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Estimating the Nonparametric Regression Function
by Using Pad�e Approximation Based on Total
Least Squares

Syed Ejaz Ahmeda, Dursun Aydinb, and Ersin Yilmazb

aDepartment of Mathematics & Statistics, Brock University, St. Catharines, Canada; bDepartment
of Statistics, Mugla Sitki Kocman University, Mugla, Turkey

ABSTRACT
In this paper, we propose a Pad�e-type approximation based
on truncated total least squares (P – TTLS) and compare it
with three commonly used smoothing methods: Penalized
spline, Kernel smoothing and smoothing spline methods that
have become very powerful smoothing techniques in the non-
parametric regression setting. We consider the nonparametric
regression model, yi ¼ gðxiÞ þ ei, and discuss how to estimate
smooth regression function g where we are unsure of the
underlying functional form of g. The Pad�e approximation pro-
vides a linear model with multi-collinearities and errors in all
its variables. The P – TTLS method is primarily designed to
address these issues, especially for solving error-contaminated
systems and ill-conditioned problems. To demonstrate the
ability of the method, we conduct Monte Carlo simulations
under different conditions and employ a real data example.
The outcomes of the experiments show that the fitted curve
solved by P – TTLS is superior to and more stable than the
benchmarked penalized spline (B – PS), Kernel smoothing (KS)
and smoothing spline (SS) techniques.
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1. Introduction

Suppose that we have a response variable y ¼ ðy1, , ynÞ0 produced by the
model

yi ¼ g xið Þ þ ei, a ¼ x1< � � �<xn ¼ b (1)

where” g” is an unknown smooth function, xi represents the values of cova-
riate, ei represents the independent random error terms with zero mean
and common variance r2, and the symbol ð:Þ0 indicates a transposed vec-
tor. In this case we focus on a single covariate xi, however, this model can
be extended to include more than one.
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The relationships between the variables stated in equation (1) can be
modeled by splines over small ranges of the values of covariate xi. Note
also that these splines are widely used in situations where the researcher
knows that nonlinear effects occur in the real response function. In the lit-
erature, different methods based on splines have been proposed, including
penalized splines, additive splines, partial splines, tensor product splines,
and thin plate splines. In addition to smoothing using splines, there are
other families of smoothing methods such as kernel, wavelet smoothers,
and orthogonal series approximations. There has been extensive literature
written on the topic of nonparametric regression: for example, general
methods [13; Schimek 2000; Hastie et al. 2001], spline smoothing [20, 32],
kernel smoothing (Nadaraya 1964; Watson 1964) and local polynomial
smoothing (Fan and Gijbels 1996).
The aim of this study is to estimate the unknown regression function

using a Pad�e approximation expressed as the ratio of two polynomial func-
tions. Such an approximation also provides an alternative estimation pro-
cedure for nonparametric regression models based on the different
smoothing methods covered in the previous paragraph. One of the strong
motivations for studying the Pad�e approach is that it offers a concrete
problem that represents functions efficiently by easily computed expression.
It should be also noted that the Pad�e approximation has a numerical
approach that works directly on data; there is no need to convert to a
Fourier (or other) domain. Furthermore, the problem is converted to linear
least squares fits by removing the denominator of a rational function.
Finally, the method provides direct control of the coefficients in the
rational approximation, permitting for restrictions to be placed on certain
terms as motivated by the physics of the model being studied.
For these reasons, it is a very useful task to attempt using the Pad�e

method on a data set that belongs to a nonparametric regression setting.
There is has been extensive literature written on the general methods of
the Pad�e approximation, including [3, 4, 6, 7, 10, 19, 37]. In addition, the
connections between rational functions and splines can be found in
Petrushev and Popov (1987). Petrushev and Papov also demonstrate that
the rational functions are not worse than splines as tool approximation.
Moreover, the use of rational functions introduces a nonlinear problem
and requires an iterative procedure rather than a direct procedure, as in
linear least squares problems. Our point of view is that splines are the well-
known nonlinear tool for approximation and therefore it is very useful to
investigate the connections between rational and spline approximations
of functions.
As indicated in the above, we mainly consider a Pad�e approach to find a

better approximation of the unknown regression function g(x) expressed in
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the model (1). The method used in initial computations leads to an ill-con-
ditioned problem. This is only related to the formulation of this procedure,
as shown in the equation (3). Moreover, in this system, both the input data
matrix and the response observations are contaminated by error and noise.
For these cases, as a solution technique, called total least squares (TLS)

method, is devised by Golub and Van Loan (1980). Note also that in statis-
tics literature this technique is sometimes known as an errors-invariables
(EIV) modeling or orthogonal regression. An extension covering the
randomized truncated TLS with the known or estimated rank as the regu-
larization parameter are recently introduced by [38] for the large-scale and
ill-conditioned cases. It should be noted that the literature on TLS and
their extensions focuses mostly on solution and numerical algorithms [see
Van Huffel and Vandewalle 1991; Cheng and Van Ness 2000; 36, 38 among
many others]. It is worthwhile to note that here, although the TLS method
is suggested as a basic approximation way of overdetermined system 2, it
cannot to solve the ill-conditioned problem caused by the relationship of
rational function terms.
To overcome multi-collinearity problem and to get a stable estimation of

Pad�e coefficients, we used a truncated total least squares (TTLS) method.
For convenience, this estimation procedure is hereafter referred to as the
“P – TTLS” method, as indicated in our abstract. It can also be viewed as a
new technique of least squares from minimization problem with regulariza-
tion. We also compare the performance of the P – TTLS method with that
of a pth-degree penalized spline with truncated polynomial basis, as a
benchmark method (i.e., B – PS), and KS and SS methods. To our know-
ledge, such a study has not yet carried out for this purpose. However,
many authors have used the Pad�e approximation (or rational approxima-
tion) in numerical modeling. Ref. [39] used the Pad�e approximations for
identification of air bubble volume. These authors used this approximation
for the problem of estimation of microstructural parameters in finely-struc-
tured heterogeneous mixtures in the following year, [40]. In the study con-
ducted by [41], the Pad�e approximation is considered as a numerical
inversion method for the estimation of the quality Q factor and phase vel-
ocity in linear, viscoelastic, and isotropic media using the reconstruction of
relaxation spectrum. Also recently, [1] studied the selection of optimum
truncation parameter for estimation of the nonparametric regression model
based on Pad�e approximation.
Our paper is organized as follows: In section 2, necessary fundamental

information are given for the proposed P – TTLS method and the nonpara-
metric regression model. In Section 3, the Pad�e approximation is intro-
duced and the solution to the total least squares problem and a regularized
solution are given. Also, P – TTLS estimator is obtained and an algorithm

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 3



for that is provided. In section 4, the penalized spline is discussed. Section
5 reviews the smoothing parameter selection criteria. Statistical properties
of the coefficients’ estimates are defined in section 6. Simulation experi-
ments are carried out in section 7, and regularization methods are applied
to four different real data sets in section 8. Finally, the conclusions and rec-
ommendations are presented in the last section.

2. Preliminaries

A basic task of the Pad�e approximation is to determine an estimate of the
unknown coefficients vector b from particular measurements of the varia-
bles. However, an approximation of this type gives rise an overdetermined
system of equations just like in (13). Conceptually, this system is conveni-
ent to re-express in the equivalent form

Xb� y (2)

where X 2 Rn�mðn>mÞ is data matrix, y 2 Rn�1 is the response vector, and
b 2 Rm�1 is the Pad�e coefficients vector to be estimated, as expressed in
(13). Note also that X and y are known and assumed to be error contami-
nated. This problem is referred to as the total least squares (TLS) problem
[see Ref. 17].
In this section, the main goal is to focus on a regularization (or a stabil-

ization) technique in order to solve the ill-posed problem (14). However,
before exploring these issues, we must first discuss singular value decom-
position (SVD) and its variants that from a basis for the TLS problems. We
first discuss singular value decomposition (SVD) and its variants that form
a basis for the TLS problems.

Theorem 2.1. (SVD). If X is an n�m matrix, then there exist orthogonal
matrices ~U ¼ ð~u1, :::, ~unÞ 2 Rn�n and ~V ¼ ð~v1, :::, ~vnÞ 2 Rm�m such that

~UX ~V ¼ ~R ¼ diag ~r1, ~r2, :::, ~rkð Þ 2 Rn�m, k ¼ minðn,mÞ, (3)

where ~U
0 ~U ¼ ~V

0 ~V ¼ I and ~r1 � ~r2 � � � � � ~rk � 0

Proof. See ref. [18].
Note that the positive diagonal entries in ~R are called singular values of

X: The singular values are the square roots of the eigenvalues of the square
matrices X0X or XX0: The number of these singular values is also equal to
the rank of X: If the rankðXÞ ¼ r, we have ~r1 � ~r2 � ::: � ~rk � 0, and if
r � minðnimÞ then ~rrþ1 ¼ � � � ¼ ~rk ¼ 0: This means that SVD allows us to
define a cutoff point r for a given an n�m matrix X such that

~r1 � ~r2 � � � � � ~rr>~rrþ1 ¼ � � � ¼ ~rk ¼ 0, k ¼ minðn,mÞ
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In this case,

~R ¼ Rr 0
0 0

� �
(4)

where ~Rr ¼ diagð~r1, :::, ~rrÞ: It can easily be seen that the diagonal matrix ~R
has k entries on the diagonal, but the ðk�rÞ of these entries equal zero. If
the matrix X has an additional ðk�rÞ zero singular values, then this matrix
is not full-rank. Also, if the rank of diagonal matrix ~R equals the number
of nonzero diagonal elements, then, rankðxÞ ¼ rankð~RÞ ¼ r:

Theorem 2.2. The SVD of the n� ðmþ 1Þ augmented matrix ½X, y� can be
defined by

X, y½ � ¼ URV0 (5)

whereU is an ðn� nÞ orthogonal matrix and satisfiesU0U ¼ I,V is an ðmþ 1Þ �
ðmþ 1Þ orthogonal matrix and satisfies V0V ¼ I, and R is an n� ðmþ 1Þ diag-
onal matrix with nonnegative entries such that r1 � r2 � � � � � rmþ1> ¼ 0:

Proof. See proof of theorem 2.1.

Corollary 2.1. If ½X, y� is an n� ðmþ 1Þ augmented matrix and
r ¼ rankf½X, y�g, then

X, y½ � ¼ Udiag r1, r2, :::, rrð ÞV0 ¼
Xr
i¼1

riuiv
0
i (6)

where diagð:Þ is the diagonal matrix, and U and V are the orthogonal matri-
ces, as defined in Theorem 2.2. Moreover, the column vectors of U ¼
ðu1, , unÞ are called the left singular vectors (or unitary) and the vectors of
V ¼ ðv1, , vnÞ are called the right singular vectors.

