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Abstract The spectrum of EEG has been studied to predict
the depth of anesthesia using variety of signal processing
methods up to date. Those standard models have used the full
spectrum of EEG signals together with the systolic-diastolic
pressure and pulse values. As it is generally agreed today that
the brain is in stable state and the delta-theta bands of the EEG
spectrum remain active during anesthesia. Considering this
background, two questions that motivates this paper. First,
determining the amount of gas to be administered is whether
feasable from the spectrum of EEG during the maintenance
stage of surgical operations. Second, more specifically, the
delta-theta bands of the EEG spectrum are whether sufficient
alone for this aim. This research aims to answer these two
questions together. Discrete wavelet transformation (DWT)
and empirical mode decomposition (EMD) were applied to
the EEG signals to extract delta-theta bands. The power den-
sity spectrum (PSD) values of target bands were presented as
inputs to multi-layer perceptron (MLP) neural network (NN),
which predicted the gas level. The present study has practical
implications in terms of using less data, in an effective way
and also saves time as well.
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Introduction

Anesthetic effect applied on a patient, is expressed as depth of
anesthesia. In surgical operations, screening the depth of
anesthesia in a reliable and non-invasive way and knowing
the amount of anesthetic chemicals to be given to the patient
have great importance [1]. However, the depth of anesthesia
may vary depending on patient’s condition (age, weight, etc.)
and anesthetic agents [2]. It is important to measure accurately
anesthetic dose, which applied to the patient during operation.
Additionally, a calibration error which may occur in the evap-
orator can also adversely affect anesthesia process. Therefore,
anesthetic gas level should be monitored continuously.

Recently, many research about determining anesthesia dose
level and depth of anesthesia have been done [3–5]. Initial
research concerning the evaluation of the depth of anesthesia
involve blood pressure, tearing and heart rate however, these
autonomic responses mostly affected by the skeletal muscle
activity [6]. Actually, EEG signals contain important clues
related to brain activity [7], such as sleep stages [8] and
provides significant information such as epileptic seizure [9,
10]. Because anesthetic agents affect the brain’s cortex, mon-
itoring brain activity using EEG recording is a suitable ap-
proach to determine the depth of anesthesia [11]. These clues
can also be used in the vital area of determining the patient’s
depth of general anesthesia during surgical operations [12,
13].

For the determination of the level of anesthesia, many
different EEG based scientific models have been proposed
in recent years. Among these models, bispectral index (BIS) is
the most preferred parameter in determining level of
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anesthetic hypnotic depth during the surgery. BIS value is
formed from signals belong to four different EEG electrodes
on brow area. This index is one of the high-grade spectral
analysis methods. It is obtained by analyzing the correlation of
phase between the parts of the signal [14].

In the past few years, various EEG based scientifical
models have been proposed for the identication of anesthesia
level. For instance, some EEG entropy values were used as an
criterion of depth of anesthesia according to the opinion that
EEG signals becomemore regular as the anesthetic depth rises
[15–17]. Zikov et al. [18] suggested a wavelet-based anesthe-
sia value in order to identify the depth of anesthesia (wavelet
analysis of value for central nervous system monitoring,
WAVCNS). Researchers compared this method with index
value from the BIS monitor for reference, and have presented
a high correlation value (r=0.969). Also, compared to the BIS
value, WAVCNS has a faster algorithm [18]. For the measure-
ment of the depth of anesthesia, Ferenets et al. [19] used
spectral entropy based on the regularity and complexity, ap-
proximation entropy, Higuchi fractal dimension and the
Lempel-Ziv complexity by taking advantage of EEG signals
and as a result, they have achieved a good performance.
Lalitha et al. [20] took advantage of the chaotic features and
neural network classifiers such as correlation dimension,
Lyapunov exponent and Hurst exponent in the determination
of the levels of anesthetic depth. EEG monitorization is used
for many purposes. Among these, there is providing
pharmaco-dynamic effect of the anesthetic medicine or central
nervous system (CNS) improvement in real time [21]. Tosun
and Güntürkün [22] developed a neuro-fuzzy system to deter-
mine depth of anesthesia during the maintenance of anesthesia
and to estimate anesthetic gas level applied at that moment.
Also Güntürkün [23] designed a neural network system in
another study, for the same purpose. The results achieved with
this systems were quite successful.

