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Abstract: In this study, we introduce an efficient computational method to obtain an approximate
solution of the time-dependent Emden-Fowler type equations. The method is based on the
2D-Bernstein polynomials (2D-BPs) and their operational matrices. In the cases of time-dependent
Lane–Emden type problems and wave-type equations which are the special cases of the problem,
the method converts the problem to a linear system of algebraic equations. If the problem has a
nonlinear part, the final system is nonlinear. We analyzed the error and give a theorem for the
convergence. To estimate the error for the numerical solutions and then obtain more accurate
approximate solutions, we give the residual correction procedure for the method. To show the
effectiveness of the method, we apply the method to some test examples. The method gives more
accurate results whenever increasing n, m for linear problems. For the nonlinear problems, the method
also works well. For linear and nonlinear cases, the residual correction procedure estimates the error
and yields the corrected approximations that give good approximation results. We compare the results
with the results of the methods, the homotopy analysis method, homotopy perturbation method,
Adomian decomposition method, and variational iteration method, on the nodes. Numerical results
reveal that the method using 2D-BPs is more effective and simple for obtaining approximate solutions
of the time-dependent Emden-Fowler type equations and the method presents a good accuracy.

Keywords: Bernstein polynomials; operational matrices; Emden-Fowler equation

1. Introduction

The heat equation which expresses the diffusion of heat can be given by the following form [1–3]:

∂2y
∂x2 (x, t) +

r
x

∂y
∂x

(x, t) + a f (x, t) g(y(x, t)) + h(x, t) =
∂y
∂t

(x, t), 0 < x ≤ L, 0 < t < T, (1)

subject to
y(0, t) = α, yx(0, t) = 0, (2)
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where y(x, t) represents the temperature and t the time, r > 0 and a is an integer, α is a constant and
the term f (x, t)g(y) + h(x, t) is the nonlinear heat source, where f , g and h are some smooth functions.
For the steady case with h(x, t) = 0 and r = 2, Equation (1) is the Emden-Fowler equation [4–6], that is,

∂2y
∂x2 +

2
x

∂y
∂x

+ a f (x) g(y) = 0. (3)

In addition, if f (x) = 1, then Equation (3) becomes the Lane–Emden equation of mathematical
physics [7,8].

In this work, we study the numerical solution, which is a simply applied and effective
method, of the time-dependent Emden-Fowler type equations. First, the heat-type Equation (1)
is considered. To solve Equation (1) by the proposed numerical technique, an operational matrix based
on two-dimensional Bernstein polynomials is constructed. Second, with the same notations, we obtain
the approximate solutions of the following wave-type equation:

∂2y
∂x2 (x, t) +

r
x

∂y
∂x

(x, t) + a f (x, t) g(y(x, t)) + h(x, t) =
∂2y
∂t2 (x, t), (4)

subject to
y(0, t) = α, yx(0, t) = 0. (5)

The main issue arisen in the analysis of Equations (1) and (4) is treating the singularity at x = 0.
To overcome this singularity behavior at this point, there are some semi-analytical methods which
are used to solve nonlinear problems in the literature such as Adomian’s decomposition method
(ADM) [1,5], homotopy analysis method (HAM) [9–12], variational iteration method (VIM) [4,13–17],
and homotopy perturbation method (HPM) [18–22]. Wazwaz [5] used ADM to get approximate
analytic solutions of (3). He obtained more accurate results for several examples. Another study
by Wazwaz [1] for time-dependent Emden-Fowler equation was given with a generalization of the
previous work. He employed ADM to solve Equations (1) and (4) and obtained convergent results for
several examples. Chowdhury and Hashim [3] applied HPM to get approximate analytical solutions
of (1) and (4). Bataineh et al. [6] applied HAM to solve the problems (1) and (4). Belal et al. [23] used
VIM to solve this problem.

