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Abstract

Background: Near universal administration of vaccines mandates intense pharmacovigilance for vaccine safety and
a stringently low tolerance for adverse events. Reports of autoimmune diseases (AID) following vaccination have
been challenging to evaluate given the high rates of vaccination, background incidence of autoimmunity, and low
incidence and variable times for onset of AID after vaccinations. In order to identify biologically plausible pathways
to adverse autoimmune events of vaccine-related AID, we used a systems biology approach to create a matrix of
innate and adaptive immune mechanisms active in specific diseases, responses to vaccine antigens, adjuvants,
preservatives and stabilizers, for the most common vaccine-associated AID found in the Vaccine Adverse Event
Reporting System.

Results: This report focuses on Guillain-Barre Syndrome (GBS), Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus
(SLE), and Idiopathic (or immune) Thrombocytopenic Purpura (ITP). Multiple curated databases and automated text
mining of PubMed literature identified 667 genes associated with RA, 448 with SLE, 49 with ITP and 73 with
GBS. While all data sources provided valuable and unique gene associations, text mining using natural language
processing (NLP) algorithms provided the most information but required curation to remove incorrect associations.
Six genes were associated with all four AlDs. Thirty-three pathways were shared by the four AIDs. Classification of genes
into twelve immune system related categories identified more “Th17 T-cell subtype” genes in RA than the other AIDs,
and more "Chemokine plus Receptors” genes associated with RA than SLE. Gene networks were visualized and clustered
into interconnected modules with specific gene clusters for each AID, including one in RA with ten C-X-C motif
chemokines. The intersection of genes associated with GBS, GBS peptide auto-antigens, influenza A infection,
and influenza vaccination created a subnetwork of genes that inferred a possible role for the MAPK signaling
pathway in influenza vaccine related GBS.

Conclusions: Results showing unique and common gene sets, pathways, immune system categories and
functional clusters of genes in four autoimmune diseases suggest it is possible to develop molecular
classifications of autoimmune and inflammatory events. Combining this information with cellular and other
disease responses should greatly aid in the assessment of potential immune-mediated adverse events following
vaccination.
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Background

Vaccines are profoundly important to global health in
preventing infectious diseases. However, like any medi-
cation, there are potential adverse events reported after
vaccination that warrant evaluation. Adverse events re-
ported after vaccination can be transient and common
responses like fever or in rare cases, autoimmune dis-
eases (AID) [1]. Although AIDs have been reported, to
date there is no evidence to demonstrate a causal associ-
ation [2]. Nonetheless, autoimmune diseases occurring
after vaccination (either new onset or flairs) must be thor-
oughly evaluated. Biologic plausibility is one key compo-
nent to reported adverse events following immunization
(AEFI). Evaluation of AID as AEFI is challenging because
of the complex innate and adaptive immune responses to
vaccine antigens, adjuvants, excipient preservatives and
stabilizers that may contribute to reactogenic responses. In
addition, the genetic factors that may predispose to suscep-
tibility to autoimmune disease are not well understood.

To contribute to the understanding of vaccinomics in
the context of evaluating autoimmune AEFIs, a bioinfor-
matics, systems biology approach was used to model the
overlapping immune components involved in vaccine re-
sponse and autoimmune disease. We propose that the
genes and proteins that are induced or participate in
vaccine immune responses, natural infections, and specific
autoimmune diseases reported after vaccinations would
form cross-referenced, interactive networks that could lead
to hypothesis-generation for potential mechanisms and risk
factors for induced autoimmune adverse events. A database
was created so that the rapidly expanding universe of litera-
ture on immune mechanisms and increasingly sophisti-
cated biological and genomic data could be searched in an
expeditious manner by investigators with an interest in
evaluating the safety of vaccines and other biological thera-
peutics. We argue that analysis of this information can sig-
nificantly improve our understanding of the relevant gene
networks and molecular pathways pertinent to vaccinology.
Here we describe our methodology and initial results in de-
veloping curated lists of genes and vaccine components as-
sociated with autoimmune diseases and integration of this
information using knowledge of biological pathways and
functional processes. Our ultimate goal is to develop an on-
line resource with genomic, immunological and molecular

Table 1 Autoimmune disease reports in VAERS
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data to explore plausible mechanisms of autoimmune
adverse event development and identification of poten-
tial risk factors for these rare events. This may contribute
to hypotheses for genomic/vaccine safety studies, potential
biomarkers, and improve future vaccine development.

Results and discussion

Selection of autoimmune diseases

The Vaccine Adverse Event Reporting System (VAERS)
[3] maintained by the U.S. Center for Disease Control
and Prevention (CDC) and the Food and Drug Adminis-
tration (FDA) was queried for the number and type of
autoimmune diseases reported following all vaccinations.
The most frequently reported autoimmune diseases and
the associated vaccine types are shown in Table 1. The top
four AIDs reported were Guillain-Barré Syndrome (GBS),
Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus
(SLE), and Idiopathic (or Immune) Thrombocytopenic
Purpura (ITP).