Problem definition and purpose of the study

During the operation, the depth of the anesthesia of a patient is
determined by the experience of the anesthetist. An anesthetic
dose level which is applied to the patient must be measured
sensitively as anesthetic depth may change momentarily in
surgeries [24]. This is required to avoid awareness of patient
occurring due to inadequate levels of anesthesia. Otherwise,
patient can sense the operation pain and reacts in no way.
Intra-operative awareness may also cause undesirable physi-
ological results [25, 26]. On the other hand, over dosage of
anesthetic drug can cause lethal effects on patient. To mini-
mize such problems, anesthetist needs a reliable system to
monitor the appropriate anesthetic dose level. The other prob-
lem is a calibration defect that may be occur in vaporizer, may
carry the anesthesia process to a critical condition. Therefore,
the level of the anesthetic gas which is regulated manually and

is given to a patient must be measured continuously, for
checking whether the anesthetic dose level applied to patient
is correct or not.

The major concern of the study is finding the appropriate
dosage of the anesthetic drug during surgery. Saraoglu and
Edin [2] have developed e-nose system to estimate the anes-
thetic dose level. This system determines gas concentration
based on steady-state responses of the sensors [27–29]. The
authors of more recent studies [21–23] have used the full
spectrum of EEG without differentiating the frequency bands.
Furthermore, these studies were generally built on to estimate
depth of anesthesia, instead of estimating appropriate amount
of anesthetic gas. However, predicting the dosage of anesthet-
ic drug may help anesthetist to sure the patient be in safe.

In this study, a new neural system, which shows to experts
sevoflurane gas ratio should be applied, was designed. This
research addresses the appropriate level of anesthetic gas
estimation according to corresponding PSD values of delta
and theta bands (0.5–8 Hz) of EEG signals. Although EEG
signal has a wide frequency band (0.5–100 Hz), clinical
research mostly utilized frequency bands between 0.5 and
30 Hz [30]. EEG spectrum is namely involving δ (0.5–
4 Hz), θ (4–8 Hz), α (8–13 Hz), β1 (13–30 Hz) and β2
(31–50 Hz). The basic principle is that while low frequencies
(below 8 Hz) of EEG signals reveal the stable and sleep state
of the brain, higher frequencies (above 8 Hz) show that the
brain is in an active state. In surgical operations, the increase
of the amplitude of EEG wave below 8 Hz recorded from
human brain under anesthesia shows a similar EEG mecha-
nism to the sleep state of brain [31].

DWT and EMD were utilized to get the decomposition of
non-stationary EEG signals is to uncover the delta-theta
bands. Since the characteristics of the EEG waves are rather
complex and the data sets in this study are constituted of large
sizes, a MLP network was used as a classifier. The evidence
from these studies suggest that PSD values of delta and theta
bands of EEG signals are sufficient alone to predict gas ratio to
maintain an appropriate anesthesia level.

The paper is organized as follows: Section “Background”
provides information about the methods used in this study.
Section “Anethesia data set” gives brief information about the
data set used in the study. Section “Application methods and
discussion” presents information related to the implementa-
tion and evaluation step. The paper concludes with a brief
discussion of the system that estimate the amount of anesthetic
gas level in surgical operations using EEG signals.

Background

Records obtained from the patients under anesthesia are usu-
ally consists of long and noisy data. Therefore, systems which
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are designed on these parameters cannot give adequately
useful results. At this point, the request is emerging to operate
in frequency band.