Proof. Suppose ½X, y� ¼ ~U~R ~V
0

is the SVD of ½X, y� and let r ¼
rankf½X, y�g Considering equation 8, we have

X, y½ � ¼ URV0 ¼ U
Rr�r 0

0 0

" #
V0

¼ u1, :::, unð Þ

r1 0 0 ::: 0

0 . .
.

0 ::: 0

..

.
0 rr ::: 0

0 0 0 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 ::: 0

2
666666666664

3
777777777775

v01
..
.

v0mþ1

0
BBB@

1
CCCA ¼ r1u1v

0
1 þ � � � þ rrurv

0
r

completing the proof of Corollary 2.1.
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Equation (6) is a dyadic form of the SVD. This form plays an important
role in applications where a matrix is approximated with a lower rank. It
should also be noted that we need a suitable matrix norm in order to
measure the size of the errors in the matrix of the linear system given in
the equation (2). In this context, the Frobenius norm is the commonly
used matrix norm in TLS problems. For a matrix X ¼ ðxijÞ it is defined as

jjXjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX
i, j

x2ij

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
trðX0X

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

~r2
i

vuut (7)

Furthermore, in this kind of application, the following Eckart-Young-
Mirsky theorem provides a convenient solution to the problem of approxi-
mating a matrix by another of lower rank.

Theorem 2.3. (Eckart-Young-Mirsky matrix approximation theorem). Let
the SVD of X 2 Rn�m be given by X ¼Pr

i¼1 ~ri~uiv0i with r ¼ rankðXÞ. If h<r
and xh ¼

Ph
i¼1 ~ruiv

0
i, then

min
rankðZÞ¼h

jjX�Zjj2 ¼ kX� Xhk2 ¼ ~rhþ1 (8)

and

min
rankðZÞ¼h

jjX�Zjjp ¼ kX� XhkF ¼
Xk
i¼hþ1

~r2
i

0
@

1
A

1=2

where k ¼ minðn,mÞ (9)

Proof. See refs. [12], [16] and [24].

3. Pad�e-type approximation

Consider the following approximation problem. The key idea is to approxi-
mate the unknown regression function g(x) in refeq11 by the function of
the form g½p, q�ðxÞ ¼ AðxÞ=BðxÞ where

AðxÞ ¼ a0 þ a1xþ a2x2 þ � � � þ apxp

BðxÞ ¼ b0 þ b1xþ b2x2 þ � � � þ bqxq
(10)

From (10), it is clear that an approximation of function g(x) is also a
rational function approximation, g½p, q� (x) of order ðpþ qþ 1Þ: In this
sense, there are ðpþ qþ 1Þ coefficients to be estimated. It should also be
noted that g(x) is a continuous function defined by the intervals ½a, b�: A
main problem here is to estimate, for fixed degree p and q, the coefficients
of the real polynomials A(x) and B(x) so that the absolute error of this
approximation, gðxÞ � g½p, q�ðxÞ

�� �� � e, is the smallest possible.
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If function gð:Þ is given by measured data pairs ðxi, yiÞ then the Pad�e
approximation can be made through the following methods: For each of
the data points and the continuous function gð:Þ, and the integers p and q,
the Pad�e approximation can be written as

yi ¼ g xið Þ ffi a0 þ a2xi þ a2x2i þ � � � þ apx
p
i

1þ b1xi þ b2x3i þ � � � þ bqx
q
i

¼ g p, q½ � xið Þ, 1 � i � n (11)

where ajðj ¼ 0, 1, :::, pÞ and bkðk ¼ 0, 1, :::, qÞ are the unknown coefficients
to be estimated from the data. It must be noted that the constant coeffi-
cient b0 ¼ 1 in the denominator that allows us to determine the non-zero
poles of g½p, q�ðxiÞ: The most useful of the Pad�e approximations are those
with order of the numerator equal to, or one greater than, the degree of
denominator.
The equation (3.2) above equivalently can be rewritten as,

a0 þ a1xi þ a2x
2
i þ � � � þ apx

p
i � b1yixi � b2yix

2
i � � � � � bqyix

q
i

h i
ffi yi, 1 � i � n

(12)

It is clear that equation (12) produces a system of linear equations in terms
of n observations. The mentioned system can be expressed using matrix
and vector notation as

fg ¼ Xbg ¼

1 x1 ::: xp1 �y1x1 �y1x21 ::: �y1x
q
1

1 x2 ::: xp2 �y2x2 �y2x22 ::: �y2x
q
2

..

. ..
. ..

. ..
. ..

. ..
. ..

.

1 xn ::: xpn �ynxn �ynx2n ::: �ynx
q
n

2
666664

3
777775
ðmx1Þ

a0

..

.

ap
b1

..

.

bp

2
666666666664

3
777777777775

¼

y1
y2

..

.

yn

2
666664

3
777775

n, x1ð Þ

ffi y

(13)

Note that to uniquely determine the coefficients b ¼ ðaj, bkÞ0, the sample
size should be at least as large as the number of coefficients, i.e., n>m
(where m ¼ pþ qþ 1). From the above matrix X we can see that the nat-
ural polynomials xji’s (j ¼ 0, 1, :::, p) are nearly linearly dependent, which
leads to X0X being close to singular. This case implies that the matrix X
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has an ill-conditioned problem, so that the solution is exceedingly sensitive
to perturbations. As mentioned earlier, the main consideration in this art-
icle is to estimate the nonparametric regression function g using the Pad�e
approach. A slight advantage is that by its nature, a Pad�e-type approximant
to function gð:Þ leads to the linear equation systems g ¼ Xb, as expressed
in (13). However, it should be emphasized that the singularity of X0X
matrix causes this system to become unsatisfactory. In this case, the regres-
sion function gð:Þ is said to be suffering from the problem of multi-
collinearity.
To obtain a stable solution, one needs a regularization method that

replaces the above problem with a well-posed problem. For these purposes,
the most commonly used regularization methods are discussed in the
Appendix, but there are limitations on their uses. For example, these regu-
larization methods assume that the errors are confined to the right-hand
side (response vector y) of the equation Xb� y: Unfortunately, in our
study, we also need to consider the errors (or perturbations) occurring in
the data matrix X with ill-conditioned problems. Therefore there is a need
for using a regularization method that takes the errors on both sides of
equation (13) into account. To overcome this problem, this paper applies
the TTLS problem introduced by ref. [17], in the field of computational
mathematics.

3.1. Solution of pad�e coefficients based on the TLS method

Assume an over-determined system Xb� y in which both the matrix X
and the observation vector y are subject to errors. The basic objective of
the TLS method is to find a solution to the unknown Pad�e coefficients vec-
tor b that minimizes the Frobenius norm of the errors

min
X̂, ŷ½ �2Rn�ðmþ1Þ

jj X, y½ �� X̂, ŷ
� �

jjF subject to ŷ 2 RðX̂Þ (14)

where ŷ is the smallest possible perturbation of y that lies in the range (col-
umn space) RðXÞ of X, and X̂ is the subject to noise part of X. In contrast
to this, the ordinary least squares method requires that X ¼ X̂, and mini-
mizes the 2-norm of the residual vector ðy�ŷÞ:
It should be noted here that we seek X̂ and ŷ such that equation (14) is

as small as possible. X̂b ¼ ŷ is thus a TLS solution to the equation (2),
assuming that the random variables ŷ and X̂ are measured with errors, so
we only observe

ŷ ¼ y þ ey and X̂ ¼ Xþ ex (15)

8 S. E. AHMED ET AL.



where ey and ex satisfy

min
½ey, ex �2Rn�ðmþ1Þ,b2Rm

kex, eykF subject to y þ ey ¼ Xþ exð Þb (16)

[see ref. 16]. Here ey is the error of response vector y and ex is the error of
the matrix X. One may notice that (14) and (16) are equal, and once a
minimizing [̂ey, êx] is found, then any vector b satisfying yþ êy ¼
ðXþ êxÞb is stated as a solution of Pad�e coefficients vector b based on
TLS. The following theorem provides a basic solution for such problems:

Theorem 3.1. Solution of the basic TLS problem. Let (5) be the SVD of
½X, y� with unitary matrices [U, V] and rectangular diagonal matrix R.
Here, ~rm is the smallest singular value of X. If ~rm>rmþ1, then

x̂, ŷ½ � ¼ Xþ êx, y þ êy
� � ¼ UR̂V0 with R̂ ¼ diag r1, :::, rm, 0ð Þ (17)

with the corresponding TLS correction matrix

êx, êy
� � ¼ X, y½ �� X̂, ŷ

� �
¼ ~rmþ1umþ1v

0
mþ1 (18)

solving the TLS problem

bP�TLS ¼ � 1
vmþ1,mþ1

v1,mþ1, :::, vm,mþ1½ �0 (19)

exists and is the unique solution X̂b ¼ ŷ

Proof. (See Van Huffel and Vandewalle (1991), for a complete proof).
Rewrite equation (13) in the form

X, y½ � b0, � 1
� �

� 0 (20)

If rmþ1 6¼ 0, rankf½X, y�g ¼ mþ 1 then there is no nonzero vector in the
null space of the matrix [X, y]. In order to find an appropriate vector, the
rank of matrix [X, y] should be reduced to m. Using the Eckart-Young-
Mirsky Theorem (4), the best m – rank TLS approximation ½X̂, ŷ� of [X, y],
which minimizes the deviations in variance, is obtained by setting the
smallest singular value of [X, y] to zero, rmþ1 ¼ 0: The minimal correction
is then

rmþ1 ¼ min
rank x̂ , ŷ½ �¼m

jj X, y½ �� X̂, ŷ
� �

jjF ¼ kêx , êykF where X̂, ŷ
� �

¼
Xm
i¼1

riuiv
0
i

(21)

and is attained for TLS correction matrix (18) which has rank one. Now,
vðmþ1Þ is a vector in the null space of ½X̂, ŷ�, and the approximate equation
½X̂, ŷ� b0, � 1

� �
¼ 0 is compatible for some b: The TLS solution is then

obtained by normalizing vðmþ1Þ until last element is �1.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 9



Remark 3.1. A s discussed in Van Huffel and Vandewalle (1991),

~rm>rmþ1 $ rm>rmþ1 and vmþ1,mþ1 6¼ 0

Remark 3.2. If rmþ1 ¼ 0 and rankf½X, y�g ¼ m ! equation (20) is compat-
ible and any approximation is not required to obtain the exact solution
stated in (19).