Data collection and curation

The sets of genes associated with these human AIDs were
obtained by using the Medical Dictionary for Regulatory
Activities (MedDRA) [4] terms and variant names for each
AID to screen the well-curated databases UniProt [5],
OMIM [6], the Genetic Association Database (GAD)
[7], KEGG Pathways [8] and Immune Epitope Database
(IEDB) [9]. The biomedical literature contained many
more AID associated genes than the curated data sources.
Additional genes were found using the Pathway Studio 9
(PS9) software package [7] and its internal ResNet 9
Mammalian database to text-mine PubMed. The PS9
gene associations were manually screened for validity
before adding them to gene lists from the curated da-
tabases. Approximately 20% of the gene associations
found via text mining were rejected after review, 621
associations remain. All genes from all sources were
compared in pairwise fashion for the four AIDs (Table 2).
Each data source provided important and unique gene as-
sociations and the overlap between them was low. The
data indicate that the use of multiple databases coupled
with active text mining of the literature were essential to
generate a well-supported and relatively complete list of
gene - disease associations. Automated text mining using

Disease term Reports in VAERS

Top three vaccines reported (Number of reports)

Guillain-Barre Syndrome (GBS) 1991 Flu (1201) Flu HINT (144) Hepatitis (127)
Rheumatoid Arthritis (RA) 403 Hepatitis (109) Lyme (84) Flu (47)
Systemic Lupus Erythematosus (SLE) 210 Hepatitis (90) Human Papillomavirus (36) Flu (23)
Idiopathic Thrombocytopenic Purpura (ITP) 180 Measles, Mumps & Rubella (64) Varicella (46) Flu (36)

Others (N =39) 786

The top four autoimmune diseases and associated vaccines Jan. 1990 - April 2012.
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Table 2 Pairwise comparison of gene to autoimmune
disease data sources

GAD IEDB KEGG OMIM PS UniProt Unique to

source
GAD 174 8 32 17 95 28 71
IEDB 156 13 3 45 23 93
KEGG 172 4 67 21 89
OMIM 40 19 18 17
PS + Curation 621 50 434
UniProt 112 38

Common and unique genes associated with one or more of four AIDs (RA, SLE,
ITP, GBS). Sources are UniProt, OMIM, Genetic Association Database (GAD)
KEGG Pathways, IEDB and the curated list originally derived from Pathway
Studio (PS).

NLP algorithms provided the most associations but re-
quired some manual effort to confirm the associations.
Our collection contains 667 genes associated with RA,
448 with SLE, 49 with ITP and 73 with GBS. Many genes
were associated with multiple AIDs. The list of genes as-
sociated with each AID including additional functional in-
formation on each gene is provided in Additional file 1.
The literature sources for gene to disease association are
contained in Additional file 2 and consist of a database
reference and/or a PubMed identifier for a publication
that claims an association. This gene set represents the
largest, most complete, high quality source of genes and
protein products associated with these four AIDs. DisGe-
Net [10] provides a similar quality resource with computa-
tionally mapped and classified genes associated with many
diseases from multiple data resources including text min-
ing. A comparison between our gene lists and those
provided by DisGeNet for the four AIDs showed sub-
stantial overlap but with more genes identified in our
more focused resource. This is likely due to some dif-
ferences in the original data sources used and differ-
ences in methods used for mining the data sources we
have in common. In addition our manual screening of
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associations derived from text mining, eliminated some
erroneous associations.

Gene interactions with vaccine ingredients were ob-
tained from the curated Comparative Toxicogenomics
Database (CTD) [11] and PubChem [12]. The CTD list
was filtered to include direct ingredient to gene interac-
tions with indirect interactions, those with intermediate
genes or compounds, removed. The filtered list contained
64 interactions between 6 ingredients and 46 genes
(Additional file 3). However, these sources are incom-
plete from an adjuvant perspective. Alum is the most
commonly used adjuvant, but this term is generic and
encompasses several aluminum salts such as aluminum
hydroxide, phosphoaluminum sulfate, and aluminum sul-
fate. The toxicological databases do not reflect this diver-
sity since entries were found only for aluminum sulfate
and the general term aluminum. Few studies of the effects
of these adjuvants on human leukocyte or other transcrip-
tomes were available.

Functional analysis and classification

Functional annotations for each gene/protein were col-
lected from UniProt [13], Reactome BioMart [14] Protein
Information Resource [15] and Gene Ontology (GO) [16].
Annotations included alternate gene names, protein names,
function (if known), involvement in other diseases and path-
ways. Immune system gene classifications were obtained
from the ImmPort website (http://immport.niad.nih.gov).
Annotations are included in Additional file 1.

Functional networks were created for each AID using
Cytoscape [17] and the ReactomeFI plug-in [18,19]. The
ReactomeFI tool was used to perform pathway and GO
enrichment analysis. The numbers of unique and com-
mon genes and pathways observed for each AID were
compared (Figure 1). Pathway analysis of the four AIDs
identified pathways from four sources KEGG, BioCarta
(http://www.biocarta.com), the Pathway Interaction Data-
base (PID) [20] and Reactome [21]. All pathways identified

Additional file 9: Table S9.

Figure 1 Venn diagrams comparing genes and pathways associated with autoimmune diseases. A — Numbers of common and unique
genes. B- Numbers of common and unique pathways. Details on genes and pathways in Additional files 1 and 2. Statistical analysis details in



http://immport.niad.nih.gov
http://www.biocarta.com

McGarvey et al. BMC Immunology 2014, 15:61
http://www.biomedcentral.com/1471-2172/15/61

for each AID (312 total) and the genes that mapped to
each pathway are included in Additional file 4. Detailed
Pathway and GO analysis results for each network are
contained in the Additional files 5, 6, 7 and 8 for each net-
work. Overlaps in genes and pathways associated with
four diseases were shown to be significant using multiple
methods.