PSD is frequency response of a periodic or random signal.
PSD indicates distribution of signal strength depending on the
frequency and frequencies at which signal strength become
intense [32, 33]. Power spectral density can be expressed with
Eq. 1;

PPSD kð Þ ¼ 1

M

X
i¼1

M

xi kð Þj j2 ð1Þ

where M is the number of samples, x is signal, xi kð Þ repre-
sents the Fourier transform of the x signal. xi kð Þ is calculated
as shown in Eq. 2.

xi kð Þ ¼
XN−1

n¼0

xi nð Þe− j2πN nk ð2Þ

Since EEG signals are non-stationary, both DWTand EMD
are capable of display the energy of the signals in time-
frequency space [34]. DWT has been employed in many
applications concerning EEG data analysis [35], since it is a
more advanced method with improved algorithms for the
processing of non-stationary signal compared to the existing
methods such as FFTanalysis. EMD is a new approach, which
eliminates the requirement for the stationary of signals.

Discrete Wavelet Transformation (DWT)

DWT is effective in presenting an opportunity to allow the
decomposition of a signal into a number of scales and wave-
lets, which are associated with low, and high pass filters [36].
Figure 1 shows the sub band coding of DWT decomposition
of the original signal (x[n]).

Here, g n½ � is a high pass filter used to discrete original
signal and gives the detail D1, on the other side h[n] is a low
pass filter and provides the approximation A1. The details are
the low-scale and high frequency components, whereas the
approximations are the high-scale and low frequency compo-
nents of the original signals [37]. The approximations are
found after the first decomposition. The DWT decomposition
process can be easily repeated to achieve further decomposi-
tions by using the approximations as shown in Fig. 1 [38].

The outputs of the high and the low pass filters can be
defined as:

yhigh k½ � ¼
X
n

x n½ �:g 2k−n½ � ð3Þ

ylow k½ � ¼
X
n

x n½ �:h 2k−n½ � ð4Þ

Empirical Mode Decomposition (EMD)

The purpose of EMD is to empirically separate a signal into
several sub-signals of variation and frequency content [39].
Since they are empirically derived from the data, sub-signals
are referred to as intrinsic mode functions (IMFs) used to
decompose a time series into finite numbers and their sum-
mation produces the original signal. Each of the IMFs, linear
or nonlinear, plays a role as a simple oscillation, which has the
same number of extremes and zero-crossings [34]. Determin-
ing the IMFs, frequency components of a signal, using many
filters is thought to give valuable information about the signal
[39]. Also, a practical way of shifting data is used to generate
IMFs, which have the same numbers of zero crossings and
extremes [34]. The algorithm used to create IMFs in the EMD
is obtained in two main steps:

Step-1: Identify all the local extreme points of the original
signals in the experimental data x tð Þ .

The mean of upper and lower envolopes of data
x tð Þ is calculate as Eq. 5:

m1 tð Þ ¼ U tð Þ þ L tð Þ
2

ð5Þ

where U tð Þ refers to the upper envelope of data and
L tð Þ refers to the lower envelope of data.

h1 tð Þ ¼ x tð Þ−m1 tð Þ ð6Þ

The resulting component h tð Þ is an IMF that is
symmetric and satisfies all the maxima positive and
all the minima negative. If this is not the result then
the separating process will be repeated until the
extracted signal is in an IMF format.

x[n] 

g[n] 

h[n] 2

D1 

A1 

…… 
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h[n] 

2

2
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2 

Fig. 1 Subband decomposition
of the DWT implementation
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h11 tð Þ ¼ h1 tð Þ−m11 tð Þ ð7Þ

Step-2:

r1 tð Þ ¼ x tð Þ−c1 tð Þ ð8Þ

The first IMF is subtracted from the original
signal and the equation c1 ¼ h1 tð Þ is applied and r1
tð Þ is the residue. By applying the procedures of
step-1 and step-2, more intrinsic modes are observed
until the final one, which represents the general trend
of the time series.