Since the operational matrices method can achieve the singularity behavior at the point x = 0,
it has been applied to some singular problems. Yousefi and Behroozifar [24] applied the Bernstein
operational matrix to solve the Emden-Fowler equation for the steady-state case. The same problem
was considered by Gupta and Sharma [25] and solved by the Taylor series method. Another work to
solve the steady-state problem was given by Wazwaz et al. [26]. They applied VIM to the problem.
When only the Lane–Emden equation is considered, there are many numerical methods that depend on
ADM [27,28], VIM [29–32], HPM [8,33], and operational matrices method [34] or Bernstein collocation
method [35] were used to get analytic or numerical solutions.

The methods based on operational matrix of differentiation were given in various forms in the
literature. Some of them were constituted by Chebyshev polynomials [36], Legendre polynomials [37],
and Bernstein polynomials [38–44]. One of the common properties of these polynomials is the basis of
polynomial spaces. On the other hand, because of Bernstein polynomials are dense in L2(Ω) [45] and
thus yields good approximation results, they have been used often recently to solve the problems in
two-dimensions. The Bernstein operational matrices method is also known as the Bernstein matrix
method [44] and Bernstein series solution [35].

In this work, we shall develop a method based Bernstein operational matrices to solve the
nonlinear problem 1. The method is applied easily and presents a good accuracy. We first give Bernstein
polynomials in 1D and 2D in Section 2. The matrix representations of the approximate functions and
their operational matrices for both dimensions are given next. Section 3 presents the method of solution
for heat-type and wave-type equations. In Section 4, we constitute the residual correction procedure
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both to estimate the absolute error and to get the corrected approximate solutions. The most important
property of the procedure can be applied even if the exact solution is unknown. Section 5 contains
some examples including linear and nonlinear models to demonstrate the applicability of the method.
First, we apply the method to time-dependent Lane–Emden type problems and singular wave-type
equations. We perform the method for different number of nodes. The numerical results show that
increasing number of nodes gives a sequence of approximations, which converges to the exact solution,
for linear problems. The method also gives good results for nonlinear problems. Residual correction
procedure estimates the error in general. On the other hand, the corrected approximate solutions can
be obtained and its error is less than the approximate solution. We compare the approximate solutions
obtained by the method with the approximate solutions obtained by ADM, HPM, HAM, and VIM by
calculating the error on some nodes in [0, L]× [0, T]. In the last section, we summarize the results.

2. 2D Bernstein Polynomials (2D-BPs) and Their Operational Matrices

In this section, because of defining two-dimensional Bernstein polynomials easily, we will give
one-dimensional, Bernstein polynomials first. The Bernstein polynomials of degree m (1D-BPs) on
[0, 1] are defined as [46]

Bi,m(x) =
(

m
i

)
xi(1− x)m−i, i = 0, 1, . . . , m, (6)

where (m
i ) =

m!
i! (m−i)! with Bi,m = 0 if i < 0 or i > m. Equation (6) can be rewritten as

Bi,m(x) =

(
m
i

)
xi(1− x)m−i

=

(
m
i

)
xi

(
m−i

∑
k=0

(−1)k
(

m− i
k

)
xk

)

=
m−i

∑
k=0

(−1)k
(

m
i

)(
m− i

k

)
xk+i, i = 0, 1, . . . , m.

Let y : I → R be any real-valued continuous function. The truncated Bernstein polynomials
approximation of y is

y(x) ' ym(x) =
m

∑
i=0

ciBi,m(x) = CmΦm(x), (7)

where

Cm = [c0, c1, . . . , cm],

Φm(x) = [B0,m(x), B1,m(x), . . . , Bm,m(x)]T .

To ease computational complexity, the matrix representations of{
y′m(x), y′′m(x), . . . , y(k)m (x)

}
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are to be determined. Let (Ai+1)1,j and Tm(x) be 1× (m + 1) and (m + 1)× 1 matrices respectively for
j = 0, 1, . . . , m as follows:

(Ai+1)1,j =

{
0, j < i,

(−1)j−i(m
i )(

m−i
j−i ), j ≥ i.

Tm(x) =


1
x
...

xm

 .