Only six genes (TGFB1, IENG, CD4, FCGR3A, FCGR2A,
HLA-DRBI1) and thirty-three pathways were common to
all AIDs. Not surprisingly all six common genes are well
known to participate in many immune response and dis-
ease pathways. CD4 and INFG implicate TH1 lymphocytes.
TGFB1 suggests roles for T-regulatory cells. The two IgG
FC receptors suggest antibody mediated immunopathology
or immunomodulation. HLA-DRBI1 suggests antigen pro-
cessing for presentation to T-cells. Twenty-two genes were
common to RA, SLE and GBS, and RA, SLE and ITP
shared fifteen genes. Two hundred and twenty genes were
associated with two or more AIDs. This list is likely to
expand as more studies are reported.

The thirty-three pathways shared by the four AIDs
were likely due to inclusion of well-characterized signal-
ing proteins that have been implicated in many pathways
and functional processes. Fourteen of the thirty-three
were KEGG disease pathways. Pathways related to nat-
ural influenza and other infections were included to
cross-reference mechanisms potentially related to disease-
induced AIDs. The pathway list may be somewhat redun-
dant since the four individual pathway databases overlap

Page 4 of 12

and have differences in classifying the boundaries of a
pathway. It is likely some interactions appear in multiple
pathways.

The complete gene set was classified into twelve im-
mune system related categories and sub-categories plus
two categories for immune diseases and infectious dis-
eases (Table 3). This mechanistic approach represents a
first approximation for a molecular classification of AIDs.
Categories for which disease-associated genes are signifi-
cantly enriched are highlighted in light gray. The large
number of genes and pathways associated with RA and
SLE compared to ITP and GBS probably represents a re-
search bias given the extensive study of these diseases and
identification of the probable contributions of the most
important pathophysiologically relevant systems. RA and
SLE had similar patterns of classification for most genes
and pathways. The major difference between them was in
the category of “Cytokines and Cytokine Receptors” where
RA had more genes in the “Chemokine and Receptors”
subcategory than SLE. This distinction has been noted
previously in genome wide association studies in auto-
immune diseases [22]. Also of interest is the relatively high
percentage of GBS associated genes in “Infectious Disease
Pathways”. Again consistent with the reports in the litera-
ture that GBS often follows various bacterial and viral in-
fections [23].

T-cell subsets that may have been specifically involved in
each AID were investigated based on consensus informa-
tion about the most discriminating cell surface antigens,

Table 3 Disease associated genes in different categories and pathways

Rheumatoid Systemic lupus Immune thrombocytopenic Guillain-barre
arthritis erythematosus purpura syndrome
Number of Genes Associated >> 667 448 49 73
v Categories v
Antigen Processing & Presentation 6.30% 9.15% 14.29% 8.22%
Antimicrobials 19.64% 17.19% 28.57% 39.73%
BCR Signaling Pathway 2.85% 2.23% 6.12% 4.11%
Cytokines + Receptors 28.49% 18.97% 30.61% 24.66%
> Chemokines + Receptors 7.05% 3.79% 4.08% 5.48%
> Interferons + Receptors 0.30% 0.67% 4.08% 4.11%
> Interleukins + Receptors 5.55% 4.02% 8.16% 5.48%
> TGF-b Family Members + Receptors 1.20% 0.45% 2.04% 2.74%
> TNF Family Members + Receptors 3.00% 2.90% 4.08% 1.37%
Natural Killer Cell Cytotoxicity 6.45% 6.47% 12.24% 9.59%
TCR Signaling Pathway 4.50% 4.46% 10.20% 10.96%
Other Immune-Related 28.94% 29.46% 34.69% 19.18%
Immune Disease Pathways 19.34% 31.47% 38.78% 28.77%
Infectious Disease Pathways 28.79% 29.46% 34.69% 45.21%
Unclassified 16.49% 19.20% 8.16% 17.81%

Chemokine’s and their receptors were grouped together. Percentages do not sum to 100% as categories can overlap. Bold numbers indicate significant results
using Fishers exact test with Bonferroni correction. Data is in Additional files 1 and 9.
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transcription factors, secreted effector molecules, and dis-
tinct functional roles of subtypes of T lymphocytes and other
immune cells (www.nature.com/nri/posters/tcellsubsets/
index.html). RA was associated with a larger number of
Th17 related genes than the other AIDs (Table 4). This was
consistent with experimental observations of Th17 cells in
human synovial fluid and theories of RA pathogenesis
[24,25]. The large number of genes associated with T
follicular helper (TFH) cells supported clinical obser-
vations in RA [26] and SLE [27] regarding this cell’s
importance in autoimmune diseases [28].

Although the smaller numbers of genes and pathways
for ITP and GBS represent the best available sample
from the current literature, they were unlikely to present
the complete mechanistic schema. GBS had a much lar-
ger proportion of genes in the antimicrobial and infec-
tious disease categories (Table 3), which were consistent
with the association of GBS and Campylobacter, influ-
enza, and other bacterial and viral infections [29].