x tð Þ ¼
X
i¼1

n

ci tð Þ þ rn ð9Þ

ri−1 tð Þ−ci tð Þ ¼ ri tð Þ ð10Þ

MLP neural network

The NN is a nonparametric technique for performing a wide
variety of detection and estimation tasks due to the ability to
find nonlinear surfaces separating the underlaying patterns
[40]. A MLP network use the steepest descent method to
update the weights during the training period and all the layers
use non-linear sigmoid activation functions. The weights be-
tween layers ið Þ and neurons jð Þ are updated as:

W ji t þ 1ð Þ ¼ ΔW ji tð Þ þ cδ jxi ð11Þ

where c is the learning coefficient, δ j is the local gradient
which is a term given to the hidden or output layer of any
neuron. For the output layer;

δ j ¼ ∂ f
∂net j

y tð Þ
j −y j

� �
ð12Þ

in which net j ¼ ∑x jw ji and y tð Þ
j refers to the desired

output of j neuron. When the hidden and input layer is
considered, the situation can be represented as:

δ j ¼ ∂ f
∂net j

� �X
wjiδ j ð13Þ

Since any number of y tð Þ
j can exist starting from the first

iteration, steepest descent method searches the reverse side of
gradient in order to find the local minimums [41]. So, the
optimal weights ensuring minimum error can be acquired
along the current line.

Anethesia data set

In this study, EEG data was recorded with a 22-channel EEG
device with a 500 Hz sampling frequency. An international 8-
channel bipolar 10-20-montage system was utilized to collect
patient data. To obtain a normal level the patient’s EEG waves
were recorded before the sevoflurane gas was administered by
the anesthesiologist.

Sevoflurane is a sweet-smelling, nonflammable, highly
fluorinated methyl isopropyl ether used for induction and
maintenance of general anesthesia. Since sevoflurane has an
excellent safety record, particularly for outpatient anesthesia,
it is one of the most commonly used volatile anesthetic agents
[42].

The sample group of patients (see Table 1) had been
admitted to Kutahya Hospital, Turkey. The surgical applica-
tions were basic operations such as hernia and lasted approx-
imately 1 h. The data sets each contains a 30-s section of the
EEG signals collected from ten different patients.

Application methods and discussion

Pre-processing

A pre-processing procedure was applied to eliminate unde-
sired noisy signals from the original EEG for all the data sets.
Since this research focuses on low frequency bands, a 30Hz
10th order Infinite Impulse Response (IIR) type low pass
Butterworth filter was utilized to eliminate noisy signals relat-
ed to high frequencies [30].

Time-frequency analysis

The purpose of differentiating the EEG signals into several
sub-signals is to obtain the purer delta-theta bands. The
study analyzes the time-frequency of each EEG signal

Table 1 The information of the anethesia data set

Patient Gender (F/M) Age Operation type

1 F 65 Appendicitis

2 F 60 Thyroidectomy

3 F 60 Cholecystectomy

4 F 58 Cholecystectomy

5 F 55 Appendicitis

6 F 52 Thyroidectomy

7 F 45 Cholecystectomy

8 M 60 Hernia

9 M 59 Hernia

10 M 55 Appendicitis
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using two different techniques DWT and EMD. These two
techniques were separately implemented to the pre-
processed EEG signals to extract delta-theta bands.
Figure 2 shows all the process undertaken to estimate the
amount of gas to be administered through a flow chart. The
flow chart involves the processes with the proposed
methods, DWT and EMD combined with MLP neural
networks.

Time-frequency analysis with DWT

In this study, non-stationary EEG signals are decomposed
into subbands using DWT with the Daubechies wavelet of
order 2 (db-2). Because it had the best performance in the
classication of the EEG segments using a symmetric-
padding mode. We empirically found that the 3rd level
decomposition of EEG bands was positively related to
the level of anesthesia. Figure 3 shows the PSD values of
the EEG signal after 3rd level decomposition (approxima-
tions and details).

