attempts to re-
duce the error value, (the difference between the actual obtain-
ed output and what the output should be) to a minimum level
gradationally by reflecting it onto all weights. In the back-
propagation algorithm, training starts with a random set of
weights. The algorithm for Q-layer feed-forward network
[20, 21] is;

q=1,2,3,…,Q layer number, the input of unit at the layer,
the input of i unit at the layer, the weight value which connects
unit at the layer to the unit at the layer. The processing steps
are as follows:

Step 1: Real-valued small random numbers are assigned to
as the initial value.

Step 2: A random (input-target) working model is selected
and the forward output values are calculated for each
unit at the layer. So, the output is obtained by the
formula given in Eq. (1).

yqi ¼ f
X

i

yq−1i wq
i j

 !
ð1Þ

Step 3: The error terms are calculated for output units.

δQi ¼ yqi −y
p
ið Þ f 0 XQ

i

� �
ð2Þ

Step 4: For all units at the layer, the error terms are cal-
culated for hidden layer units via the back-
propagation method.

δq−1i ¼ f 0 X q−1
i

� �X
i

δqi w
q
i ð3Þ

Step 5: The Weight values are updated according to the fol-
lowing equations.

wnew
i j ¼ wold

i j þΔwq
i j ð4Þ

Using the learning coefficient, the change made
in weight during the learning phase should be ac-
cording to the following equation.

Δwq
i j ¼ ηδqi y

q−1
i ð5Þ

Step 6: Returning to step 2 the processes are repeated for
each model, until the total error reaches an accept-
able level.

CUDA programming

In software developed by utilizing CUDA programming,
a portion of the written codes works on the CPU, and
when parallelism is desired the other codes are proc-
essed in the GPU. The kernel function is the part of

Fig. 2 CUDA programming model [15]

Fig. 3 Sample warp scheduler
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code which allows codes to work on the GPU. Before
running this function, it is necessary to determine the
values of certain parameters which are the number of
blocks and threads. A thread is a basic execution unit
paired with a single GPU core. A block structure is formed
from a combination of a certain number of threads. A structure
consisting of blocks and threads is called a grid structure. This
grid structure has a great importance in the concurrent execu-
tion of threads on the GPU [15]. Grids are joined and create a
graphics processor as shown in Fig. 2.

GPUs have different memory locations. The global
memory is a basic communication area between the
CPU and GPU; it is accessible from all the threads
but has a long latency time. Each streaming processor
includes a small shared memory shared by all the
streaming processors (SP). This memory is very fast
and all the variables defined in this memory can be
accessed by all blocks. Apart from these two memo-
ries, there are also constant memory and texture mem-
ory which are specifically designed for different pur-
poses [15].

The working principle of the threads is defined by
warp schedulers in a grid structure. The threads in a
streaming processor are sent to the streaming processor
by warp scheduler in groups of 32. Figure 3 shows that
the sample warp scheduler distributes threads to CUDA
cores in a grid structure consisting of three blocks with
32 threads in each block.

A brief outline of the CUDA programming steps are;
identification of the kernel function, identification and
running of threads by GPU according to this kernel func-
tion, packaging of threads in groups of 32 called warp

and the execution of these warps by the multi-thread
processors called streaming multiprocessor.

Materials

Data set

The application was performed on a database that contains
raw, long-term, and continuous records related to anesthetic
data. The data was obtained from the hospital of the Yildirim
Beyazit University. This study consisted of 20 cases in which
the isoflurane anesthetic drug was administered. Different sur-
gical operations were undertaken and the duration of the an-
esthesia varied. The age and weight of the patients are given in
Table 1.

Data preparation

The EEG signal was recorded according to 10/20 elec-
trode placement system from 15 channels (Fp1, Fp2, F7,
F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P3, Pz, P4). The EEG
signal was filtered between 0.1 and 60 Hz and digitized
with sampling rate of 256 Hz. In this study, applications
were conducted in order to determine six levels of the
depth of anesthesia. The BIS index was also recorded
synchronously from the depth of anesthesia monitoring
device (BISTM, Aspect Medical Systems) in order to com-
pare with extracted attributes. This device consists of
levels between 0 and 100. The anesthesia levels in this
study and the corresponding levels of BIS values are pre-
sented in Table 2.