Remark 3.3. If vmþ1,mþ1 6¼ 0 the TLS problems (14) and (16) are solvable
and are therefore generic.
According to Remark 3.3, it is important to note that the fitted values

(indexed by ŷPTLS are obtained in the following way ðb̂PTLS denotes the Pad�e
coefficients estimated by TLS):

ŷP�TLS ¼ X̂b̂P�TLS ¼ � 1
vmþ1,mþ1

X̂ v1,mþ1, :::, vm,mþ1½ �0 2 RðX̂Þ (22)

where vðmþ1,mþ1Þ is the ðmþ 1Þth component of the last column vector
vðmþ1Þ of V that belongs to the null space of ½X̂, ŷ�. Hence b̂P�TLS provides a
solution to problem (14). After reconstruction of the coefficient vector b̂P�TLS

of the rational function approximation, the fitted values expressed in (22)
will also give Pad�e-type approximation of function g(x).

Theorem 3.2. (Closed-form TLS solution). Let (3) and (5), be the SVD of X
and [X, y], respectively. If ~rm>rmþ1, then

b̂P�TLS ¼ X0X� ~r2
mþ1Im

� 	�1
X0y (23)

Proof. For proof, See ref. [35].
Our focus in this study is on very ill-conditioned problems. Since the

data matrix X is ill-conditioned, the augmented matrix ½X, y� is also ill-con-
ditioned as a direct result. In this case, the TLS problem is unstable when-
ever ~rm is close to ~rmþ1: Hence the TLS estimators given in the equations
(19) and (23) often yield unstable solutions, and a regularization approach
is necessary to stabilize them.

3.2. Estimation of pad�e coefficients by P-TTLS method

As noted in Section 3.1, the TTLS method is commonly used to solve linear
ill-conditioned problems in the presence of measurement errors. The most
important idea underlying the TTLS method is that one neglects the
smaller singular values of the augmented matrix ½X, y� [see 15, 30, for more

10 S. E. AHMED ET AL.



thorough discussions]. Roughly speaking, the TTLS method aims to reduce
the contribution of errors by cutting off a certain number of singular values
in the SVD of the augmented data matrix. The mechanism of the TTLS
method is a similar to a truncated SVD, a generalization of the ordinary
least squares method for nearly rank-deficient problems (see Appendix for
more detail). To obtain a stable solution vector b of Pad�e coefficients for
(2), the ideas of describing TTLS method are expressed with the follow-
ing algorithm:

3.2. Algorithm TTLS

1. Compute the SVD of the augmented matrix ½X, y�, as described in the
equation (5):

X, y½ � ¼ URV0 with diagonal elements r1 � r2 � � � � � rmþ1 � 0

2. Select an appropriate truncation (or regularization) parameter t � m ¼
rank½X, y� (i.e., the number of maintained the singular values of the
matrix [X,y]).

3. Block-partition the ðmþ 1Þ � ðmþ 1Þ matrix V such that

V ¼ V11 V12

V21 V22


 �
, where V11 2 Rm�t and

V22 
 vmþ1, tþ1, :::, vmþ1,mþ1½ � 6¼ 0
�  2 R1�ðmþ1�tÞ

4. Compute the P-TTLS solution as

b̂
t
P�TTLS ¼ �V12 V22ð Þþ ¼ �V12

V0
22

kV22k22
(24)

where V22Þþ denotes the pseudoinverse of V22 and b̂
t
P�TTLS shows the esti-

mates of Pad�e coefficients.
If t ¼ m, then it is clear that the equation (19) has been obtained. The

2-norm of (24) and the equivalent Frobenius norm of TLS residuals are
defined as, respectively:

kb̂t
P�TTLSk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kV22k�2

2 �1
q

and jj X, y½ �� X̂, ŷ
� �

jjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2tþ1 þ � � � þ r2mþ1

q
(25)

As stated in [15], the aforementioned equations denote that kb̂t
P�TTLSk2

increases with t, while the norm of the TLS residual decreases with t. Note
also that the small singular values of ½X, y� are neglected with the help of a
chosen regularization parameter t. For these reasons, it is very important to
select an appropriate regularization (or truncated) parameter t. In the
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context of this paper, the generalized cross validation criterion (GCV) is
used to find this parameter.
Alternatively, analogous to the case presented in equation (24), the solu-

tion vector btP�TTLS may be easily expressed. Firstly, we define Pt to be the
orthogonal projection onto a t dimensional subspace of ½X, y�, given by

Pt ¼ UtU
0
t ¼ u1, :::, unð Þ u1, :::, unð Þ0

where Ut denotes the first t columns of the orthogonal matrix U defined in
(5). In this case, for the reduced rank system Pt½X, y� we can obtain a use-
ful alternative P – TTLS solution minimizes the jj½X, y��½X̂, ŷ�jjF such that

b̂
t
P�TTLS ¼ PtXð ÞþPty (26)

Note that arguments similar to those used in solution (22) show that the
fitted (or predicted) values at training inputs are

ŷP�TTLS ¼ Xb̂
t
P�TTLS ¼ X PtXð ÞþPty ¼ Hty (27)

where Ht ¼ XðPtXÞþPt is called “the hat matrix” because it transforms real
response vector y into the fitted observations vector ŷ: The matrix Ht com-
putes the orthogonal projection, and hence it is also known as a projection
matrix. From equation (27) above, it should be emphasized that the Pad�e
coefficients estimated by the TTLS method are linear smoothers, and there-
fore the vector of fitted values (27) can be written as

ŷtP�TTLS ¼ ĝ tP�TTLS x1ð Þ, :::, ĝ tP�TTLS xnð Þ
� 	0 ¼ ĝtP�TTLS ¼ Hty (28)

For computational and conceptual simplicity, an alternative formulation of
the solution (24) can be expressed in terms of filter factor, as in the TSVD
solution (A.5) given in the Appendix. The main idea is to write a expres-
sion for the b̂

t
P�TTLS based on the SVD of X, rather than of the SVD of

½X, y�: The filter factor formulation used for TTLS solution can be given by

b̂
t
P�TTLS ¼

Xm
i¼1

fi
uiy
~ri

vi, fi ¼
Xm
j¼tþ1

v2mþ1:j

kV22k2
c2i

r2i � r2j

 !
¼
Xt
j¼1

v2mþ1, j

kV22k2
~r2
i

~r2
i � r2j

 !

(29)

where ~ri 6¼ rj, fi’s are the filter factor values, the numbers ~ri are the non-
zero singular values of X while the quantities rj’s are the nonzero singular
values of ½X, y�, and vmþ1, j indicates ðmþ 1, jÞth element of V22 defined in
the third step of algorithm TTLS [see 15, for more information].
It follows from equation (29) that it is provided a valid expression for

b̂
t
P�TTLS with truncated parameter t. Moreover, the filter factor formulation

shows that the SVD elements of b̂
t
P�TTLS associated with the smallest singu-

lar values ri are indeed filtered out.
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3.3. Multi-collinearity problem and P-TTLS solution

The P – TTLS method is a generalized version of the ordinary TTLS, and
it is motivated by linear approximation problem

Xb� y,X 2 Rn�mðn>mÞ, y 2 Rn�1, b 2 Rm�1 (30)

where the matrix X and the vector y have errors, as discussed earlier. Note
that the linear system (30) is also known as the EIV model in the statistical
literature and there are many approaches that are closely associated with
the solution of this system. The main difficulty here is that the system (30)
is ill-conditioned, here matrix X is often numerically rank deficient and
contains small singular values. In such cases, the ordinary TLS or similar
techniques can give an unstable solution due to the dominance of errors in
the data. In this sense, regularization techniques based on truncation for
TLS problems are considered to obtain a stable solution. Note that trunca-
tion techniques used to reduce the dimension of the linear equations sys-
tem (30) can also be considered as a type of regularization.
From Algorithm TTLS, we see that the P – TTLS can be viewed as an

extended version of TTLS method used for the regularization of ill-condi-
tioned linear systems (30). Notice that the SVD of the matrix X gives us
some additional insight into the nature of an ill-conditioned regression
problem. For example, small singular values of X identify multi-collinear-
ities, as mentioned in the previous paragraph. The basic idea here is to
limit the contribution of noise or errors by cutting a certain number of
terms in an expansion such as SVD. In other words, in the P – TTLS
method the key idea is to truncate the small singular values of ðX, yÞ, by
setting these values to zero. This really means that the augmented matrix
ðX, yÞ is reduced to a rank t � m matrix and the minimum norm solution
of the truncated problem Xtb� yt is obtained by

b̂
t
P�TTLS ¼ �Vt

12

Vt
22

� �0
kVt

22k22
(31)

called P�TTLS solution in nonparametric regression, as defined in (24)
or (26).
As defined in step 3 of Algorithm TTLS, Vt

22 6¼ 0 is a required condition.
Also, the vector Vt

22 is zero in nongeneric cases (see Van Huffel and
Vandewalle 1991 for more details), but some elements of this vector can be
almost 0 in close-to-nongeneric cases, that can happen in ill-conditioned
problems. As we indicated earlier, the truncation parameter t can always be
reduced sufficiently so that the vector Vt

22 has large enough norm. For
these purposes, a truncation level t must be carefully selected. Not that this
task is carried out by GCV criterion defined in section 5.
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In the light of the detailed information above, it can be said that the
modified truncated TLS solution (or P – TTLS) stabilizes the TLS solution
in nonparametric regression models when multi-collinearities are exist in
the data matrix ½X, y�:

4. Penalized spline method

The unknown function g(x) can be well approximated by a pth degree
regression spline model with a truncated power basis

gðx; bÞ ¼ b0 þ b1xþ � � � þ bpx
p þ

XK
k¼1

bpþk x� jkð Þpþ (32)

where b ¼ ðb0, b1, :::, bp, bpþ1, :::, bpþKÞ0 is a vector of unknown coefficients
to be estimate, p � 1 is an integer ðx� jkÞpþ ¼ ðx� jkÞp, if x>jk other-
wise zero, and j1, :::, jKf g is a set of fixed knots

minðxÞ � j1 � � � � � jK � maxðxÞ� 
[see ref. 28].
Using the above truncated polynomial, it follows that model (1) can be

re-written as

yi ¼ gðx; bÞ ¼ b0 þ b1xþ � � � þ bpx
p þ

XK
k¼1

bpþk x� Kkð Þpþ
 !

þ ei, 1 � i � n

(33)

where ei represents the random error terms with zero mean and variance
r2: In matrix and vector form, model (11) can be stated as

y ¼ Xbþ e (34)

where

X ¼
1 x1 ::: xp1 x1 � k1ð Þpþ ::: x1 � kKð Þpþ
..
. ..

. ..
. ..

. ..
.