Gene networks, data integration and hypothesis building

These gene associations were derived from experimental
data about mechanisms of autoimmune diseases, infectious
diseases and vaccination biology. Analysis of them provides
insights into molecular mechanisms of autoimmune disease

Table 4 Genes associated with T-cell types

RA SLE ITP GBS All four AIDs

Cytotoxic T cell (n=13) 7 8 1 1 7
Exhausted T cell (n=7) 4 5 0 0 6
Anergic T cell (n=11) 4 2 0 0 5
TR1 cell (n=9) 4 4 1 2 5
Natural TReg cell (n=15) 8 8 2 3 9
Inducible TReg cell (n=17) 8 8 2 3 9
NKT cell (n=10) 6 5 2 1 10
CD8aa T cell (n=10) 7 7 1 1 8
CD4+ af T cell (n=10) 3 4 1 1

CD8+ af T cell (n=9) 3 4 0 0 3
TH1 cell (n=14) 8 9 3 4 10
TH 2 cell (n=19) 8 8 2 2 10
TH 9 cell (n=8) 3 4 1 2 4
TH 17 cell (n=20) 1 5 1 1 12
TH 22 cell (n=8) 3 3 1 1 4
TFH cell (n=16) 9 10 2 3 13
Central memory T cell (n=18) 7 10 3 1 10
Effector memory Tcell (n=8) 2 5 0 o 5
Y6 T cell (n=10) 5 4 1 1 7

Genes for the surface phenotype, transcription factors, secreted effector
molecules and other functions of different classes of T-cells were identified for
each AID. The number in parentheses next to the cell type represents the total
possible for each cell type. The number in each cell represents the number
present in the AID gene set.
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and can assist in the development of new hypotheses that
promote vaccine safety. Gene interaction networks were
built for each AID and clustered into interconnected mod-
ules. The network data and Cytoscape files for each are in-
cluded in the supplemental material.

In the functional interaction network for RA (Figure 2),
the genes highlighted in yellow were associated with RA
only and not the other AIDs. The network clustered into
16 modules composed of RA-selective genes as well as
genes shared by multiple AIDs. For example, the genes
in modules 7 and 9 were generally limited to RA. Identi-
fication of functional gene clusters unique for a particular
AID and those common for multiple AIDs can inform fu-
ture studies on potential therapeutics and vaccines.
Module 7 is entirely composed of V-type proton ATPase
subunits and isoforms. These protein pumps acidify
phagolysozomes to promote microbial killing and other
cellular processes. A subset of these genes and proteins
were involved in ostoclast induced bone readsorption as
occurs under inflammatory conditions in RA [30,31].
Some variants of these proteins may be involved in T-cell
activation [32,33]. Module 9 was composed entirely of
C-X-C motif chemokines and chemokine receptors.
According to UniProt Knowledgebase (UniProtKB) an-
notation, most were powerful neutrophil chemotactic
factors. CXCR1 and CXCR2 are receptors for IL8 and
potent neutrophil chemoattractants. CXCL9 and CXCL11
are chemotactic factors for T-cells. CXCR5 is a chemotactic
factor for B-cells. Three C-X-C motif chemokines or recep-
tors from module 2 were associated SLE and RA. In gen-
eral, more chemokines and chemokine receptors were
associated with RA than SLE (Table 3). Genes in modules 2
and 8 were associated with multiple AIDs. Module 2 had
one hundred genes, but only ten were only associated with
RA only. Four genes were associated with RA, SLE, GBS
and ITP. The largest functional group of genes in module 2
were cytokines and cytokine receptors including fourteen
members of the Tumor Necrosis Factor superfamily, thirteen
interleukins, eight chemokines and three macrophage stimu-
lating factors. Module 8 had fourteen major histocompatabil-
ity (MHC) class II antigen presentation genes plus genes for
IgA production pathways. Data on this network including all
genes, the clusters, pathways and GO analysis for each indi-
vidual module are included in Additional file 5: Table S5.

As another example, Guillain-Barré Syndrome (GBS) is
an acute polyneuropathy with demyelination of the per-
ipheral nervous system. Its causes are not fully known, but
about one third of cases are preceded by Campylobacter
jejuni, cytomegalovirus, influenza, and other bacterial and
viral infections [22]. The influenza virus prepared for the
1976—77 swine flu pandemic [34,35] led to an excess of
GBS cases within 42 days of immunizations. This created
a legacy of warnings for influenza vaccine — related to
GBS. Retrospective studies have not demonstrated an
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Figure 2 Functional interaction network of Rheumatoid Arthritis associated genes. The network was created and visualized using
Cytoscape and the ReactomeF! plug-in. The genes were clustered into 16 interconnected modules using spectral partition network clustering [66]
as implemented by the ReactomeF| plug-in. Gene nodes in yellow are genes associated with RA and none of the other four AIDs in this study.

Modules 7, 8, 9 are enlarged. Additional images and full details of all genes in each module are provided in Additional file 5: Table S5.

increased risk for GBS [36]. Prospective tracking and
meta-analysis of the 2009 Influenza A (HIN1) mono-
valent inactivated vaccine in the U.S. concluded there
were 1.6 excess cases of GBS per 1 million persons vacci-
nated [37]. This is similar to rates after natural influenza
infection. However, a global consortium analyzed Influ-
enza A (HIN1) 2009 monovalent vaccination and re-
ported measurable risk of GBS [38]. Investigations of
persons who develop GBS after influenza infections or
immunization may identify genetic risks factors related
to GBS pathophysiology.