After gathering the data, filtering stage was taken place.
First, the EEG signals was filtered with a 10 point noncaus-
al moving average filter to smooth the EEG signals. A
band pass filter (10th order IIR Butterworth band pass fil-
ter) was utilized to remove the effects of noise and artifacts
from the signals. The frequency range of the filter was 0.1–
60 Hz. In addition, a Notch filter was applied to eliminate
the noise from the 50 Hz mains. In the next stage, EEG

Table 1 The age and weight of the patients

Range Mean Standard deviation

Age 30–60 47.5 26.3

Weight 45–88 69.5 13.9

Table 2 Anesthetic depth levels
in relation to the BIS Index Anesthetic depth levels Durum Aralık Değerleri Seviye

Deep anesthesia Cortical neuron suppression is increasing. BIS Index: 0–25 6

BIS Index: 25–50 5

Moderate anesthesia Surgical anesthesia. Less likely to remember
after surgery, visual processes and reflex
movements available

BIS Index: 40–50 4

BIS Index: 50–60 3

Light anesthesia Increased sedation and memory failure situation,
patient can be awakened with a stimulation.

BIS Index: 60–80 2

Awake The patient is awake, aware, memory and
conscious recall are complete.

BIS Index: 80–100 1
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signals were divided into 10 sec epochs with each segment
being passed through the windowing process using Ham-
ming window. The EEG signals obtained from different
levels of anesthesia are given in Fig. 4.

As it is shown from Fig. 4 that EEG waves show different
characteristics, especially in frequency bands (alpha, beta, del-
ta and theta), among depth of anesthesia levels. Low ampli-
tude and mixed EEG frequency are apparent during the awake
level. In the light anesthesia level, the highest amplitude with a
frequency range of 2–7 Hz and the existence of alpha waves
(7.5–12.5 Hz) are found. The beta waves (12.5–30 Hz) are
observed during the moderate anesthesia. The deep anesthe-
sia, may consist of low frequency waves which are lower than
7.5 Hz (delta and theta bands).

Feature extraction

This stage involves determining the significant information
from the EEG signal. The features were given from four dif-
ferent categories (time, non-linear, frequency-based and

entropy) in the feature extraction. Detailed information about
these features and their descriptions can be found in [22, 23].
Forty four features were applied as inputs to the neural net-
works are given in Table 3.

Experimental setup

The experiments were carried out on the graphics cards Nvidia
GeForce GT 525 M with GF108 architecture and Nvidia
Quadro 2000 with GF106 architecture, and Intel Core i7-
2670QM 2.20 GHz CPU with an 8GB memory. For compar-
isons to be equal, the software was coded in the same pro-
gramming language. Also in the coding, a single precision
representation was chosen. The developed software was cre-
ated in Visual C++ 2010. Table 4 summarizes the hardware
used in this study.

The GF108 architecture has 585 million transistors
and 96 CUDA cores. The GF106 architecture has 1.17
billion transistors and 192 CUDA cores. Figure 5 shows
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Fig. 4 EEG signals from
different states of anesthesia

Table 3 Features selected as
inputs to the NNs Category name Features

Time based features Arithmetic mean, Maximum value, Minimum value, Standard
deviation, Variance, Median, Zero crossings, Skewness, Kurtosis.

Entropy based features Petrosian fractal dimension, Rényi entropy, Spectral entropy,
Permutation entropy, Approximate entropy.

Frequency-based features Wigner ville coefficients (4 Features), Wavelet transform based
features (16 Features).

Non-linear based features Hjorth Parameters (3 Features), Mean curve length, Hurst
exponent, Mean energy, Mean teager energy.
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the architecture of Nvidia Quadro 2000 with an en-
larged panel showing the streaming processors.

The total CUDA cores (192) are clustered within 4
streaming processors, each one containing 48 cores. The
graphics card gives memory support up to 1 GB of use.
With 48 KB shared memory information can be shared
between blocks. Streaming processor has eight special
function units (SFU) which are used to carry out special
mathematical operations. The SFU executes the com-
mands that carry out operations such as sine, cosine,
square root and interpolation. Each SFU executes one
command per hour, for each thread. In each core, there
is integer unit (INT) for integer operations and floating
point unit (FP) for decimal operations.