(8)

Then, the polynomial Bi,m(x) is given by

Bi,m(x) = Ai+1Tm(x), (9)

which gives the identity:
Φ(x) = ATm(x), (10)

where

A =


A1

A2

A3
...

Am+1

 . (11)

Note that
Tm(x) = A−1Φ(x), (12)

and

T′m(x) =


0
1

2x
...

mxm−1

 =


0 0 0 0 0
1 0 0 · · · 0
0 2 0 · · · 0
...

...
...

. . .
...

0 0 · · · m 0




1
x
x2

...
xm

 = LTm(x), (13)

where

L =


0 0 0 0 0
1 0 0 · · · 0
0 2 0 · · · 0
...

...
...

. . .
...

0 0 · · · m 0

 . (14)

By using (10), we write y′m(x) as

y′m(x) = CΦ′(x) = CAT′m(x) = CALTm(x)

= CALA−1Φ(x) = CDΦ(x), (15)

where D = ALA−1. Similarly, for higher-order derivatives of ym(x), one has

y′′m(x) = C(Φ′(x))′ = C(DΦ′(x)) = CD2Φ(x),
...

y(k)m (x) = C
(
Φ′(x)

)(k−1)
= C (DΦ(x))(k−1) = · · · = CDkΦ(x).
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The Bernstein polynomials of degree mn (2D-BPs) on [0, 1]× [0, 1] are defined as [47,48]

Bm,n
i,j (x, t) =

(
m
i

)(
n
j

)
xi(1− x)m−itj(1− t)n−j, (i = 0, 1, . . . , m, j = 0, 1, . . . , n),

which can be rewritten as [45]

Bm,n
i,j (x, t) =

m−i

∑
k=0

n−j

∑
r=0

(−1)k+r
(

m
i

)(
n
j

)(
m− i

k

)(
n− j

r

)
xi+ktj+r. (16)

Theorem 1 ([45]). Let Ω = [0, 1] × [0, 1]. The set of all two-dimensional Bernstein polynomials
{Bm,n

i,j (x, t)}∞
i,j=0 on the box Ω is dense in L2(Ω).

Figure 1 shows the two components of the two-dimensional Bernstein polynomials of order (5,5).
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Figure 1. Two components of the two-dimensional Bernstein polynomials of order (5,5): (a) B5,5
0,2(x, t)

and (b) B5,5
1,3(x, t).

Now, assume that y is a real-valued function defined on Ω ⊂ R2. We want to approximate y(x, t)
by the truncated 2D-BPs series, i.e.,

y(x, t) ' ym,n(x, t) =
m

∑
i=0

n

∑
j=0

ci,jB
m,n
i,j (x, t). (17)

If the identity in [47] is applied to (17), we get

m

∑
i=0

n

∑
j=0

ci,jB
m,n
i,j (x, t) =

m

∑
i=0

n

∑
j=0

ci,jBi,m(x)Bj,n(t). (18)

Then, ym,n in (17) can be found using

ym,n(x, t) = CTΘ(x)Ψ(t), (19)
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where
C = [ci,j]

T
1×(m+1)(n+1) = [c0,0, c0,1, . . . , c0,n, . . . , cm,0, cm,1, . . . , cm,n]T,

Θ(x) =


Φ(x) 0 · · · 0

0 Φ(x) · · · 0
...

...
. . .

...
0 0 · · · Φ(x)

 ,

Ψ(t) =
[
B0,n(t) B1,n(t) · · · Bn,n(t)

]
,

Bj,n(t) =
[
Bj,n(t) Bj,n(t) · · · Bj,n(t)

]
.

(20)

The partial derivatives ∂y/∂x and ∂y/∂t can be approximated as

∂y
∂x

(x, t) ' ∂ym,n

∂x
(x, t)= C

∂Θ
∂x

(x)Ψ(t), (21)

∂y
∂t

(x, t) ' ∂ym,n

∂t
(x, t)= CΘ(x)

∂Ψ
∂t

(t). (22)

Upon using (9), (13), and (15), one gets the identities

dΘ
dx

(x) =



∂Φ
∂x

(x) 0 · · · 0

0
∂Φ
∂x

(x) · · · 0
...