A GBS gene network was created and clustered into
interconnected modules. Interactions between vaccine
ingredients and genes in the network were added. In
addition we identified all genes in the network that were
in the annotated KEGG Influenza A infection pathway
and also all genes significantly up and/or down regulated
following influenza vaccination [39]. The network is
shown in Figure 3. Nine genes in the network were
present in all three data sets (GBS network, Influenza
pathway and response to vaccination) and highlighted in
yellow. To investigate further relationships between these
genes we created a subnetwork consisting of the nine
genes plus the four genes identified by IEDB as peptide
epitopes in GBS (Figure 4). The subnetwork contained
sixteen genes, eleven were associated with GBS, ten were
part of the KEGG “Influenza A” pathway and eleven

showed significant expression changes after vaccination.
The other five genes not associated with GBS were added
as linker genes to connect portions of the network.
Though not associated directly with GBS, three linker
genes were associated with influenza infection and vac-
cination and one with influenza vaccination only. Pathway
analysis found that 5 or more of the genes were included
in five non-disease specific pathways: “IFN-gamma path-
way” (PID); “toll-like receptor signaling pathway” (KEGQG);
“signaling by interleukins” (Reactome); “glucocorticoid re-
ceptor regulatory network” (PID); and “JAK-STAT signaling
pathway” (KEGG).

Five genes were uniquely associated with GBS and not
with RA, SLE or ITP including MPZ (Myelin protein
P0), TUBB6 (Tubulin beta-6 chain), PMP22 (Peripheral
myelin protein 22), which are auto-antigens, plus CASP1
(Caspase 1), CREBBP (CREB-binding protein), and IL12A
(Interleukin-12 subunit alpha). Links to UniProtKB,
KEGG pathways, and annotated literature collected in
this study suggested mechanistic implications. CREBBP
and EP300 (Histone acetyltransferase p300) acetylate his-
tone and non-histone proteins for transcriptional regula-
tion of antiviral interferons [40-45]. JUN is proposed to
help promote IL1 and IL12 expression in influenza A.
Microarray studies of cultured lymphocytes show that
the vaccine ingredient thimerosal increased expression
of JUN [46].
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network topology. Full details of all genes in each module are provided in Additional file &: Table S6.

Figure 3 Functional interaction network of Guillain-Barre Syndrome associated genes and vaccine ingredients. Genes associated with
GBS are represented by circles. “Linker" genes added interconnect the network are represented as diamonds. Red triangles represent vaccine
ingredients that interact with genes in the network. Genes highlighted in yellow are present in both the KEGG Influenza A pathway and were
significantly up or down regulated following influenza vaccination [39]. The circles of similar color are “modules” from clustering based on

PIK3R1 and CASP1 interact with the influenza A NS1

protein. PIK3R1 (phosphatidylinositol 3-kinase regula-
tory subunit alpha) interacts with multiple proteins
and signaling pathways. PIK3R1 is activated by double
stranded RNA docked on NS1 (dsRNA-loaded NS1)

and may promote viral replication by inhibiting prema-
ture apoptosis and promoting viral protein expression
and nucleocapsid export [47-49]. PIK3R1 also has an
upstream role in promoting the production of inter-
ferons via CREBBP and EP300. CASP1 is a component

_B Deoxyc ic_Acid

KCNMA1 > B

: Neo‘ch’f"

to connect all nodes in the subnetwork.

S
CREBBP
D UniProt... RA SLE |ITP GBS ProteinName INF_A  INF_VAC IsLinker
STAT1 P42224 yes yes yes Signal transducer and activator of transcription 1-alpha/beta (Tran... yes yes false
CASP1 P29466 yes Caspase-1 (CASP-1) (EC 3.4.22.36) (Interleukin-1 beta convertase... yes yes false
HLA-DRB1 P01912 yes yes vyes vyes  HLA class Il histocompatibility antigen, DRB1-3 chain (Clone P2-bet... yes yes false
JUN P0S412 yes yes Transcription factor AP-1 (Activator protein 1) (AP1) (Proto-oncoge... yes yes false
IL1B P0O1584 yes yes Interleukin-1 beta (IL-1 beta) (Catabolin) yes yes false
CREBBP Q92793 yes CREB-binding protein (EC 2.3.1.48) yes yes false
MBP P02686 yes yes Myelin basic protein (MBP) (Myelin A1 protein) (Myelin membrane e... yes false
IL12A P29459 yes Interleukin-12 subunit alphat(IL- 12A) (Cytotoxic lymphocyte matur... yes false
PMP22 Q01453 yes Peripheral myelin protein 22 (PMP-22) (Growth arrest-specific prot... false
MPZ P25189 yes Myelin protein PO (Myelin peripheral protein) (MPP) (Myelin protein... false
TUBB6 QIBUFS yes Tubulin beta-6 chain false
PIK3R1 P27986 P idyli 3-kinase reg y subunit alpha (PI3-kinase...  yes yes true
EP300 Q09472 Histone acetyltransferase p300 yes yes rue
MAPK1 P28482 yes  yes Mitogen-activated protein kinase 1 (MAP kinase 1) (MAPK 1) (EC 2.... yes yes true
DYNLL2 Q96F)2 Dynein light chain 2, cytoplasmic (8 kDa dynein light chain b) (DLCS... yes true
ITGB4 P16144 Integrin beta-4 true
KCNMAL Q12791 Calcium-activated potassium channel subunit alpha-1 (BK channel)... true