Implementation of the CUDA to neural network

The mathematical calculations of neural networks, mostly
consist of matrix multiplication operations. CUDA can pro-
cessmatrixmultiplication efficiently using the sharedmemory
per block. In applications, shared memory increases the effi-
ciency significantly. For instance, in GPU general processes,
400–600 cycles are needed to access global memory, howev-
er, CUDA only needs 4 cycles to access the shared memory
[25]. Therefore, CUDA′s sharedmemory is important in terms
of the efficient execution of processing. Apart from matrix
operations, the calculation of the activation function in each
hidden neuron can be performed in parallel. Thus, threads can
be created in equal numbers with the element number of the

Table 4 Summary of hardware
features for the CPU and the GPU
used

Processor CPU (Intel) GPU 1 GPU 2

Commercial model Core i7-2670QM Nvidia GeForce GT 525 M Nvidia Quadro 2000

Number of cores @ speed 4 @ 2.2 GHz 96 @ 600 MHz 192 @ 625 MHz

Memory speed 1,333 MHz 900 MHz 1,300 MHz

Memory bus width 128 bit 128 bit 128 bit

Memory bandwidth 21.3 GB/s 28.8 GB/s 41.6 GB/s

Memory size (type) 8 GB (DDR3) 1GB (DDR3) 1GB (GDDR5)

Bus from/to CPU Does not apply PCI-e 2.0 x 16 PCI-e 2.0 x 16

Fig. 5 Architecture of Nvidia
Quadro 2000 [24]
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matrix. Then the processes can be calculated independently in
each thread [25].

The matrix operations of a portion of forward neural net-
work calculations steps performed on CUDA are presented in
Fig. 6. As shown in figure that the neural network has a suit-
able structure for parallel processing.

In this study, the parallel application of the back propaga-
tion neural network algorithmwas carried out in 2 steps. In the
first step, the matrix operations are parallelized and in the
second step, the arithmetic operations are parallelized. The
input values andmultiplyingweight values between the ″input
and hidden layers values″ are examples of matrix operations.
An example of the arithmetic operations is the calculation of
the sigmoid function and weight updates. In the parallelization
of the matrix operations (see Fig. 6), CUBLAS library was
chosen since it offers a serial algorithm structured according to
the optimal parallelism, the identification of the directories

and blocks do not constitute a problem. For the arithmetic
operations, parallelism was realized with the identification of
the kernel which is the name given to the function running on
the GPU. Examples of these two steps are given below.

1. The cublasSgemm function of the CUBLAS library was
used for matrix multiplication operations. An example of
its use is as follows.

0cublasSgemm
�
char transa; char transb; int n;

int k; float alpha; const float *A; int lda; const float *B;

int ldb; float beta; float *C; int ldc
�
0

where, and are the values of the matrix and are scalar values.
According to this function, matrix is in size, matrix is in

size and matrix is in size. Function cublasSgemm, calculates
the matrix operation. When taken as and, the process is then
reduced to . The constant values are and . The expression of
trans in functions is used for matrix transpose processes. Gen-
erally ′n′ structure is chosen. The usage is as follows.

if transa ¼ 0N 0 or 0n0A ¼ A;

if transa ¼ 0 T 0; 0t0; 0C0or0c0thenA ¼ AT

transb is used for matrix for the same purpose.
Apart from the cublasSgemm function, in this study the

following functions are used; cublasAlloc for the separation
of GPUmemory, cublasFree to leave allocated memory space
again, CublasSetVector for vector transferring from CPU to
GPU, CublasGetVector for vector transferring from GPU to
CPU, CublasSetMatrix for transferring matrix from CPU to
GPU and CublasGetMatrix functions for transferring matrix
from GPU to CPU.

Step 2: The kernel was defined for the parallelism of arith-
metic operations and kernel functions have been de-
veloped for the activation function, the error func-
tion and weight updates. Figure 7 gives a sample of
the kernel operations regarding the sigmoid activa-
tion function performed on the GPU.

Fig. 6 Matrix multiplication operations of neural network using CUDA
(a section of forward computation steps)

__global__ void sigmoid( float *out1, int maksimum) { 

__shared__ float u_shared[32]; // Shared memory allocation

int column = blockIdx.x * blockDim.x + threadIdx.x; // Address information that GPU-index (thread) will

process on.

if (column<maximum){ 

u_shared[column] = d_an[column]; // Writing to shared memory

u_shared[column]  = (1/(1+__expf(-1*u_shared[column]))); // Calculation of the sigmoid function value  

__syncthreads();  } // The __syncthreads()  command is a block level synchronization barrier. 

out1[column]=u_shared[column]; // Writing to global memory } 

Fig. 7 Kernel function written
for the sigmoid function to run on
the GPU
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In the scope of the study there were various optimization
processes were performed on the neural network in order to
resolve application to the GPU. The most important opera-
tions performed in software features for the CPU and the
GPU are listed below:

& Code Partitions that can be made in parallel were run on
CUDA, else were run on CPU.