...
. . .

...

0 0 · · · ∂Φ
∂x

(x)



=


DΦ(x) 0 · · · 0

0 DΦ(x) · · · 0
...

...
. . .

...
0 0 · · · DΦ(x)


= DΦ(x), (23)

dΨ
dt

(t) =

[
∂B(0,n)(t)

∂t
∂B(1,n)(t)

∂t
· · ·

∂B(n,n)(t)
∂t

]
T

=
[
A1LTn(t) A2LTn(t) · · · An+1LTn(t)

]
= ALTn(t), (24)

where

DΦ(x) =


DΦ(x) 0 · · · 0

0 DΦ(x) · · · 0
...

...
. . .

...
0 0 · · · DΦ(x)

 ,

ALTn(t) =
[
A1LTn(t) A2LTn(t) · · · An+1LTn(t)

]
.
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Hence, we get

∂ym,n

∂x
(x, t) = CDΦ(x)Ψ(t), (25)

∂ym,n

∂t
(x, t) = CΘ(x)ALTn(t). (26)

For the higher-order derivatives, we have

∂sym,n

∂xs1 ∂ts2
(x, t) = CDs1 Φ(x)ALs2Tn(t), s = s1 + s2, s1 6= 0, s2 6= 0, (27)

∂sym,n

∂xs (x, t) = CDsΦ(x)Ψ(t),

∂sym,n

∂ts (x, t) = CΘ(x)ALsTn(t).

3. Solving Heat-Type and Wave-Type Equations by 2D-BPs

To approximate the solution of (1) subject to the initial condition (2), one substitutes the identities
in (25), (26), and (27) into (1). The residual Re(x, t) are given by

Re(x, t) = CD2Φ(x)Ψ(t) +
r
x

CDΦ(x)Ψ(t) + a f (x, t) g (CΘ(x)Ψ(t))

+ h(x, t)−CΘ(x)ALTn(t). (28)

Taking the nodes

{(xi, ti) : 0 < x1 < . . . < xm−1 = 1, 0 ≤ t1 < . . . < tn+1 = 1} ⊂ [0, 1]× [0, 1], (29)

in (28), we obtain (m− 1)(n + 1) equations

Re(xi, tj) = CD2Φ(xi)Ψ(ti) +
r
xi

CDΦ(xi)Ψ(ti) + a f (xi, ti) g (CΘ(xi)Ψ(ti))

+ h(xi, ti)−CΘ(xi)ALTn(ti), i = 1, 2, . . . , m− 1, j = 1, 2, . . . , n + 1. (30)

The conditions (2) then yield

y(0, tj) = CΘ(0)Ψ(tj) = α,
∂y
∂x

(0, t) = CDΦ(0)Ψ(tj) = 0. (31)

Thus, we have (m + 1)(n + 1) equations. By solving these equations by the command ’fsolve’
which uses Newton’s method for the unknown coefficients Ci,j, we can find the matrix C so that
ym,n(x, t) is obtained.

In this study, we select the collocation nodes as Newton–Cotes points

xi =
2i− 1

2(m + 1)
, tj =

2j− 1
2(n + 1)

, i = 1, . . . , (m + 1), j = 1, . . . , (n + 1). (32)

When applied to the wave-type Equation (4), we get the following:

Re(xi, tj) = CD2Φ(xi)Ψ(ti) +
r
xi

CDΦ(xi)Ψ(t) + a f (xi, ti) g (CΘ(xi)Ψ(ti))

+ h(xi, ti)−CΘ(xi)AL2Tn(ti),

(i = 1, 2, . . . , m− 1, j = 1, 2, . . . , n + 1), (33)

y(0, tj) = CΘ(0)Ψ(tj) = α,
∂y
∂x

(0, tj) = CDΦ(0)Ψ(tj) = 0.
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4. Error Analysis

In this section, we first give the Bernstein series that converges for the function in C1. The residual
correction procedure is given to estimate the absolute error and to obtain corrected approximate
solutions. To determine the convergence of the method, we define the constant Mn+1 as follows.