Figure 4 Subnetwork of genes associated with Guillain-Barre Syndrome, influenza A infection, influenza vaccination and GBS auto-antigens.
The subnetwork was created from the genes highlighted in Figure 3 (shown in yellow) plus vaccine ingredients (shown in red triangles) and peptide
epitopes related to GBS from IEDB (shown in green) A minimal set of four linker genes from Figure 3 (diamond shaped nodes) plus IL2A were included
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of the inflammasome formed in response to viral infec-
tion and cleaves the precursor forms of IL1B and IL18
into mature forms that are released from macrophages
[50]. NS1 may inhibit CASP1 and the production of IL18
[51]. IL1B was also in the subnetwork, and is involved in
stimulation of “thymocyte proliferation”, “B-cell matur-
ation and proliferation”, and “fibroblast growth factor ac-
tivity”. The IL1B precursor mRNA was significantly up-
regulated by aluminum sulfate in neural cell cultures [52].
STAT]1 (signal transducer and activator of transcription
1-alpha/beta) functions as a signal transducer and tran-
scription activator that mediates responses to interferons,
cytokines and growth factors via the Jak/STAT pathway.
Its role in influenza A may be to promote expression of
antiviral proteins and initiate expression of HLA class II
genes like HLA-DRBI1 that were also present in the
subnetwork.

One of the linker genes added to the network was
MAPK1 (mitogen-activated protein kinase 1), a multi-
functional serine/threonine kinase that is an essential
component of the MAP kinase signal transduction path-
way along with STAT1 and JUN. Though not directly as-
sociated with GBS in our data set, MAPK1 was an
extensively connected vertex that contacted almost all of
the genes in this network. MAPK1 was associated with
RA, SLE, influenza A infection, and was up-regulated
following trivalent inactivated Influenza vaccine (TIV)
and live-attenuated influenza vaccine (LAIV) administra-
tion [39]. Gene expression studies in peripheral blood
leukocytes from GBS patients found the MAPK signaling
pathway to be one of the most significantly up-regulated
pathways [53]. In addition, the vaccine ingredients poly-
myxin B, neomycin, and deoxycholic acid increased MAPK1
phosphorylation and activity [54-56], while thimerosal may
decrease its activity [57]. In influenza A, MAPK appears to
promote viral protein expression and nucleocapsid export.
PIK3R1 may have similar functions but the exact mecha-
nisms remain unclear.

On the periphery of the subnetwork in Figure 4 with
fewer connections to other genes in the network are four
genes that IEDB identified with peptide epitopes in GBS:
MBP (myelin basic protein), MPZ (myelin protein P0),
PMP22 peripheral myelin protein 22), and TUBB6 (tubulin
B6). MBP, MPZ and PMP22 were predicted to be con-
nected to each other and eventually to MAPK1 (indicated
by dotted lines) based on the shared GO biological process
annotation “synaptic transmission” (in UniProtKB), and
membership in an “axon guidance” canonical pathway in
Reactome. MBP, MPZ and PMP22 received this GO anno-
tation based on maintenance of myelin sheath integrity
and mutations that cause demyelination [58-60]. MAPK
signaling has been shown to be involved in the demyelin-
ation process and in Schwann cell differentiation [61,62] al-
though full details of all the molecular mechanisms remain
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to be determined. TUBB6 is connected via an interaction
with DYNLL2 (Dynein light chain 2) in transporting anti-
gen loaded MHCII molecules to the cell surface.

Conclusions

Improved understanding of the systems biology related
to adverse events occurring after vaccines and medica-
tions in general is critical to enhancing the efforts to
evaluate safety. One first step is to identify all the genes
and molecular processes and pathways involved. The
data presented analyzed genes involved in four auto-
immune diseases commonly reported as following viral
infections and also reported following vaccination against
the virus. Our analysis has identified common and unique
genes and pathways for each AID. Classification of
genes into immune system categories identified more
“Chemokine plus Receptors” genes associated with RA
than SLE. RA also had more genes associated with the
“Th17 T-cell subtype” than the other AIDs. These results
suggest it is possible, with additional data and effort to de-
velop molecular classifications of autoimmune and other
inflammatory events. Combining this information with
cellular and other disease responses [1] should greatly aid
in the assessment of potential immune-mediated adverse
events following vaccination.

A benefit of having a reliable curated list of gene asso-
ciations is that it facilitates integration and analysis with
other data resources and experimental data from the lit-
erature, to develop hypotheses, enhance understanding
of the systems biology of vaccines and vaccine prevent-
able diseases. Some limitations to this approach are that
the body of knowledge in the literature is incomplete,
imperfect and biased toward specific diseases that affect
more individuals and receive corresponding increases in
research and funding.