1 x2 ::: xpn x1 � k1ð Þpþ ::: xn � kKð Þpþ

2
6664

3
7775 and

D ¼ 0ðpþ1Þ�ðpþ1Þ 0ðpþ1Þ�1

0K�ðpþ1Þ IK�K

" #

and y is a vector, as defined in (1). Then, the penalized spline (PS) esti-
mates of the vector b are obtained by minimizing the penalized least
squares problem
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min
Xn
i¼1

yi � g xið Þð Þ2 þ k
XK
k¼1

b2pþk ¼ jjy � Xbjj2 þ kb0Db

( )
(35)

Here, the regularization parameter k>0 controls the weight given to mini-
mization of the penalty term b0Db, which is also known as the regularization
term. In general, large values of k produce smoother estimators, while smaller
values produce wigglier estimators. As can be seen here, the parameter k plays
a key role in estimating the parameters of the nonparametric model (1).
The PS estimates are obtained by setting derivatives with respect to b

equal to zero, giving the form

b̂
k

B�PS ¼ X0Xþ kDð Þ�1
X0y (36)

where b̂
k

B�PS indicates the coefficients of the truncated power basis function
estimated using the penalized spline method. The resulting estimated b̂

k
B�PS

can be used to provide the corresponding fitted values (indexed by ŷkB�PS

for g(x):

ĝkB�PS ¼ ĝkB�PS x1ð Þ, :::, ĝkB�PS xnð Þ
� 	0

¼ XbkB�PS ¼ Sky ¼ ŷkB�PS (37)

where Sk ¼ XðX0Xþ kDÞ�1X0 is a well-known as smoothing matrix for
penalized splines. As shown in above equation, the quality of the fitted val-
ues depends on choices of parameter k and j1, :::, jKf g, the number of
knots. The following paragraph expresses an algorithm for choosing knots.
See [2], for a detailed discussion on different knot selection algorithms.
Full-search algorithm: Assume that we have a sequence of candidate values of

K ¼ ðj1, :::, jKÞ ¼ ð5, 10, 20, 40, 80, 120Þ� 
for sample size n � 120: Moreover, suppose that k ¼ ðk1, :::, k6Þ is a vector of
the regularization parameters. In this case, we use generalized cross validation
(GCV) as the regularization parameter selection criterion (or k) in the knot
selection procedure. For jj, j ¼ 1, :::, 6 the algorithm works as follows:

1. The penalized spline fits are performed using the smoothing parameter
kj, which is chosen by GCV for the knots jj, j ¼ 1, :::, 6:

2. For j ¼ 1, , 6 the value of jj that minimizes the GCVðkjÞ criterion
is selected.

It should be noted here that we use the GCV criterion in the full search
algorithm; however, any selection criteria (cross-validation and Akaike
information criterion, risk estimation criterion, and so on) can be used in
the algorithm. Refs. [28] and [27], provide more detailed information
regarding knot selection methods.
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5. Selecting the regularization parameter

For the evaluation of the nonparametric regression model, we have to select
a regularization parameter. A good regularization parameter should yield a
fair balance between the perturbation error and the regularization error in
the regularized solution. This section is devoted to choosing good regular-
ization parameter levels for B – PS and P – TTLS methods. Although there
are many selection criteria, we have focused on the GCV criterion, which
is widely used in the literature. We have modified the GCV criterion,
which is used mainly for B – PS, to suit the P – TTLS environment. Note
that, bandwidth and smoothing parrameters for KS and SS methods are
selected by GCV criterion, as in B – PS method.
GCV Criterion for B – PS: GCV is a modified form of the ordinary cross-

validation (CV) model, which is a traditional method for choosing the regu-
larization parameter. The GCV score can be computed from the ordinary
residuals by dividing by the factors 1�ðSkÞii: The GCV score is defined by

GCVðkÞ ¼
n�1Pn

i¼1 yi � ĝkB�PS xið Þ
h i2

1� n�1tr Skð Þ½ �2 ¼ n�1k I� Skð Þk2
n�1tr I� Skð Þ½ �2 (38)

where Sk is a smoother matrix, as defined in (37), and tr(A) denotes the
trace of a matrix A [11, 32].
The value of k that minimizes the equation (38) is selected as a regular-

ization parameter. The key idea here is to select an appropriate estimate

of” g” from the set of corresponding penalized spline estimates H ¼
ĝk1B�PS, :::, ĝ

kk
B�PS

n o
for a set of pre-given positive regularization parameters,

k1<k2< � � �<kk: For example, if we let ĝk1B�PS be the minimizer of

Xn
i¼1

yi � g xið Þð Þ2 þ k
XK
k¼1

b2pþk (39)

then the GCV estimate of parameter k is also an estimate of the minimizer
of the mean square error (MSE) function

MSEðkÞ ¼ 1
n

Xn
i¼1

yi � ĝkB�PS xið Þ
� 	2

¼ 1
n

Xn
i¼1

yi � ĝk1B�PS xið Þ
� 	2

(40)

GCV Criterion for P – TTLS: We know from system (7) that the matrix X
is subject to noise. Accordingly, there can be important changes in the
norm of residuals located at numerator of (38). The norm square of resid-
uals in the case of TTLS are defined by kXb̂t

P�TTLS � yk2: This provides a
similar equation to (38) for choosing the regularization parameter that
minimizes the following modified GCV criterion
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GCVðtÞ ¼ kXb̂t
P�TTLS � yk2= n� pefft

� 	2
(41)

where pefft is the effective number of parameters, defined as sum of the
TTLS filter factors stated in (29), and it can also be given as

pefft ¼
Xm
i¼1

fi ¼
Xm
i¼1

Xmþ1

j¼tþ1

v2mþ1, j

kV22k2
~r2
i

r2i � r2j

 !
(42)

The definition of an effective parameter (or numerical rank) expressed here
is related to the optimum accuracy that can be found in the solution with
the given data. It should be emphasized that the values of t for which pefft
becomes less than n are taken in account. In practice, the value of t that
minimizes the GCV criterion (41) is chosen as a truncation parameter.
Notice that we only use the values of t in the interval 1, tmax½ � tmax � mj g,�
such that peff1 � peff2 � � � � � pefftmax

� m:

6. Statistical properties of the coefficient estimates

The statistical properties of the estimates are related to the Pad�e-type
approximation of function g(x) to be estimated. To evaluate the statistical
properties of the TTLS problem, one needs an appropriate model. In statis-
tics literature, the most suitable models are referred to as errors in variable
models (EIV), which are characterized by the fact that true values of
observed variables consist of some unknown true values plus measurements
error. The TTLS technique is especially effective in these models with only
collinear and measurement error, as stated in linear relationships of the
form (13). The relationship between unknown true variables y and X has
the form

y þ ey ¼ Xþ exð Þb (43)

where ex and ey are considered to be random error components. It is also
assumed that EðexÞ ¼ EðeyÞ ¼ 0 and their variances are VarðexÞ ¼ r2x and
VarðeyÞ ¼ r2y , respectively. Moreover, the error components are mutually
uncorrelated.
Note that the estimates b̂

t
P�TTLS of the vector b in (6.1) are described as

a linear smoother, as discussed in section 3.3. The algebraic properties of
the vector b̂

t
P�TTLS can be expressed as follows:

1. Assume a truncation parameter of t 2 1, tmax½ � tmax � mj g,�
where m ¼

rankf½X, y�g, as stated in the previous section. If t ¼ m, then the
expected value and variance-covariance matrix of the b̂

t
P�TTLS are

described, respectively, as:
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E b̂
t
P�TTLS

� 	
¼ E PtXð ÞþPty

� �
¼ E PtXð ÞþPtðXbþ eÞ

� �
¼ b (44)

and

Var b̂
t
P�TTLS

� 	
¼ Var PtXð ÞþPty

� �
¼ r2 P0

t PtXð Þþ
� �2

Pt

� 	
(45)

2. If t<m, then Eðb̂t
P�TTLSÞ 6¼ b, but ŷtP�TTLS ¼ ĝtP�TTLS ¼ Hty is approxi-

mately the same for all such b̂
t
P�TTLS:

As seen from equation (45), the variance-covariance matrix is not practical
because they depend on the unknown r2: One can see that the estimate of
r2 is needed to construct the aforementioned variance-covariance matrices.
The variance of error is estimated by the residual sum of squares (RSS):

RSS ¼ y � ŷtP�TTLS

� �0
y � ŷtP�TTLS

� � ¼ y � ĝtP�TTLS

� �0
y � ĝtP�TTLS

� �
¼ y �Htyð Þ0 y �Htyð Þ ¼ k I�Htð Þyk22

(46)

where Ht is the projection matrix stated in (28). Therefore, like ordinary
least squares regression, estimation of the error variance can be defined by

r̂2 ¼ RSS

tr I�Htð Þ2 ¼
k I�Htð Þyk22

n�m
(47)

where trðI�HtÞ2 ¼ n�trð2Ht �H0
tHtÞ ¼ ðn�mÞ denotes the residual

degrees of freedom. From equation (47), one can see that the degrees of
freedom for RSS is also the number of total observations minus total num-
ber of the parameters in the model.

6.1. Measuring the risk and error

Generally, the expected loss of fitted values is measured by risk (i.e., the
bias-variance decomposition). Our task is now to approximate the risk in
the nonparametric regression model. Such approximations have the advan-
tage of being simpler to optimize than the practical selection of truncation
parameter t. For convenience, we will work with the mean square errors
(MSEs) and therefore compare the accuracy of the P – TTLS and B – PS
solution with respect to their squared bias and variance. If we take the
expected value of RSS expressed in (46), the MSE is obtained as

EðRSSÞ ¼ E k I�Htð Þyk22
� 	

¼ E ky I�Htð Þ I�Htð Þyk2
� �

¼ r2tr I�Htð Þ2 þ E y0
� �

I�Htð Þ0 I�Htð ÞEðyÞ
¼ r2 n� tr 2Ht �H2

t

� �� �þ ĝtP�TTLS I�Htð Þ2ĝtP�TTLS ¼ MSE

(48)
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where the first term measures the variance and the second term measures
bias, respectively. The error variance r2 in (48) is usually unknown. In
practice, it can be used as r̂2, as given in (47), instead of r2: To show
whether r̂2 is an unbiased or biased estimator, Eðr̂2) is found as

E r̂2ð Þ ¼ 1
n�m

E k I�Htð Þyk22
� 	

¼ 1
n�m

EðRSSÞ

The expected value of EðRSSÞ implies that the estimator of r2 in equation
(47) has a positive bias. However, it should be noted that (47) yields
asymptotically negligible bias. Considering this fact, it is noteworthy that r2

is equivalent to the MSE, which is a widely used criterion for measuring
the quality of estimation (see Speckman 1988).
Error analysis is an important subject due to perturbations for the solu-

tions of an overdetermined system (13). The objective is to obtain solutions
that are accurate or with small errors. To measure approximation (or trun-
cation) errors between real observations and their fitted values, we consider
the relative error (RE) criterion defined by

RE ¼ jjŷ�yjjF
jjyjjF

¼ kHty � ykF
jjyjjF

¼ jjĝtP�TTLS

jjyjjF
(49)

As shown in (49), this criterion is based on Frobenius sum of relative
errors. We are also aware that many previous researchers have considered
this criterion. See [9, 23, 30], for more detailed discussions.