Definition 1. Suppose that Ω = [0, 1]× [0, 1] and for k = 0, 1, . . . , n, f (k) ∈ C1(Ω), then

∣∣∣ f (x, t)−
n

∑
i=0

n

∑
j=0

∂i+jy
∂xj∂tj (0, 0)

xitj

i!j!

∣∣∣ ≤ Mn+1
1

(n + 1)!
(x + t)n+1, (34)

where all partial derivatives of f of order n + 1 are bounded in magnitude Mn+1, which is

Mn+1 = sup
(ζ,τ)∈Ω

∣∣∣ ∂n+1

∂ζk∂τn+1−k f (ζ, τ)
∣∣∣, k = 0, 1, . . . , n + 1.

Now, the main theorem of function approximation using 2D-BPs are stated as follows.

Theorem 2. Consider m, n ∈ N and Ω = [0, 1] × [0, 1], η = max{m, n}. Let ∂k

∂xk∂ti−k f (x, t) ∈ C1(Ω),
k = 0, 1, . . . , η, i = 0, 1, . . . , k. Next, suppose that

Ym,n = span < Bm,n
0,0 , Bm,n

0,1 , . . . , Bm,n
m,n > .

Approximating f (x, t) by fm,n(x, t) in the space Ym,n as

f (x, t) ' fm,n(x, t) =
m

∑
i=0

n

∑
j=0

ci,jBi,m(x)Bj,n(t), (35)

where fm,n is the best approximation out of Ym,n and supposing that

Em,n( f ) =
∫ 1

0

∫ 1

0
[ f (x, t)− fm,n(x, t)]2dxdt, (36)

then
lim

m,n→∞
Em,n( f ) = 0. (37)

Proof. Let

f̄m,n(x, t) =
m

∑
i=0

n

∑
j=0

∂i+j f
∂xj∂tj (0, 0)

xitj

i!j!
. (38)

Therefore, by considering Definition 1 and by taking η = max{m, n}, we get

| f (x, t)− f̄m,n(x, t)| ≤ Mη+1
1

(η + 1)!
(x + t)η+1 (39)
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By considering Taylor’s expansion formula in Definition 1, one has

‖ f (x, t)− fm,n(x, t)‖2
2 ≤ ‖ f (x, t)− f̄m,n(x, t)‖
≤ ‖ f (x, t)− f̄η,η(x, t)‖

=
∫ 1

0

∫ 1

0
[ f (x, t)− f̄η,η(x, t)]2dxdt

=
M2

η+1

(η + 1)!

∫ 1

0

∫ 1

0
(x + t)2η+2dxdt

=
M2

η+1

(η + 1)!
22η+4 − 2

(2η + 3)(2η + 4)
. (40)

Hence, we get
lim

m,n→∞
‖ f (x, t)− fm,n(x, t)‖2

2 = 0. (41)

This concludes the proof.

Now, we constitute residual correction procedure for the problem. Let y(x, t) be the exact and ym,n(x, t)
the 2D-BPs approximate solutions of Equation (1), respectively. Writing em,n(x, t) = y(x, t)− ym,n(x, t)
as the error, then

∂2em,n

∂x2 +
r
x

∂em,n

∂x
+ a f g(ym,n + em,n)−

∂em,n

∂t
= R(x, t), (42)

em,n(0, t) = α,
∂em,n

∂x
(0, t) = 0,

where

R(x, t) =
∂2ym,n

∂x2 +
r
x

∂ym,n

∂x
− ∂ym,n

∂t
+ h(x, t).