Network analysis of AIDs demonstrated integration
and analysis from outside resources by using the gene
lists to build functional gene interaction networks using
data from multiple databases collected in the Reacto-
meFI tool. The analysis for RA allowed identification of
functional gene clusters unique for RA and clusters
common for multiple AIDs. Analysis of the GBS net-
work included data from KEGG’s Influenza A infection
pathway and experimental data from a systems biology
study of influenza vaccination. This helped to define a
subnetwork of genes and pathways involved in all three
processes Influenza infection, Guillain-Barré Syndrome
and Influenza vaccination and inferred a possible role
for the MAPK signaling pathway in influenza vaccine —
related GBS.

Systems, methods and tools to collect organize and in-
tegrate the increasing volumes of data are essential for
medical researchers and regulatory agencies to evaluate
molecular data and develop testable hypotheses related
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to vaccine safety and efficacy. Literature mining together
with rigorous network modeling and statistical approaches
can help improve vaccine safety monitoring and evalu-
ation. We hope this data will inform experimental studies
on the relationships between these diseases and vaccin-
ation, assist in the analysis of new experimental data, new
in silico models of vaccine related adverse events, and in
the development of novel therapeutic strategies. Such
models will help enable rapid classification of immune-
mediated diseases. Our results and observations are based
on what is available in published literature and genetic da-
tabases to date. We expect the list of gene associations to
grow, especially for ITP and GBS. As more studies are
conducted, a more complete picture of the genetic map
associated with these diseases will emerge. All compari-
sons between AIDs should be viewed with these caveats in
mind. Importantly, any of the suggestions we may infer in
our analysis here still need to be further evaluated in inde-
pendent studies (e.g., using prospective study designs) to
confirm any of the results.

Methods

Data collection and curation

To define an initial set of autoimmune diseases we
downloaded and queried the national VAERS [3] reports
submitted between Jan 1990 and April, 2012. SAS soft-
ware was used to query the dataset. Lists of vaccines,
their manufacturers with brand names, associated ad-
verse events and numbers of cases reported are col-
lected. Using the MedDRA [4] thesaurus from BioPortal
[63] all the adverse events that fall under “Autoimmune
disorders” term were filtered. Four autoimmune diseases
Rheumatoid arthritis (RA), Systemic Lupus Erythemato-
sus (SLE), Guillain-Barre Syndrome (GBS) and Immune
Thrombocytopenic Purpura (ITP) were chosen for fur-
ther study to collect genes associated with each disease.
The goal was to generate a high quality list of human
genes associated with the four AIDs. The criteria for in-
clusion was broad in that the gene association could be
of any type such as significant changes in gene or pro-
tein expression, GWAS association, sequence variations
associated with the disease and others. The criteria were
strict in that our sources must be either from a well-
respected human curated database and/or traceable to
published literature. As much as possible evidence was
restricted to be from human studies not mouse model
systems, though often mouse and human studies are pre-
sented in the same publication. Only protein-encoding
genes were included and most associations with a gen-
omic locus without a known gene were excluded. The one
exception to this was SLE where several well-studied loci
associated with inherited SLE from OMIM were included.
Additional associations to non-protein encoding loci may
be included in the future. Genes with associations from
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high-throughput analysis only, for example genes up-
regulated in a relevant microarray experiments, were not
included in the associated set unless the published evi-
dence contained additional corroborating data for an
association. Initial sources included UniProt [5],
OMIM [6], the Genetic Association Database (GAD)
[7], and KEGG Pathways [8]. In addition proteins with
epitopes in the Immune Epitope Database (IEDB) [9]
were included. Searches were conducted using multiple
MedDRA terms for the autoimmune disease. For Uni-
Prot searches we searched the Disease Association
comment field first followed by all fields. For GAD
only positive associations validated by GAD curators
that corresponded to MedDRA terms for the AID were
used. Associations corresponding to multiple disease
terms were not used, as it was often difficult to assign
the association found to only one disease. For IEDB
only genes coding for peptide B- or T —cell epitopes
were used. To expand the list of gene associations we
used Pathway Studio 9 (PS9) software [7] and searched
its internal ResNet 9 Mammalian database, which con-
tains functional relationships for humans, mouse and
rat extracted via natural language processing (NLP) al-
gorithms from the PubMed database. The PS9 gene as-
sociations were manually reviewed before adding them
to gene lists from the curated databases. Review in-
volved rapid assessments of the manuscript text for
the context of a gene — disease relationship. Often this
text gave a clear statement supporting, or occasionally
the statement negated the association. In other cases
the gene symbol/name was the same as an abbreviation
for a drug or other substance in a study or the state-
ment was otherwise ambiguous. To resolve such cases
required reviewing the paper and its supplementary
materials. One issue with the ResNet database was that
it was not possible to determine if outcomes were de-
rived from human, mouse or rat studies, particularly if
data from human and model organisms were com-
pared in the same manuscript. About 20% of the asso-
ciations originally identified by text mining were
removed after review leaving remaining 621 associa-
tions. In the process of curation a few additional genes
and references were noted by curators checking the lit-
erature and added to the results.

All protein encoding genes were mapped to UniProt/
SwissProt protein accessions. Functional annotations for
each gene/protein were collected using UniProt APIs
[13], BioMart [14] service APIs provided by Reactome
and the Protein Information Resource website [15] and
ID mapping services [64]. Annotations included alter-
nate gene names, protein names, function (if known),
known involvement in other diseases, pathways, and Gene
Ontology (GO) [16] terms. Immune system gene classifi-
cations were downloaded from the ImmPort website
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(http://immport.niad.nih.gov). These annotations are
included in Additional file 1. Gene networks and pathways
for Influenza A and Measles infection were derived from
KEGG pathways for those diseases. Only current HUGO
gene symbols were used, alternate or retired gene symbols
were updated via UniProt.