& Shared memory usage was provided significant increase
in performance during calculations used in functions.

& System bottlenecks are resolved using Nvidia Visual
Profiler.

& To provide a better performance with CUDAProgramming,
each block contained at least 64 threads. Threads are exe-
cuted in groups of 32 called a warp which executes a com-
mand at a time. Therefore, to achieve full efficiency, all of
32 threads in the warp must have the same execution path.

& A few CUDA-optimized libraries such as CUBLAS were
utilized.

Detection of anesthetic depth level

The detection of anesthetic depth level experiments was per-
formed in 4 different scenarios to better observe the speed of
the operations. Each scenario testing with different ANN

architectures involving different number of hidden layer (s)
and neuron (s). An example of ANN with 44-10-10-1 archi-
tecture is presented in Fig. 8.

To achieve good results in all the experiments the learning
coefficient andmomentum coefficient were determined as 0.7.
The iteration number was determined as 10,000. The scenar-
ios were:

Scenario 1: The neural network architecture was designed
according to the following values; an input val-
ue of 44, the number of hidden layer neurons
was 10 and the output value was 1.

Scenario 2: The neural network architecture was designed
according to the values; an input value of 44,
the number of hidden layer-1 neurons was 10,
the number of hidden layer-2 neurons was 10
and the output value was 1.

Scenario 3: The neural network architecture was designed
according to the values; an input value of 44,
the number of hidden layer-1 neurons was 20,
the number of hidden layer-2 neurons was 20
and output value was 1.

Scenario 4: The neural network architecture was designed
according to the values; an input value of 44,
the number of hidden layer neurons was 50 and
output value was 1.

Fig. 8 ANN with 44-10-10-1 architecture

Table 5 Speed performances obtained with different NN architectures

Architecture Criteria CPU GT 525 M Quadro 2000

44-10-1 Time 739 sn 90 sn 30 sn

Speedup 8.2 x 24.6 x

44-10-10-1 Time 1,188 sn 120 sn 42 sn

Speedup 9.9 x 28.2 x

44-20-20-1 Time 2,338 sn 160 sn 80 sn

Speedup 14.6 x 29.2 x

44–50-1 Time 4,048 sn 265 sn 125 sn

Speedup 15.2 x 32.3 sn

Fig. 9 Speed performances obtained with different architectures

Table 6 The accuracy rate obtained with different ANN architectures

Architectures Processors

CPU GT 525 M Quadro 2000

44-10-1 93.7 % 93.8 % 94.01 %

44-10-10-1 99.01 % 99.05 % 98.93 %

44-20-20-1 95.4 % 95.7 % 95. 5 %

44-50-1 88.75 % 87.09 % 88.08 %
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Table 7 Scoring agreement between BIS scoring and the proposed method

BIS score

Proposed
method

Anesthetic depth levels Deep anesthesia
(0–25)

Deep anesthesia
(25–50)

Moderate anesthesia
(40–50)

Moderate anesthesia
(50–60)

Light anesthesia
(60–80)

Awake
(80–100)

Deep anesthesia (0–25) 729 3 0 0 0 0

Deep anesthesia (25–50) 4 771 4 0 0 0

Moderate anesthesia
(40–50)

2 3 638 2 0 0

Moderate anesthesia
(50–60)

0 0 3 582 6 3

Light anesthesia (60–80) 0 0 0 1 604 5

Awake (80–100) 0 0 0 0 2 642

Accuracy (%) 99.18 99.22 98.91 99.48 98.69 98.76

Overall accuracy (%) 99.05

Table 8 Quantitative comparison of the current study with the reported methods

Authors Anesthetic levels Method Accuracy rate

Srinivasan et al. [27] Low, Medium, High Feature extraction:
• Normalized spectral entropy
Classification Algorithms:
• Recurrent artificial neural network

99.6 %

Zhang et al. [28] Awake, Asleep Complexity based on Lempel-Ziv (CBLZ)
Approximate Entropy (ApEN)
Spectral Entropy (SE)
Median Frequency (MF)

CBLZ: 93 %
ApEN: 89 %
SE: 76 %
MF: 64 %

Nicolaou et al. [29] Awake, Anesthetized Feature extraction:
• Granger Causality
Classification Algorithms:
• SVM

98 %

Esmaeili et al. [30] awake, moderate anesthesia,
surgical anesthesia,

isoelectric

Feature extraction:
• Spectral features
• Burst suppression ratio
Classification Algorithms:
• Fuzzy rule-base index (FRI)
• An adaptive network-based fuzzy inference
system (ANFIS)