7. Simulation study

This section explores a simulation study that illustrates the effectiveness
and performances of the Pad�e-type approximation based on the TTLS
method. The simulation experiments are designed to study the effects of
three experimental factors: noise levels, degree of spatial variation, and vari-
ance function. The factor levels are changed six times to indicate the effects
of these factors on the quality of the estimates. We also compare the fits
from P�TTLS to the fits computed by B – PS (considered as benchmark
method), the KS and the SS methods.
The specification of the simulation setup is designed in the follow-

ing framework:

� We seek to approximate the unknown regression function g(.) by a
rational function of the form

g p, q½ � xið Þ ¼ A xið Þ
B xið Þ ¼

ajx
J
i

1þ bkxki
, j ¼ 0, 1, :::, p, k ¼ 1, :::, q and p � q (50)
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The degrees of p and q have been suitably chosen so as to minimize the
Frobenius norm of the errors stated in (25).

� In total, three sets of numerical experiments are performed. For each
set of experiments, only one of the three experimental factors has been
changed, while the remaining two have been left unaffected. Within
each set of experiments, the factor levels are changed six times ði:e:, c ¼
1, 2, 3, 4, 5, 6Þ; consequently, there are 18 different configurations
altogether, which are used to detect the effects of varying the values of
the experimental factors.

� To see the performance of the small, medium, and large samples of the
estimates, we generated four different simulation data sets with sample
sizes n ¼ 60, 120, 200, and 400. The number of replications was 1000
for each of the 72 numerical experiments.

� In order to obtain appropriate estimates of the parameters expressed in
the equations (13) and (35), we determined the optimum regularization
parameters (i.e., the truncated parameter for P�TTLS and smoothing
parameter for B – PS) that minimize the GCV selection criterion.

For completeness, the data derivation procedures from the equation (50)
are given in detail sections 7.1-7.3. Furthermore, in this simulation, we
obtained 1000 estimates of function “g” for two methods. As mentioned in
previous sections, the estimated MSE values are computed for correspond-
ing “g” functions. Here we use the MSE formula

MSEðĝ, gÞ ¼ 1
1000

X1000
j¼1

Xn
i¼1

ĝ xijð Þ � g xið Þ� 2 (51)

where ĝðxijÞ shows the estimated value at i.th point of the function g(.) in
j.th iterations.
The outcomes from the simulation experiments are summarized in the

following figures and tables. As indicated before, in this simulation
study, because 72 different experiments are made in total, it is not pos-
sible to adequately display all the numerical results here. Therefore, only
some different configurations are given in the following figures for dif-
ferent samples sized n. The results of the simulation experiments are
reported in the following sections under separate headings for each
experimental factor.

7.1. Noise level factor

For the first simulation experiment, six true regression functions that
include different noise levels are considered. To assess the performance of
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our estimation procedures, the data sets ðxi, yiÞ, i ¼ 1, :::, n
� 

are generated
from the model

yi ¼ g xið Þ þ rjei, rj ¼ 0:2þ 0:07ðj�0:1Þ2
� �

, j ¼ 1, :::, 6 and ei �NIIDð0, 1Þ
(52)

with xi ¼ ði�0:5Þ=n: The true regression function expressed above is
defined as

g xið Þ ¼ 1

xi � 0:3ð Þ2 þ 0:01
� �þ 1

xi � 0:9ð Þ2 þ 0:04
� ��6

The main goal is to find the best approximation to the true function gðxiÞ:
In the light of the information presented in section 3, examination of the
fits from the Pad�e based on the TTLS method (P – TTLS) show that it is
quite reasonable for the true function, when compared to the more trad-
itional penalized spline (B – PS), Kernel smoothing (KS) and Smoothing
spline (SS) methods, which is considered here as benchmark.
In Figure 1, each panel presents a single realization of simulated data,

hence four different fitted curves. As illustrated in Figure 1, Pad�e provides a
better approximation than B – PS, especially for the low noise levels. This
idea is also supported by the MSEs given in Table 1. As seen in Figure 1, the
curves obtained from the KS and SS methods appear close to P – TTLS, but
the differences between them can be seen more clearly in Table 1. It is
important that the P – TTLS technique has a better and closer fit than the
commonly used B – PS, KS and SS smoothing techniques. Although Pad�e

Figure 1. Results for varying the noise level factor. Panels display the fitted curves from the
Pad�e based on TTLS (P – TTLS in the legend), penalized spline (B – PS in the legend), Kernel
smoothing (KS in the legend) and Smoothing spline (SS in the legend) together with real data
observations. The top panel compares a P – TTLS fit to a B – PS fit, KS and SS fits for the
sample size of n¼ 60. The bottom panel does the same for a sample size of n¼ 200.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 21

•• 0,Uill.J>O(rirs 

• --p.ms 
- - - S>PS 
--KS .. ss 

~ ~ .. 
a 

• I 11 211 ]I .. .. .. 
• _.._, .. 

Ctit.tpo,l,t,tl ., --P.ms 
- -- !I-PS 

A --as -----ss 
~ .. ~ 

211 

~ • .. ,. ... 211 

.. 
Oilt.pc,!Qa" '11D 

--P.mS ., 
--- s-PS • 
--Ks .. -· - SS II 

~ .. .. 
211 

• • II 21 lll .. 51 A 

1111 Dfit,00.11~ 10D 
--p-ms 

• - ... • S-~S • 
-- "5 .. --ss &I 

~ .. 
.. .. 2111 

0.t.PQJ('lrt 
--p,ms 
- - - s,.ps 
--KS 

. ss 

.... .,,. ,., 

,.,..,. .... .. 

.. ... 

08{.il00t'n;s 
--P-ms 
- - - B-PS 
·-···-·KS 
-·-ss 

... -



makes good estimates for low and medium noise levels, it begins to give
slightly fluctuating curves when the noise level is high. Of course, the solu-
tions corresponding to Figure 1 are obtained by using the simulated data
samples with two different sized n¼ 60 and n¼ 200 under three noise levels.
Further details on other possible combinations in this regard are provided in
Figure 2 and Table 1.
The 3D diagrams of MSE versus varying noise levels are plotted for the

estimates obtained by both approaches in Figure 2. In addition, a 3D plot
displaying the two methods together is given in the bottom panel of
Figure 2. As can be seen in this figure, the P – TTLS diagram is below the
B – PS diagram for small noise levels, which means that the P – TTLS has
smaller MSE values, but at higher noise levels it passes B – PS. This graph
gives a visual way of understanding the behavior of MSE values under
increasing noise levels and sample sizes. From this point of view, the per-
formances of both approaches in simulated data sets appear quite similar,
and both perform well. However, we get better and more stable estimates
from the P – TTLS than when using B – PS, especially for low noise levels.
According to Figure 2, as expected, MSEs decrease when the sample size is

larger and the noise level is reduced. Correspondingly, when we look carefully
at the MSE axis of both 3D plots, we realize that P – TTLS has a lower min-
imum and higher maximum than B – PS. This means that P – TTLS is better
for lower noise levels and worse for higher noise levels than the benchmark B
– PS. In addition, 3D diagrams are given in Figure B1 and Appendix B for
comparison of P – TTLS with KS and SS methods. According to Figure B1, as
in the previous figure, P – TTLS can be said to perform well at lower noise
levels, but both the KS and SS methods follow a more stable process in terms
of total noise level. However, as one can see in Table 1, P – TTLS still has sat-
isfying results in estimating the nonparametric regression model.

Table 1. MSEs obtained by the methods based on varying noise levels.

n
60 120

Noise level P-TTLS B-PS SS KS P-TTLS B-PS SS KS

1 0.239 0.365 0.257 0.441 0.197 0.351 0.249 0.374
2 0.281 0.354 0.342 0.495 0.230 0.365 0.271 0.448
3 0.374 0.373 0.503 0.555 0.357 0.405 0.331 0.520
4 0.464 0.484 0.558 0.606 0.465 0.456 0.423 0.576
5 0.542 0.519 0.619 0.604 0.539 0.521 0.588 0.605
6 0.623 0.602 0.678 0.715 0.624 0.608 0.638 0.683
n 200 400
Noise level P-TTLS B-PS SS KS P-TTLS B-PS SS KS
1 0.137 0.300 0.312 0.250 0.090 0.262 0.209 0.203
2 0.180 0.323 0.352 0.280 0.102 0.278 0.214 0.169
3 0.280 0.344 0.440 0.359 0.230 0.296 0.253 0.211
4 0.405 0.401 0.466 0.434 0.323 0.345 0.312 0.288
5 0.450 0.534 0.493 0.477 0.375 0.456 0.416 0.376
6 0.575 0.567 0.561 0.527 0.493 0.492 0.505 0.527
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7.2. Variance function factor

For the second simulation experiment, we considered a regression problem
with non-constant variance. Six real regression function are used, as in the
varying noise level experiment. The data set of observed pairs of values,
ðxi, yiÞ, i ¼ 1, :::, n
� 

, is constructed by

yi ¼ g xið Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
vc xið Þ

p
ei, c ¼ 1, :::, 6, ei�Nð0, 0:5Þ

where vcð:Þ is the variance function defined as vcðxÞ ¼ ½0:15ð1þ
0:4ð2c�7Þðx�0:5ÞÞ� and xi values are drawn from uniformly distributed on
the interval ð0, 1Þ: Finally, the generic form of regression function g is
defined as

g xið Þ ¼ 1:5e�
u2
1i
2
ffiffiffiffiffi
2p

ph i
� e�

u2
2i
2 =

ffiffiffiffiffi
2p

ph i
with u1i ¼ xi � 0:35ð Þ

0:15
and u2i

¼ xi � 0:8ð Þ=0:04
The outcomes from the simulation experiments are summarized in the fol-
lowing figures and tables. Four fitted curves from methods under non-con-
stant variances, are plotted in Figure 3 alongside one typical simulated data

Figure 2. Diagram of MSE versus noise levels for different sample sizes. The left panel shows
the MSE for the fits from Pad�e using the TTLS method, while the right panel denotes the MSE
for the fits obtained by B – PS.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 23

06 

05 

02 

a' 

0 -

M!E.._.,e, lo, P-TTL S 

MSI. valuff lo, l'-TTLS & 6-f'S 

l --

MSE value_s for B.PS 

6 



set. Three-dimensional plots of the MSEs for each method, together with
their different variance functions and sample sizes, are illustrated in Figure 4
like the previous simulation experiment. The MSE results obtained by each of
the four methods are shown in Table 2 for different combinations.
It can be seen from Figure 3 that both methods deliver reasonable results

under the non-constant variance function. However, the Pad�e approxima-
tion based on TTLS, taking into account the rational fraction, performed
better (see the bottom panel of Figure 4). In addition, it is clear from
Figure 3 and Table 2 that in most cases, fits computed by P – TTLS are
better than the other three methods in terms of performance indicators
(MSEs) for non-constant variance functions under different sized samples.
Note also that P – TTLS is superior to others especially for sample of size
n¼ 60. In this sense, it can be said that P – TTLS provides more satisfac-
tory results for different variance functions and sample sizes compared to
B – PS, KS and SS (see Table 2 and Figures 3,4 and Figure B2).