Gene classifications, network, pathway and GO analysis
Genes were classified into groups using the ImmPort
(http://immport.niaid.nih.gov) list of immune-related genes
and were additionally classified into Immune diseases and
Infectious diseases based on KEGG pathway mappings.
These categories are not exclusive so a gene can be
grouped in more than one. Further classification of genes
related to T-cell types was done manually using the genes
surface phenotype, transcription factors, secreted effector
molecules and other characteristic functions as defined
in (www.nature.com/nri/posters/tcellsubsets/index.html) to
group the genes.

Genes associated with each autoimmune disease were
used to create functional interaction networks using
Cytoscape 2.8 [17] and the ReactomeFI plug-in [18,19].
The 2012 version of the FI database was used and a min-
imal set of linker genes were included to help connect
the network. The resulting network produces a good
summary of the known and predicted functional rela-
tionships derived from multiple pathway databases, pro-
tein interaction databases and the Gene Ontology [65].
Pathway and GO enrichment data were generated using
the Reactome FI plug-in, excluding any linker genes
from the analysis, with a P value of 0.05 or lower and
false discovery rate of 0.01 unless otherwise noted. Path-
way analysis for the genes in Figure 4 was done includ-
ing the linker genes. Clustering the networked genes was
done using a spectral partition based network clustering
algorithm [66] as implemented in the ReactomeFI plug-
in. Complete details of all genes and interactions plus
additional images for RA, GBS, SLE and ITP are avail-
able in Additional files 5, 6, 7 and 8 respectively.

Statistical analysis

Overlaps in genes associated with the four autoimmune
diseases (Figure 1) were tested for significance in two
ways. First, two-sided Fisher’s exact tests (hypergeo-
metric tests) were performed on the overlaps for each of
the 6 possible pairs of diseases. For each pair, a contin-
gency table was constructed with the gene intersection
count; the counts of genes associated with one AID and
not the other, and the count of genes not associated with
either disease. 9,310 disease-mapped genes (see descrip-
tion below of how they were obtained) were considered
as the universe of discoverable genes. Second, the counts
of gene overlaps were also compared to a background
distribution of overlap counts. 255,970 unique disease
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pairs were generated, and the count of the intersection
of associated genes for each disease was recorded. The
gene overlaps among the four autoimmune diseases
were compared to this set of values by calculating the
proportion of times the AID overlap count exceeded the
overlap counts in the background distribution. Overlap-
ping pathways in the four autoimmune diseases were
compared in a similar manner. For each of the 255,970
unique disease pairs, an associated set of genes was ob-
tained for each disease in the pair. Pathway enrichment
was performed on each of these sets of genes using a
one-sided Fisher’s exact test, and those pathways with
FDR-adjusted p-values less than 0.01 [67] were consid-
ered associated with the disease. The count of pathways
in the intersection of associated pathways for the two
diseases was recorded for each pair. The pathway over-
lap counts among the four autoimmune diseases were
compared to this set of values in the same manner as
the gene overlaps.

Enrichment for immune genes in each of the AIDs
(Table 3) was determined using two-sided Fisher’s exact
tests. The AID-associated genes were compared with the
remainder of genes in the universe for each AID and im-
mune category. P-values were adjusted using a Bonferroni
correction, and only those below 0.05 deemed significant.

For these analyses the universe of discoverable genes
was derived from a dataset of 34,942 unique gene—dis-
ease associations containing 9,310 unique HGNC gene
names and 716 unique UMLS disease terms. The dataset
was assembled from the AIDs analyzed here and add-
itional immune related diseases we collected by similar
methods and supplemented with curated disease associ-
ated genes from DisGeNet [10]. For DisGeNet associa-
tions only disease terms from curated sources were used
and associations from Text-Mining sources were ex-
cluded. All diseases were mapped to common MedDRA
and UMLS terminology. Detailed results from each ana-
lysis above plus additional supporting analysis and
methods are provided in Additional file 9: Table S9.

Additional files

<
Additional file 1: Table S1. Genes. Excel file with Genes and annotation.
Additional file 2: Table S2. Sources. Excel file with source attribution
for association.

Additional file 3: Table S3. Vac_Ingredients. Excel file with vaccine
ingredient — gene associations.

Additional file 4: Table S4. Pathways. Excel file with Pathway analysis
results for each AID.

Additional file 5: Table S5. RA_Network. Excel file with data from RA
functional interaction network. Includes Network Image, Gene Clusters
and Pathway and Gene Ontology analysis.

Additional file 6: Table S6. GBS_Network. Excel file with data from GBS

functional interaction network. Includes Network Image, Gene Clusters
and Pathway and Gene Ontology analysis.
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Additional file 7: Table S7. SLE_Network. Excel file with data from SLE
functional interaction network. Includes Network Image, Gene Clusters
and Pathway and Gene Ontology analysis.

Additional file 8: Table S8. [TP_Network. Excel file with data from RA
functional interaction network. Includes Network Image, Gene Clusters
and Pathway and Gene Ontology analysis.

Additional file 9: Table S9. Statistics.
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