Essentially, approximations are purified EEG signals and
reflect the efficiency of the Daubechies wavelet. As shown in
Fig. 3a, they also reveal the delta-theta bands coverage, thus it

can also allow to obtain the delta-theta bands of the EEG
spectrum. Whereas, Fig. 3b shows that the PSD values of
undesired signals reach maximum values in the delta-theta
bands, which means that noisy signals effects are minimized
around related bands.

Time-frequency analysis with EMD

The tests for differentiating the EEG signals into several sub-
signals were performed with 1st and 2nd degrees of EMD
functions. 2nd degree IMFs were also applied to pre-
processed EEG signals. Figure 4 shows the PSD values of
the IMFs.

As shown in Fig. 4, the PSD values of 2nd degree
IMFs only cover the delta-theta bands and the efficiency
of the maximum values was around 2–8 Hz as expected.
Whereas the PSD values of 1st degree IMFs overlap the
alpha bands. However, the alpha band is sign of awaken-
ing and indicates that the brain is changing its stability.
Therefore, the PSD values of the 2nd degree IMFs that
represent the requested bands have been obtained. The
desired frequency bands of the EEG signals were also
efficiently evaluated by EMD.

Fig. 2 A graphical illustration of
the methodology employed in this
study
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Neural application

In this study, the appropriate level of anesthetic gas to be
administered was estimated according to corresponding PSD
values of current EEG signals, which were obtained after
DWT and EMD analysis presented as an input to the MLP
network. As a requirement of supervised learning, previous
anesthetic gas levels applied by the anesthesiologist were also
presented as an input the MLP network.

The network typology was a feed-forward structure with
back-propagation algorithm consisting of 20 input layer neu-
rons, 15 hidden layer neurons and an output layer neuron. The

data sets were divided into training and test groups as a
requirement of supervised learning. This MLP network was
use the steepest descent method to update the weights during
the training period and all the layers use non-linear sigmoid
activation functions.

In supervised learning, we are given a set of example pairs
x; yð Þ; xϵX ; yϵY and the aim is to find a function f : X→Y
in the allowed class of functions that matches the examples. In
other words, we wish to infer the mapping implied by the data;
the cost function is related to the mismatch between our
mapping and the data and it implicitly contains prior knowl-
edge about the problem domain.

A commonly used cost is the mean-squared error, which
tries to minimize the average squared error between the net-
work’s output, f xð Þ , and the target value y over all the
example pairs. When one tries to minimize this cost using
gradient descent for the class of neural networks called mul-
tilayer perceptron, one obtains the common and well-known
back propagation algorithm for training neural networks [43].
Figure 5 shows an artificial neuron model.

A log-sigmoid function, also known as a logistic function,
is given by the relationship Eq. 14;

σ tð Þ ¼ 1

1þ e−βt
ð14Þ

where β is a slope parameter. Sigmoid functions in this
respect are very similar to the input–output relationships of
biological neurons, although not exactly the same.

Table 2 shows the NN training parameters.
Figure 6 shows the structure of the NN. The first selected

19 PSD values of 30-s EEG records were used as the inputs of
the 3-layer feed-forward network since they carried meaning-
ful values. The number of input layer nodes is equal to the
total number of PSD values and the previous anesthesia rate.
Similarly, the number of output layer nodes is the same as the
number of output. The number of hidden layer node is less
than nodes of the input layer and this is in order to sustain
network simplicity.