7.3. Spatial variation factor

For the third numerical simulation experiment, we generated six regression
functions with different degrees of spatial variation. Our data set consists
of n pairs ðxi, yiÞ, i ¼ 1, :::, n

� 
constructed by

yi ¼ gc xið Þ þ rei, c ¼ 1, :::, 6, ei �Nð0, 1Þ
where values of xi are generated as in section 7.2, r ¼ 0:1, and the regres-
sion function g is indexed by a single parameter c, and defined in the fol-
lowing way:

Figure 3. Results for varying variance functions. Like in Figure 1, each panel compares the fit-
ted curves obtained by four approaches. The top panel compares a P – TTLS fit to B – PS, KS
and SS fits for n¼ 120. The bottom panel compares the same fits for a sample size of n¼ 400.
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gc xið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi 1� xið Þ

p
sin

2p 1þ 2ð9�4cÞ=5ð Þ
xi þ 2ð9�4cÞ=5

" #
(53)

In a similar manner as in the previous simulation experiments, the fitted
curves obtained by the four methods, together with a typical simulated data

Figure 4. Like Figure 2, the left panel shows the MSE for the fits from the P – TTLS method
and the right panel denotes the MSE for the fits obtained by B – PS, but for variance functions.

Table 2. MSEs from the methods based on varying variance functions.

n
60 120

Var. func. P-TTLS B-PS SS KS P-TTLS B-PS SS KS

1 0.117 0.130 0.130 0.133 0.126 0.121 0.163 0.160
2 0.116 0.110 0.148 0.147 0.105 0.102 0.147 0.141
3 0.103 0.103 0.133 0.134 0.102 0.096 0.106 0.105
4 0.122 0.125 0.140 0.140 0.112 0.121 0.145 0.145
5 0.112 0.119 0.152 0.146 0.119 0.110 0.126 0.125
6 0.103 0.109 0.107 0.103 0.105 0.097 0.097 0.118
n 200 400
Var. func. P-TTLS B-PS SS KS P-TTLS B-PS SS KS
1 0.103 0.105 0.109 0.108 0.092 0.096 0.085 0.085
2 0.090 0.099 0.104 0.091 0.085 0.089 0.091 0.093
3 0.099 0.087 0.095 0.095 0.091 0.082 0.095 0.096
4 0.112 0.112 0.103 0.102 0.095 0.107 0.124 0.121
5 0.102 0.103 0.102 0.102 0.086 0.100 0.107 0.105
6 0.102 0.092 0.102 0.102 0.092 0.088 0.089 0.088
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set, are illustrated in Figure 5. For four methods, the MSEs versus different
spatial variation functions and sample sizes are displayed in Figure 6. The
performance of the methods, the MSEs, are also stated in Table 3.
As can be seen in Figure 5, the P – TTLS and other three methods pro-

duce approximately the same fitted values for the first three levels of spatial
variation. However, when levels of the spatial variation function are large,
the curves fitted by P – TTLS are stable and remain close to real observa-
tions, especially for the variation level of 6. The validity of this case can
also be confirmed by looking at the MSEs given in Table 3. As seen in this
table, the KS method gives the second best performance for a high level of
spatial variation. Figure 6 compares the performances of the fitted values
from the two methods P – TTLS and B – PS. In Figure 6, one can see that
MSEs from B – PS are much larger than the MSEs obtained by P – TTLS,
yielding significant Wilcoxon test rankings with the rejection of the null
hypothesis of equality of median of the MSEs (see also Table 4). In add-
ition, 3D diagrams for P – TTLS, SS and KS methods are displayed in
Figure B3 given in Appendix B. As can be seen from these Figures, the P –
TTLS method appears to have a stationary way from low to high-level spa-
tial variations in terms of MSE scores. However, KS and SS methods show
relatively hard transitions between factor levels. From these results, we con-
clude that the Pad�e approach (i.e., P – TTLS) also works remarkably well
in the context of spatial variation problems, as in many applications.

Figure 5. Results for varying spatial variation functions. Like in Figures 1 and 3, the top panel
compares the fits from four methods for n¼ 60, while the bottom panel compares the same
fits for sample size of n ¼ 400::
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7.4. Performance comparisons

As indicated in section 7, we use the MSEs to evaluate the quality of the
fitted values. In this context, we use paired Wilcoxon tests to determine

Figure 6. Like Figures 2 and 4, the left panel shows the MSE for the fits from the P – TTLS
method and the right panel denotes the MSE for the fits obtained by PS, but for different spa-
tial variation functions.

Table 3. MSEs obtained from methods under spatial variation functions.

n
60 120

Spatial var. P-TTLS B-PS SS KS P-TTLS B-PS SS KS

1 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000
2 0.002 0.000 0.000 0.001 0.000 0.000 0.001 0.001
3 0.003 0.005 0.001 0.001 0.003 0.004 0.001 0.001
4 0.008 0.018 0.009 0.006 0.008 0.017 0.007 0.006
5 0.014 0.023 0.033 0.013 0.014 0.021 0.019 0.016
6 0.015 0.031 0.034 0.023 0.015 0.030 0.032 0.020
n 200 400
Spatial var. P-TTLS B-PS SS KS P-TTLS B-PS SS KS
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
3 0.002 0.004 0.001 0.003 0.001 0.002 0.000 0.001
4 0.007 0.017 0.009 0.009 0.006 0.015 0.005 0.005
5 0.012 0.020 0.014 0.011 0.012 0.018 0.014 0.012
6 0.013 0.028 0.027 0.016 0.012 0.025 0.022 0.014
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whether the difference between the median of the MSEs obtained from
each of the methods is statistically significant at a significance level of 5%.
The methods are also ranked in the following manner: If the median MSE
value of a method is significantly less than other, it is assigned a rank of 1,
and a rank of 2 otherwise. Methods with non-significantly different median
values share the same averaged rank. The resulting Wilcoxon test rankings
are illustrated in Figure 7, and the averaged rankings values are conveyed
in Table 4. As we can see from Figure 7, there is a contraction in the range
of estimates as the sample sizes increase from 60 to 400. In general, we see
that the superior performance of the P – TTLS here may be due to the fact
that the Pad�e approximation provides more optimum estimators to the
parameters being estimated than the B – PS, SS and KS estimators, espe-
cially in the spatial variation and heterogeneous variance factors.
Note that Table 4 is constructed based on the rankings of the median

values of the MSEs given in Figure 7. According to Table 4, for all samples,
the P – TTLS method has had a good empirical performance for variance
function and spatial variation factors. Furthermore, B – PS has shared the
better performance after proposed P – TTLS method for sample of sizes
n¼ 60, 120 and 200. Note also that KS has had a good performance after
P – TTLS especially for big sized samples (i.e., n¼ 400). For a detailed dis-
cussion of this issue, box plots of MSE values obtained from each method
under each factor are also displayed in Figure 7. These results show that
P – TTLS has a good ability to estimate the response variable under spatial
variation factors. However, it cannot be said that P – TTLS method shows
the same success under the variance factors and varying noise levels. What
we are seeing here is that the B – PS, KS and SS methods provide good
estimates under data sets with noise level and variance factors. It should
also be emphasized that KS and SS techniques are not as successful as the
B – PS method. One of the most important reasons for this case is that the
B – PS has a knot selection procedure. As we described in section 4, the B
– PS uses a full search algorithm for estimating the parameters of the
regression model. This algorithm considers the knot points from 5 to
ðn�1Þ and thus determines the optimal number of knots according to min-
imum error [See Aydin and Yilmaz 2017, 27]. As a result, the B – PS
method fails to cope with the fluctuations in the data under spatial

Table 4. Averaged Wilcoxon test rankings related to the regularization methods.
Sample Sizes n¼ 60 n¼ 120 n¼ 200 n¼ 400 Method

Overall 1.500 1.667 1.667 1.167 P-TTLS
2.167 2.167 2.167 3.333 B-PS
3.333 3.167 3.167 3.167 SS
3.000 3.000 3.000 2.333 KS
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variation factor because it takes fixed knot points into account. This
method is successful for the noise level factor due to the same reasons.
We now proceed to evaluate the discrepancy between real and fitted val-

ues. A useful technique, which takes measurement errors into account, is
known as the relative error of approximation. The key idea is to under-
stand the reasons for the discrepancy of the P – TTLS, B – PS, KS and SS
solutions. When these solutions are investigated, we see that the choice of
the regularization parameters plays an important role. To obtain an opti-
mum solution for each method under the aforementioned factors, we gen-
erated 1000 simulated data sets, and for each of the 1000 fits, we calculated
the regularization parameter by GCV criterion. For comparison, for each
fit, we also computed the optimum regularization parameters (i.e., a trunca-
tion level for P – TTLS and a smoothing parameter for B – PS, SS and KS)
that minimize the relative errors, as given in (41 and 38).

RE ¼ jjŷ�yjjF=jjyjjF

Figure 7. Each panel shows the boxplots of the MSEs for fitted curves. The numbers below the
boxplots are the paired Wilcoxon test rankings. For each sample size P1, P2, and P3, the box-
plots of the replications of the MSEs when fits are constructed by P – TTLS under varying noise
levels in the uppermost panel. Similarly, R1, R2, and R3 represent the boxplots of the MSEs
determined by B – PS. In a similar fashion K1, K2, and K3 denote the boxplots of the MSEs
computed by KS, while S1, S2 and S3 indicate the boxplots of the MSEs from SS method. The
remaining panels use the same labeling system as the first, but for variance function (middle
panel) and spatial variation (bottom panel).
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are averaged over 1000 simulated data sets affected by different experimen-
tal factors. For each of the two methods, the averaged RE values are given
in Table 5, while their column graphs are displayed in Figure 8.
In this part of the analysis, the magnitude of the absolute error ratios in

terms of the simulated data measurements is determined. From Table 5, we
see that when regularization methods, P – TTLS, B – PS, KS and SS, are
applied to these data sets, the regularized solutions are obtained with rela-
tively small averaged values of the relative errors by means of the GCV criter-
ion. However, it should be noted that P – TTLS performs substantially well in
spatial variation and variance function factors, as mentioned earlier. In vari-
ance function factor, all methods give similar results but P – TTLS has the
smaller (total and relative) error(s). This idea is also clearly supported by the
two column (or bar) graphs illustrated in Figure 8.
Finally, we developed a web application by using R – shiny software. The

key idea is to compare the proposed P – TTLS method with the widely
used methods, such as Kernel smoothing and smoothing spline, in terms of
MSE scores under the same simulation setup. See, https://ey13.shinyapps.
io/pttls_comparison/ for more detailed information.