Substituting the approximate solution along with the constructed operational matrix in (42) yields
the residual equation Reerr(x, t) for the error as

Reerr(x, t) = CerrD2Φ(x)Ψ(t) +
r
x

CerrDΦ(x)Ψ(t) + a f (x, t) g [CerrΘ(x)Ψ(t)

+ ym,n(x, t)]−CerrΘ(x)ALTn(t)+R(x, t). (43)

To solve Equation (43) numerically, we compute it at the following collocation points:{
(xi, ti) : 0 < x1 < . . . < xs−1 = 1, 0 ≤ t1 < . . . < tp+1 = 1

}
⊂ [0, 1]× [0, 1]. (44)

Applying the proposed method to (43) with the given initial conditions gives us the coefficient
matrix Cerr so that we get an approximate solution ẽs,p for the error. Hence, ym,n + ẽs,p is another
approximate solution, which is called the corrected 2D-BPs approximate solution for the problem.
In practice, selecting s ≥ m, p ≥ n yields better approximation results.

The solution ys,p
m,n := ym,n + ẽs,p improves the approximation ym,n provided that

∥∥em,n − ẽs,p
∥∥ =

∥∥y− (ym,n + ẽs,p)
∥∥ ≤ ∥∥∥ys,p

m,n

∥∥∥ . (45)

Similar definitions and results can be given for the wave-type Equation (4).

5. Application to Several Test Problems

The applicability of the proposed 2D-BPS method is demonstrated via several test problems.
To simulate the results, three types of equations are selected. Our results are compared with the
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methods of ADM, HPM, VIM, and HAM with h = −1. We use the Newton–Cotes points (32) and
Maple 15 to simulate the numerical outlets with 50-digit precision.

5.1. Time-Dependent Lane–Emden Type Problems

Example 1. Consider

yxx +
2
x

yx − (6 + 4x2 − cos t)y = yt, (46)

subject to
y(0, t) = esin t, yx(0, t) = 0. (47)

The exact solution is [1–4]:

y(x, t) ' esin t
(

1 + x2 +
x4

2!
+

x6

3!
+

x8

4!
+ · · ·

)
= ex2+sin t. (48)

To solve the above problem via the proposed method, we get from Equations (30) and (31) and Equations (46)
and (47)

Re(x, t) = CD2Φ(x)Ψ(t) +
2
x

CDΦ(x)Ψ(t)− (6 + 4x2 − cos t)CΘ(x)Ψ(t)

−CΘ(x)ALsTn(t), (49)

CΘ(0)Ψ(tj) = esin tj , CTCDΦ(0)Ψ(tj) = 0. (50)

Substituting (32) into Equations (49) and (50) for m = n = 3 yields a system of linear equations for the
unknown coefficients Ci,j, which once computed numerically gives

y3,3(x, t) = 1.0057(1− x)3(1− t)3 + 3.0171x(1− x)2(1− t)3

+ 3.9180x2(1− x)(1− t)3 + 2.3768x3(1− t)3

+ 3.9414(1− x)3t(1− t)2 + 11.8243x(1− x)2t(1− t)2

+ 15.4612x2(1− x)t(1− t)2 + 9.4559x3t(1− t)2

+ 5.6529(1− x)3t2(1− t) + 16.9589x(1− x)2t2(1− t)

+ 22.0396x2(1− x)t2(1− t) + 13.3483x3t2(1− t)

+ 2.3250(1− x)3t3 + 6.9751x(1− x)2t3

+ 9.0971x2(1− x)t3 + 5.5510x3t3.

We perform the method to the problem for various n = m, s = p = 10 and s = p = 20. The results
are given in Tables 1 and 2. As seen from the tables, increasing n gives the decreasing error sequence
while the computational time increases. On the other hand, residual correction procedure estimates
the error well for n 6= p. The corrected solutions are more accurate than the solutions for n < p.
We give the computational costs of the method in Table 3. Increasing n = m yields more computational
costs which means that the method needs more computational times, numbers of multiplications,
summations, assignments, and storages for big n, m. As a result, we can say that the numbers n, m are
selected as not too big or not too small. It seems to be suitable for selecting n = m around 10 for
Example 1.