The optimum network design that was realized fulfilled the
minimum requirements of the MLP inputs with the maximum
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effect. Therefore, the PSD values of each data set were select-
ed rather than using the signal itself in order to decrease the
complexity of the MLP network and allow an appropriate
network structure to be drawn. A basic outline of the MLP
network designed in this study consisted of three layers (20
input layer neurons, 15 hidden layer neurons and an output
layer neuron) as shown in Fig. 6. The first 19 PSD values of
the EEG records were used and remaining PSD values were
ignored due to the fact that they were converging to zero
values. To determine the PSD values of 30-s EEG records,
the average EEG values were taken from the patient, were
calculated for the 5 min before anesthesia and during the
maintenance stage. This gave the MLP network the opportu-
nity to tolerate unexpected inputs or find a way to avoid an
extensive training period for every significant deviation. The
first 19 PSD values of EEG signals and the previous anesthetic
gas levels were presented as the inputs of MLP. Here, the
anesthetic gas ratio applied by the anesthesiologist was used
as the criteria for updating weights of the network. This is in
keeping with the supervised method that supports the learning
process to obtain the best prediction of the applied gas amount
for new cases.

Root Mean Square Error (RMSE) was used to determine
the error ratio between the administered gas level and the

predicted ones [44]. Eq. 15 gives the RMSE definition.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
ya−yp

� �2

n

vuut
ð15Þ

Where ya is the gas level applied by the anesthesiologist
and yp is the gas level predicted by the system. The amount of

the error is, therefore, ε ¼ ya � yp

� �
. When the RMSE

approaches zero, this gives the predicted value higher percent-
age accuracy.

Figure 7 shows MLP NN training results using DWT, and
EMD. The solid line shows that gas level administered by the
anesthesiologist and the dotted line shows the MLP NN
results for DWT or EMD.

Although some similar results can be obtained by the use of
less complex MLP architectures, as the number of neurons in
the layers decreases, the learning is getting slower and some-
times comes to a fixed error rate. Moreover, MLP Network
sometimes memorizes the results to applied gas ratio rather
than generalize with less neuron. Since the paper aims to
obtain optimum number of neurons 20-15-1 network archi-
tecture were preferred and 15 neurons for hidden layer was
found the most favorable. Tables 3 and 4 show complexity
analysis for sevoflurane gas ratio estimations of MLP Net-
works both DWT and EMD.

Table 2 MLP NN training parameters

Training parameters Values

Activation function Logarithmic sigmoid

Initial learning rate 0.8

Performance type (MSE)

Number of layers 3

Input layer of MLP 20

Hidden layer of MLP 15

Output layer of MLP 1

Momentum constant 0.9

Fig. 6 Multi-layer perceptron network structure
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The MLP network training period was stopped after
2200 iterations for both methods in order to compare
results with each other. As shown Fig. 7 that minor
differences occurred during the training periods and the
errors for the two methods were observed to be very low.
The lower errors implies a higher prediction capacity.
Fundamentally, EMD is an empirical method and only
learns using iterations in contrast to DWT. The test results
shown in Tables 3 and 4 reveal that the neural network
reached an RMSE accuracy levels of 0.0787 for DWT and

0.0693 for EMD according to amount of anesthesia gas
administered.

In Tables 3 and 4, sevoflurane gas level actually applied by
an anesthesiologist exists in the first row, whereas the results
from MLP based network structures take place in the second
row. Successful results were obtained with both test sets in the
estimation of the gas level at the maintenance phase of anes-
thesia. According to the average relative percentage error
calculation, success rate of network trained with DWT is
94.95 %, success rate of network trained with EMD is

Table 3 Complexity analysis of MLP networks with DWT

Number Sevoflurane gas
level actually
applied by an
anesthesiologist
(%)

Test set results with DWT

Input layer: 20 hidden layer:5 Input layer: 20 hidden layer:10 Input layer: 20 hidden layer:15

Estimated results
obtained using the DWT
based neural system (%)

εDWT nð Þ2
Estimated results
obtained using the DWT
based neural system (%)

εDWT nð Þ2
Estimated results
obtained using the DWT
based neural system (%)