8. Real data example

8.1. Fuel consumption data

In this section of the study, we introduce a real data example to see how the pro-
posed method performs. We applied the P – TTLS method to fuel consumption
data collected by Carnegie Mellon University Statistics library in 1983 and it is
used by Quinlan (1993) for estimating fuel consumption. This data has totally
398 observations and 9 variables. Note that the data set is collected to investigate
8 factors such as number of cylinders, engine displacement, engine horsepower,
vehicle weight, acceleration, model year, origin of car and vehicle name (string)
on the city-cycle fuel consumption in miles per gallon. In this study, since a
nonparametric regression model with a single explanatory variable is consid-
ered, only two variables belonging to this dataset are used; city-cycle fuel con-
sumption (fc) as a response variable and displacement (disp) as a nonparametric
explanatory variable. The main goal in this example is to clarify the relationship
between these two variables using the model

Table 5. The average relative errors.
Noise level Variance function Spatial variation

Sample size P-TTLS B-PS SS KS P-TTLS B-PS SS KS P-TTLS B-PS SS KS

60 0.829 0.959 1.035 1.319 0.885 0.927 1.127 1.114 0.720 2.279 1.319 0.807
120 0.845 0.776 0.906 1.337 0.922 0.877 1.119 1.144 0.761 2.090 1.024 0.815
200 0.779 0.756 1.245 1.034 1.008 0.985 1.025 0.991 0.787 1.949 0.981 1.059
400 0.787 1.377 1.140 1.005 0.944 0.987 1.049 1.044 0.801 1.977 1.063 0.784
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yi ¼ fci ¼ g dispið Þ þ ei, i ¼ 1, :::, 398 (54)

In the light of the ideas stated in section 3, a linear system of equations is
constructed, as in (13). To obtain the estimates of Pad�e coefficients in the
equations, we used the equalities (24) or (26) as the regularization solutions
and correspondingly the value of the truncation level is selected with
the GCV criterion, as stated in (41). The value of the truncation parameter
in this example is t¼ 8. The results from the regularization method,
P – TTLS, are compared to those from B – PS defined in (36) based on a
smoothing parameter. The value of this parameter, k ¼ 0:001, is also
chosen by GCV criterion, but for penalized splines, as described in (35).
We begin by defining the existence of the nonlinear relationship between

variables disp and fc. In this regard, we used the following F-test statistics
described in [22], for testing null hypotheses: H0 : EðyiÞ ¼ lðlinearfunctionÞ
against the alternative H1 : EðyiÞ ¼ gðxiÞðsmoothfunctionÞ

Fdf1�df0, n�df1 ¼
Pn
i
ê2i �

Pn
i
v̂2i


 �
= df1 � df0ð Þ

Pn
i
v̂2i = n� df1ð Þ

(55)

where êi ¼ ðyi � x0ib̂OLSÞ and v̂i ¼ ðĝP�TTLSðxiÞ � x0ib̂OLSÞ: Here, b̂OLS is the
estimates of parameters from the ordinary least squares, ĝP�TTLS is the fit-
ted values, as defined in (28), df1 ¼ trð2HP�TTLS �HP�TTLSH0

P�TTLSÞ where
HP�TTLS denotes the hat matrix for the P – TTLS, as expressed in (27), and
df1 is the number of the parameters solved by the OLS method. It should
also be noted that we used only the P – TTLS method to get the above
F-test statistics. However, the B – PS method could be used instead.
Using the F-statistics (55) we obtain F7, 390 ¼ 45:2425 with 7 and 390

degrees of freedom. Comparing F ¼ 45:2425 with critical value
Fð0:05;7, 390Þ ¼ 3:08, we reject the null hypothesis, showing that the linear

Figure 8. These column charts present the relative errors computed by each of the regulariza-
tion methods for all sample sizes under different factors. The left chart denotes the means of
the relative errors, while the right displays the percentage errors found by multiplying the rela-
tive error by 100%.
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function is appropriate. This result is also supported graphically through
the two different scatter plots displayed in Figure 9. It follows that the rela-
tionship between disp and fc may be nonlinear, especially when we added
the fitted values with 95% confidence intervals indicated by shaded regions.
The remaining outcomes from the P – TTLS and B – PS methods

applied to the fuel consumption data are summarized in Figure 10 and
Table 6. Figure 10 compares the fits from the P – TTLS and B – PS meth-
ods on the fuel consumption data collected by Carnegie Mellon University
in 1983. Note that the horizontal axis indicates the scaled values of the
explanatory variable. The main purpose of using scaled values in this
graphic is to get a better visualization of the data. However, all other calcu-
lations are based on real observations. Besides the graphical result given
above, the MSE values of the fitted values solved by P – TTLS, B – PS, KS
and SS are 0.2163, 0.2109, 0.2916 and 0.5493 respectively. Their perform-
ance is almost identical and all three are optimal, except for SS.
Apparently, the SS has not had a good performance in this dataset. In our
view, the proposed P – TTLS approach to estimation of a nonparametric
regression model has produced satisfying conclusions for the real data
example, as well as the simulated data sets under different varying factors.
The outcomes so far demonstrate that the B – PS methods provides a

better performance than P – TTLS, KS and SS in terms of varying noise
level factors. When real data is examined in detail, the typical behavior of a
data set with high noise level factors is shown to be similar to that of the
simulation examples. From the simulation experiments, we know that in
general, the P – TTLS method performs worse than B – PS when it comes
to this factor (noise levels). Therefore, it can be said that the actual data

Figure 9. The left panel shows the scatter plot of residuals versus fitted values solved by the
P – TTLS method, while the right panel displays the scatter plot of B – PS fits against disp. In
these panels, the yellow and blue shaded regions denote the 95% confidence intervals form
the P – TTLS and B – PS fits, respectively.
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works in harmony with the simulation. From (7.3), it is seen that noise
level factor is considered as a multiplier of the variance of the error terms.
Technically, this means that the aforementioned factor can also be inter-
preted as a uniform amplifier of noisiness of the simulated data. In this
context, the variance of the measurement error (the noise) is found as 2.97
in the fuel consumption data used as a real data example. It is seen that
this value is approximately equivalent to the 6th noise level (i.e., 2.63) given
in the simulation study. As can be seen from simulation studies, it is clear
that P – TTLS is superior especially in low noise levels. The outcomes from
fuel consumption data show that the recommended P – TTLS and the
widely used B – PS method have almost the same performance in terms of
evaluation criteria for high noise levels. Note also that P – TTLS and B –
PS methods give better scores than KS and SS techniques. This case proves
that the proposed P – TTLS method is as successful as the B – PS. In add-
ition, we calculated some further results found by the two methods to
evaluate their performance comparatively, as reported in Table 6.

Figure 10. The fitted values solved using P – TTLS and B-PS for the model on a scatterplot of
fuel consumption data. The B – PS fit is given by solid line (in blue), while P – TTLS fit is repre-
sented by the dashed line (in red), KS is denoted by dotted line (in purple) and SS is repre-
sented by the dashed line (in green).

Table 6. Values of MSE. variance and relative errors for the fuel consumption data.
Methods MSE Variance Relative Errors

B-PS 0.2109 0.0292 0.5205
P-TTLS 0.2163 0.0302 0.5402
KS 0.2916 0.0368 0.8154
SS 0.5493 0.0502 1.7569
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According to Table 6, our conclusion is that the performance measure-
ments in value are fairly close to each other, except for SS. However, the
findings here give strong evidence in favor of the proposed P – TTLS and
B – PS method.

8.2. Eeg-alcohol data

The EEG-alcohol data is used to see the success of P – TTLS applied to a
data with spatial variation, which has a type of nonlinear structure, as in
the simulation experiments. This data set is obtained from a study con-
ducted at the Neurodynamic Laboratory in State University of New York
Health science Center. Note also that data can be accessed via the link
https://archive.ics.uci.edu/ml/datasets/eeg+database. (Also, see Zhang et al.
1995 for detailed process of data collection). The dataset has four main fea-
tures, such as sensor location, sensor value, subject identifier and sample
index. In this study, sensor value (sensori) is determined as a response vari-
able, sample index (indexi) is considered as a nonparametric covariate. We
can emphasize here that indexi has a uniform structure that is similar to
covariate produced in the simulation study. From information given above,
the nonparametric regression model for this example is specified by

yi ¼ sensori ¼ g indexið Þ þ ei, i ¼ 1, :::, 500 (56)

As seen from inspection of Figure 11, one can see that there is a nonlinear
and nonparametric relationship between two variables.
Estimates of unknown Pad�e coefficients are obtained similar to Section

8.1. Note also that the truncation level and smoothing parameters that

Figure 11. Scatter plot of EEG-alcohol data.
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minimize the GCV criteria defined in section 5 are selected and they are
found to be t¼ 16 and k ¼ 0:00019 for P – TTLS and B – PS methods,
respectively. Using these parameters, the comparative outcomes of the
nonparametric model (56) are summarized in the following Table 7 and
Figure 12 for the EEG-alchol data set. In this sense, Figure 12 depicts the
fitted curves obtained using both methods. As mentioned above, since this
data set has a high spatial variation, it can be said that based on P – TTLS
method, the nonparametric model fits much better than the nonparametric
model considered B – PS, KS and SS, as in simulation experiments. On the
other hand, to evaluate the performance of each method, we compute the
MSE values, variances, and relative errors obtained from two different esti-
mators. For example, if MSE value of one estimator is smaller than the
other then, this indicates the superiority of this method over the other esti-
mator, as discussed earlier. These results are displayed in Table 7.