• Linear discriminant analysis (LDA)

FRI: 96.75 %
ANFIS: 94.33 %
LDA: 91.42 %

Lalitha et al. [31] Low, Medium, High Feature extraction
• Correlation dimension (CD)
• Lyapunov Exponent (LE)
• Hurst Exponent (HE)
Classification Algorithms:
• Elman neural network (EN)
• Multilayer perceptron (MLP)

CD+EN: 97.8 %
CD+LE+EN:97.5 %
LE+EN: 99 %
LE+MLP: 95 %

Rabbani et al. [32] 90<BIS<100, 80<BIS<90
70<BIS<80, 60<BIS<70
50<BIS<60, 40<BIS<50
30<BIS<40, 20<BIS<30
10<BIS<20, 0<BIS<10

Feature extraction
• Complex wavelet transform
Classification algorithms
• ANFIS

94.07 %

Our work Deep Anesthesia (0–25)
Deep Anesthesia (25–50)
Moderate Anesthesia (40–50)
Moderate Anesthesia (50–60)
Light Anesthesia (60–80)
Awake (80–100)

Feature extraction
• Attributes given in Table 3
Classification Algorithms:
• Feed Forward Neural Network
(with Backpropagation algorithm)

99.05 %
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Experimental results about speed performances for these
architectures are presented in Table 5.

Input matrix was given in Eq. (6) showing that the data set
consists of 44 features and 3,113 examples.

inputmatrix 44x3113½ �ð Þ ¼
X 1;1

⋮
X 44;1

⋯
⋱
⋯

X 1;3113

⋮
X 44;3113

2
4

3
5 ð6Þ

Speedup calculation was calculated as a fraction of CPU
time (TCPU) and the GPU time (TGPU). Speedup is calculated
as shown in Eq. (7). Time calculation TCPU and TGPU were
calculated as the statistical median of ten sequential running
calculations, hence eliminating the random error [26].

Speedup ¼ TCPU=TGPU ð7Þ

The experiments were carried out by changing the number
of hidden layers and number of neurons in the hidden layers in
order to test the performance of the GPU. Better results were
obtained with Nvidia Quadro 2000 graphics card which has
more cores. In Fig. 9, the results obtained in 4 different sce-
narios are presented. As can be seen from the chart, the same
problem was solved faster with GPU programming.

When examining the results, it can be seen that proposed
method quickly classifies the EEG data with high accuracy
values. Furthermore, better results are obtained with the in-
crease in the number of CUDA cores in graphics cards. A
success performance analysis of the proposed methods was
performed in the final stage. Better results were obtained with
44-10-10-1ANN architecture. Accordingly, the accuracy rates
that were obtained are presented in Table 6.

It is expected that proposed method will provide support to
anesthetists in the classification of the depth of anesthesia. The
errors in each stage can be determined by exploring the con-
fusion matrix, as shown in Table 7. This indicates that there is
an agreement between the proposed method and the BIS
values.

The performance of the proposed method was compared
with the recent studies available from the literature listed in
Table 8. This table shows that the performance of the auto-
matic classification of anesthetic depth level implementations,
including 5 or above anesthesia level, was generally in the
range of 64–97 %. Many of the studies, which obtained
95 % or higher compatibility on 3 or 4 anesthetic depth levels.
It is believed that this study provides substantially contribu-
tion to the field, since it gave a 99.05 % accuracy rate on 6
anesthetic depth levels.

In this study, the BIS value was used as outcome for per-
formance test of the system. The results of the present study
demonstrate that the classification of anesthetic depth levels

were obtained very quickly. Nevertheless, the fact that the BIS
itself alone may not be representative of anesthetic depth
should be considered.

Results

This study presents an automated method to classify the depth
of anesthesia in a short time with high accuracy rate by ana-
lyzing EEG signals. This classification allows the anesthetists
to make decisions concerning the level of anesthesia required.

The effect of CPU and GPU on processing times of neural
networks and success rates were investigated with the pro-
posed method. The use of CUDA technology on the neural
network algorithm accelerated the processing time allowing
the EEG signals to be classified in a shorter time. As a result of
different experiments, an average of 20x speed-up was obtain-
ed. The success performance of the method was also high.
Using a combination of many attributes in different categories
leads to a better representation of data using a smaller number
of attributes. These attributes are thought to affect the high rate
of success.

Providing high accurate and quick results encourage for the
future studies will be continue for not only anesthesia but also
for other biomedical signal processing problems in real time
or need to be run quickly.
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