The graphs of |e12,12|, |ẽ15,15| and |y− (y12,12 + ẽ15,15)| are plotted in Figure 2 which also depicts
the absolute errors of the 5th-order approximate solutions of ADM, HPM, HAM and VIM [1–4].
We also give a comparison for the method with HAM and VIM in Table 4 for different nodes number.
It can be seen from Figure 2 and Table 4 that the corrected 2D-BPs approximate solution yields better
approximate results than the results obtained by ADM, HPM, HAM, and VIM. Moreover, the residual
correction procedure estimates the error more accurately.
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Table 1. The norms of absolute errors, the estimation of the errors by using the residual correction
procedure, and the errors obtained by the corrected approximate solutions of Example 1 for s = p = 10.

n = m 3 4 5 6 7

‖en,n‖∞ 0.7547 0.2304 0.0773 0.0183 4.45 × 10−3

‖ẽ10,10‖∞ 0.7965 0.2249 0.0739 0.0180 4.53 × 10−3

‖en,n − ẽ10,10‖∞ 4.17 × 10−2 5.46 × 10−3 3.42 × 10−3 3.06 × 10−4 8.09 × 10−5

Run time (s) 0.032 0.094 0.156 0.359 0.734

n 8 9 10 11 12

‖en,n‖∞ 9.28 × 10−4 2.04 × 10−4 3.94 × 10−5 7.28 × 10−6 1.19 × 10−5

‖ẽ10,10‖∞ 9.18 × 10−4 1.65 × 10−4 1.08 × 10−5 1.69 × 10−6 6.71 × 10−8

‖en,n − ẽ10,10‖∞ 9.76 × 10−6 3.93 × 10−5 3.94 × 10−5 8.97 × 10−6 1.26 × 10−6

Run time (s) 1.357 2.543 4.540 7.675 12.293

Table 2. The results for Example 1 and s = p = 20.

n = m 4 6 8 10 12

‖en,n‖∞ 0.2304 0.0183 9.28 × 10−4 3.94 × 10−5 1.19 × 10−6

‖ẽ20,20‖∞ 0.2249 0.0180 9.56 × 10−4 3.82 × 10−5 1.22 × 10−6

‖en,n − ẽ20,20‖∞ 5.42 × 10−3 2.68 × 10−4 2.85 × 10−5 1.22 × 10−6 2.94 × 10−8

Run time (s) 0.094 0.359 1.357 4.540 13.448

n 14 16 18 20 22

‖en,n‖∞ 3.22 × 10−8 7.45 × 10−10 1.33 × 10−11 2.71 × 10−13 3.39 × 10−15

‖ẽ20,20‖∞ 3.21 × 10−8 7.29 × 10−10 1.39 × 10−11 7.73 × 10−40 4.97 × 10−16

‖en,n − ẽ20,20‖∞ 1.95 × 10−10 1.67 × 10−11 6.18 × 10−13 2.71 × 10−13 3.89 × 10−15

Run time (s) 30.389 71.090 150.509 300.521 534.194

Table 3. The computational costs of the obtaining Re(xi, tj) of the method for 0 ≤ i, j ≤ n in the Maple
code for Example 1.

n = m Multiplications Assignments Additions Storage

5 7827 217 3901 217
10 40,955 727 5503 727
15 309,207 1537 184,281 1537
20 851,768 2647 549,717 2647

Table 4. The results of the 2D-BPM, HAM, and VIM for Example 1.

Degree of polynomial n = 5 8 10 15
(degree 10) (degree 16) (degree 20) (degree 30)

2D-BPM 0.0773 9.28 × 10−4 3.94 × 10−5 7.45 × 10−10

max. abs. error
Run time (s) 0.156 1.357 4.540 71.090

HAM m = 2 m = 4 m = 6 m = 8
(degree 8) (degree 16) (degree 24) (degree 32)

max. abs. error 0.1933 1.22 × 10−3 1.94 × 10−6 2.00 × 10−9

Run time (s) 0.188 0.327 0.499 0.717

VIM m = 2 m = 4 m = 6 m = 8
(degree 8) (degree 16) (degree 24) (degree 32)

max. abs. error 0.1933 1.22 × 10−3 1.94 × 10−6 1.09 × 10−9

Run time (s) 0.218 0.343 0.483 0.686
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Figure 2. (a) absolute error, (b) estimated absolute error, and (c) corrected absolute error for 2D-BPs
solution for Example 1.