8.3. Age-income data

In this section, “Age-Income” data is used to show the performances of the
proposed P – TTLS, B – PS, KS and SS techniques on a real data set with
different local variances. Furthermore, this data set can be considered as
the verification of the results of the variance function factor included in the
simulation study. This real data set has 205 pairs observations on Canadian
workers from a 1971 Canadian Census [34]. One can access the dataset by
using the “semipar” package in the open source R-software. The data set
has two variables: age (agei) as a non-parametric predictor and logarithm
of income logðincomeiÞ) as the response variable. Thus, the nonparametric
regression model for age-income data is provided by

yi ¼ log incomeið Þ ¼ gðageÞ þ ei, i ¼ 1, :::, 205 (57)

Similar to Sections 8.1 and 8.2, performance scores and curves fitted by
P – TTLS, B – PS, KS and SS techniques are obtained and these comparative
results are summarized in the following Table 8 and Figure 13.
Figure 13 shows the curves fitted by four methods considered in this

study. As can be seen in scattered observations, there is an obvious change
in variance in the data, especially after age more than forty years.
According to the contoured curves and MSE scores in Table 8, it can be
said that B – PS is a good representation method for this data. However, it

Table 7. Values of MSE, variance and relative errors for the EEG-alcohol data.
Methods MSE Variance Relative Errors

B-PS 0.4703 0.0471 0.8562
P-TTLS 0.0743 0.0007 0.1953
KS 0.1576 0.0157 0.6945
SS 0.4895 0.0490 2.6837
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can be said that there is no strongly advantageous method among the
methods in terms of superiority. One of the most important indicators of
this statement is that the performance values of each method come close to
each other. In this context, it is clear that P – TTLS can easily find a place
in the literature as a nonparametric smoothing technique among other
popular methods.
In this real data example, although P – TTLS does not produce an

expected result, most of the methods in the real world may behave differ-
ently from theory. However, it can be clearly understood that when the
Figure 8 is examined, the results are really close to each other in the vari-
ance function factor. Therefore, it would not be wrong for this real data
sample to be consistent with the simulation study in this respect. These
ideas are supported by the MSE values, the variances and the relative errors
of methods given in Table 8.

9. Conclusions and recommendations

In this paper, in order to estimate an unknown smooth function in a non-
parametric regression environment, we proposed a Pad�e-type approxima-
tion based on the TTLS technique (P – TTLS), compared with the
benchmarked penalized spline method (B – PS), Kernel smoothing (KS)
and smoothing spline (SS). For a comprehensive understanding of approxi-
mation theory expressed here, we carried out simulation experiments under
different factors. Also, three real data examples are presented in Section 8.
Note that each real data study corresponds to one of the experimental

Figure 12. The fitted values solved using P – TTLS, B – PS, KS and SS for the model (56) on a
scatterplot of EEG-alcohol data.
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factors used in the simulation study. The outcomes from the simulation
and real data examples are satisfactory and also demonstrate that P – TTLS
is both useful and a feasible method in the estimation procedure of the
nonparametric regression function. The empirical results confirmed that
the regularization methods have similar performance measurements, based
on the noise level factor. However, the P – TTLS shows superior perform-
ance when compared to other three widely used smoothing techniques
under the varying variance function and spatial variation factors. In sum-
mation, based on the numerical simulation experiments and real data
results, the following suggestions and conclusions should be considered:

� We see that although P – TTLS provides better fits of data sets based
on lower noise levels, it exhibits poor performance for the data sets
under high noise levels. We also see that proposed P – TTLS solutions
can compete with those obtained with traditional B – PS, KS and
SS methods.

� Interestingly, the P – TTLS performs much better than the other three
in all simulation scenarios based on varying spatial variation factors.

Table 8. Outcomes for age-income data.
Methods MSE Variance Relative Errors

B-PS 0.0175 0.0017 0.8337
P-TTLS 0.0224 0.0022 1.1605
KS 0.0205 0.0021 1.0338
SS 0.0202 0.0020 1.0138

Figure 13. The fitted curves obtained by P – TTLS, B – PS, KS and SS for the model (57) on a
scatterplot of Age-Income data.
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We therefore recommend the P – TTLS as a good approximation
method for spatial variation data. It should also be noted that KS is the
second method that works good under this factor (See Figures 7 and 8).

� In general, under the heterogeneous variance factors, the P – TTLS
method gives more satisfactory fits compared to the benchmarked B –
PS, KS and SS methods. However, it should be emphasized that results
of the four methods for the variance function factor are really close to
each other (see Figures 8 and 13). Therefore, it can be concluded that
all of these methods give satisfactory outcomes. It is the great opportun-
ity for proposed P – TTLS and it shows that it deserves a place among
other popular smoothing techniques.

� Despite the noisy structure of real data, P – TTLS method gives con-
vincing results. However, it should be stressed that B – PS works better
in terms of MSE and relative errors for real data (see Table 6).

� For a nonparametric regression function with the spatial variation or
variance factor, the P – TTLS approximation method seems to be super-
ior (see Figure 7 and Table 4 for sample sizes of n¼ 120 and 400). In
most simulation scenarios, the proposed P – TTLS method gave very
effective solutions (see Table 5 and Figure 8).

� In three real data examples, results are obtained in harmony with the
simulation study. However, in Section 8.3, although P – TTLS has not
given the best score as in simulation, still, the four methods shows really
close results which also supports the simulation study.

Finally, the overall results of two numerical studies demonstrated that the
proposed P – TTLS method provides feasible estimates for the nonparamet-
ric regression model. Furthermore, as the sample size n increases, the range
of estimates decreases. The estimates from medium and large samples are
more stable than those from small samples (see Figure 7).
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Appendix A

Consider a model described by (1). Algebraic calculations show that yi ¼ gðxiÞ gives rise an
over-determined linear system, Xb� y: We want to find a vector b such that Xb̂ is the
best approximation to y. The most popular method is least squares, in which we choose
the vector b̂ that minimizes the least squares problem

min
b

Xn
i¼1

yi � g xið Þð Þ2 ¼ jjy � Xbjj22
( )

(A.1)

The SVD can be used to compute this minimum norm solution. If the SVD of matrix X is
rewritten as

X ¼
Xk
i¼1

~ri~ui~v
0
i where k ¼ minðn,mÞ ¼ rankðXÞ ¼ m

where ~ui 2 Rn, ~vi 2 Rm, ~ri 2 Rþf g are the left and right singular vectors, and singular val-
ues of the data matrix X, as defined in (2), respectively, then the minimum norm least
squares solution is given by

b̂LS ¼
Xk
i¼1

~uiy
~ri

~vi ¼ X0Xð Þ�1
X0y (A.2)

It is clear that the existence of small singular values ~r means ill-conditioned data matrix X.
Note also that if the data matrix ill-conditioned, the variance is still high. In this case, if
the estimator b̂LS is allowed to be biased, the variance can be substantially reduced. One
way to deal with this problem is to compute the truncated SVD (TSVD) that gives the sta-
ble solutions.

The main objective of TSVD method is to replace the ill-conditioned matrix X with the
best rank-r matrix Xr: To perform this procedure, we remove the small singular values of
X, by setting the value of those below a given threshold to zero. If X 2 Rn�m is replaced by
Xr, then we select a new vector b to the minimize the least squares problem

min
b

ky � Xrbk22
n o

,Xr ¼
Xr
i¼1

~ri~ui~v
0
i (A.3)

As expressed in the above, the minimum-norm solution to (A.3) is obtained by truncating
the singular value for r<k ¼ rankðXÞ � m: In this case, the TSVD solution of (A.3) can be
described in terms of the SVD as

b̂TSVD ¼
Xr
i¼1

~u0
iy
~ri

~vi (A.4)

where r ¼ rankðXrÞ is equivalent to the regularization (or truncation) parameter. It should
be noted here that the singular values are ordered as~r1 � � � � � ~rr>~rrþ1 ¼ � � � ~rk ¼ 0 and
the small nonzero singular values ð~rrþ1, :::, ~rkÞ are changed by exact zeros. The idea, then,
is to choose the desired parameter r that filters the elements of the solution corresponding
to the smallest values of ~ri: For our purposes, the SVD solution in (A.4) has a simple
interpretation in terms of filter factors. If one set

f1 ¼ � � � ¼ fr ¼ 1 and frþ1 ¼ � � � fk ¼ 0
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then the TSVD solution based on truncated parameter r is obtained by

b̂TSVDðf Þ ¼
Xk
i¼1

fi
~u0
iy
~ri

~vi where k ¼ minðn,mÞ � m (A.5)

Hence, it follows from (A.5) that TSVD solution is also a filtered version of the least
squares solution in (A.2).

In equation (A.4), the solution b̂TSVD is referred to as the regularized SVD (or truncated
SVD, the TSVD). An alternative approach to the TSVD method is Tikhonov regulariza-
tion, introduced by [31]. This regularization provides a solution to the overdetermined sys-
tem by minimizing the penalized least squares problem

min
b

k Xffiffiffi
k

p
L

� �
b� y

0

� �
k22

� �
¼ min

b

jjXb� yjj22 þ kjjLbjj22
n o

(A.6)

where L shows a regularization matrix, and the scalar k is known as the regularization par-
ameter to be selected. When k>0 this problem is always of full column rank and has a
unique solution [5]. The matrix L is commonly selected to be the identity matrix I; how-
ever, if the solution b has particular known properties, then we may set the L matrix as the
first or second derivative operator [see 8, 21].

The problem (A.6), also called a damped least squares (DLS), is equivalent to the least
squares normal equations

Xffiffiffi
k

p
L


 �0 Xffiffiffi
k

p
L


 �
b ¼ Xffiffiffi

k
p

L


 �0
y
0


 �
(A.7)

The equation (A.7) can be equivalently rewritten as

X0Xþ kL0Lð Þb ¼ X0y (A.8)

In order to analyze how X and L interact in the Tikhonov problem, it would be useful to
convert (A.8) into an equivalent diagonal problem. If L ¼ I, then the SVD overcomes this
task for the ridge regression problem. For the Tikhonov problem, a generalized version of
the SVD that diagonalizes both X and L is discussed by [18].

For each value of k, when L ¼ I it is easy prove that the Tikhonov solution based on
SVD of the (A.8) is given by

b̂TTK ¼ X0Xþ kL0Lð Þ�1
X0y ¼

Xk
i¼1

fi
~u0
iy
~ri

~vi, fi ¼ ~r2
i

~r2
i þ k2

(A.9)

As expressed before, the quantities fi are commonly known as filter factors. It is also noted
that as long as fi ffi 1, b̂TTK will approximately equal the b̂LS and b̂TVSD for k ¼ r, respect-
ively. Specifically, standard Tikhonov solution defined in (A.9) is also known as Ridge
regression solution.

Appendix B

In order to see comparison of P – TTLS, KS and SS methods, Figures B1–B3 are
given below.
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Figure B1. 3 D plots for noise level factor to see performances of P – TTLS, KS and SS. Right of the
bottom panel, 3 D diagram is given for three methods P – TTLS (blue), KS (green) and SS (red).

Figure B2. 3 D plots for variance function factor to see performances of P – TTLS, KS and SS.
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Figure B3. 3 D plots for spatial variation factor to see performances of P – TTLS, KS and SS.
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