εDWT nð Þ2

1 1.5 1.08 0.1764 1.62 0.0144 1.58 0.0064

2 1.25 1.15 0.0100 1.11 0.0196 1.24 0.0001

3 1.25 1.14 0.0121 1.19 0.0036 1.28 0.0009

4 1.2 1.06 0.0196 1.15 0.0025 1.16 0.0016

5 1 1.08 0.0064 1.06 0.0036 0.88 0.0144

6 1.5 1.14 0.1296 1.29 0.0441 1.40 0.01

7 1.5 1.18 0.1024 1.58 0.0064 1.42 0.0064

8 1.7 1.50 0.0400 1.63 0.0049 1.64 0.0036

9 1.7 2.24 0.2916 1.84 0.0196 1.59 0.0121

10 1.7 1.74 0.0016 1.72 0.0004 1.62 0.0064

RMSEDWT 0.2810 0.1091 0.0787

Table 4 Complexity analysis of MLP networks with EMD

Number Sevoflurane gas
level actually
applied by an
anesthesiologist
(%)

Test set results with EMD

Input layer: 20 hidden layer:5 Input layer: 20 hidden layer:10 Input layer: 20 hidden layer:15

Estimated results
obtained using the EMD
based neural system (%)

εEMD nð Þ2
Estimated results
obtained using the EMD
based neural system (%)

εEMD nð Þ2
Estimated results
obtained using the EMD
based neural system (%)

εEMD nð Þ2

1 1.5 1.74 0.0576 1.44 0.0036 1.46 0.0016

2 1.25 1.08 0.0289 1.34 0.0081 1.15 0.01

3 1.25 1.11 0.0196 1.29 0.0016 1.34 0.0081

4 1.2 0.91 0.0841 1.11 0.0081 1.23 0.0009

5 1 0.66 0.1156 0.98 0.0004 1.08 0.0064

6 1.5 0.86 0.4096 1.26 0.0576 1.42 0.0064

7 1.5 1.28 0.0484 1.37 0.0169 1.43 0.0049

8 1.7 1.53 0.0289 1.75 0.0025 1.64 0.0036

9 1.7 1.86 0.0256 1.69 0.0001 1.65 0.0025

10 1.7 1.54 0.0256 1.71 0.0001 1.64 0.0036

RMSEEMD 0.2905 0.0995 0.0693
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95.16 %. The results show the capability of designing a new
intelligent assistance for anesthetic agent scoring system. De-
spite the application of attributes obtained with different
methods to the network structure, success rates are close to
each other. Success rate is approximately 95 % for both
methods. This shows the stability of the proposed system.

Conclusions

This study estimates the appropriate level of anesthetic gas
ratio according to corresponding PSD values of delta and theta
bands (0.5–8 Hz) of EEG signals. Best of our knowledge, it is
a new approach that a neural system suggests sevoflurane gas
ratio to anesthesiologists for controlling anesthesia level at the
maintenance stage of general anesthesia. We propose a system
using a narrower frequency band, unlike recent studies use the
full spectrum of EEGwaves [21–23, 45, 46]. The results of the
present study demonstrate that the delta and theta bands of the
EEG spectrumwhere the brain is in stable state were sufficient
alone to detect sevoflurane gas ratio. Therefore, the study,
also, prove that the delta and theta bands of the EEG spectrum
is related to anesthesia. Two time-frequency signal analysis
methods, DWT and EMD, were utilized for each EEG to
extract PSD values of the related bands. Experiments were
performed under similar conditions such as the type and
duration of the surgical operations, focusing on a specific
age group and the same EEG recording process. For the
limeted numbers of PSD values obtained from DWT and
EMD empirically provided to MLP network as inputs, the
network typologies were designed in a simply way. The
networks responded without using any medical measurements
in addition to EEG signals as inputs such as diastolic pressure,
systolic pressure and pulse. As a result, the network processed
in a more effective way with fewer data/rules and the reduced
a loss of time. The results obtained from the RSME of the two
methods prove that the estimation of anesthetic gas level to be
administered was generated by the system.
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