5.2. Singular Wave-Type Equations

Example 2. We consider now

yxx +
2
x

yx − (5 + 4x2)y = ytt + (12x− 5x3 − 4x5),

y(0, t) = e−t, yx(0, t) = 0,

where the exact solution is
y(x, t) = x3 + ex2−t. (51)

The solution in series form by ADM [1], HAM [2], and HPM [3] is

y(x, t) ' x3 + e−t
(

1 + x2 +
x4

2!
+

x6

3!
+

x8

4!
+ · · ·

)
. (52)

We applied the method to the problem for various m 6= n. We can say from Table 5 that the norm
of the absolute error decreases when m, n increases. The procedure estimates the error well and the
corrected solutions are better than the solutions in the norm. The absolute error and corrected absolute
error for s = p = 18 are shown in Figure 3. We also give the solutions of the problem by ADM, HPM,
and HAM [1–3] to make a comparison in the same figure. We can conclude from this figure that the
corrected absolute error is better than the absolute error, also better than the absolute error of ADM,
HPM, and HAM.
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Table 5. The norms of absolute errors, the estimation of the errors by using the residual correction
procedure, and the errors obtained by the corrected approximate solutions of Example 2 for s = 16 and
p = 18.

m = 4, n = 5 m = 6, n = 5 m = 6, n = 8 m = 7, n = 9

‖em,n‖∞ 0.0993 9.38 × 10−3 7.75 × 10−3 1.96 × 10−3

‖ẽ16,18‖∞ 0.0976 7.71 × 10−3 7.74 × 10−3 1.96 × 10−3

‖em,n − ẽ16,18‖∞ 1.68 × 10−3 1.68 × 10−3 6.38 × 10−6 8.23 × 10−7

Run time (s) 0.062 0.218 0.624 1.201

m = 10, n = 8 m = 12, n = 10 m = 14, n = 12 m = 15, n = 16

‖em,n‖∞ 2.29 × 10−5 6.23 × 10−7 1.50E-8 2.14 × 10−9

‖ẽ16,18‖∞ 1.65 × 10−5 5.25 × 10−7 1.36 × 10−8 1.83 × 10−9

‖em,n − ẽ16,18‖∞ 6.38 × 10−6 9.81 × 10−8 1.42 × 10−9 3.13 × 10−10

Run time (s) 2.480 7.051 18.096 50.279
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Figure 3. (a) absolute error; (b) estimated absolute error; (c) corrected absolute error for 2D-BPs solution
for Example 2.

5.3. Nonlinear Models

Example 3. Consider

yxx +
5
x

yx + (24t + 16t2x2)ey − 2x2ey/2 = yt, (53)

y(0, t) = 0, yx(0, t) = 0. (54)

The exact solution of the problem [1–4] is y(x, t) = −2 ln(1 + tx2). We apply the method to the
linear problem for various m = n and apply the procedure for s = p = 9. The results are given
in Tables 6 and 7. As seen from the tables, increasing m = n yields more accurate results, whereas
the computational times increase. On the other hand, the proposed method yields a much better
approximate solution than the solutions obtained by ADM, HAM, and HPM [1–3], of order 5. We plot
the error, the estimation of the error, and the corrected error for m = n = 8 and ms = p = 9 in Figure 4.
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We can say from the figures that the estimation by using the procedure fits the error well and the
corrected error is smaller than the error.

Table 6. The norms of absolute errors, the estimation of the errors by using the residual correction
procedure, and the errors obtained by the corrected approximate solutions of Example 3 for s = p = 9.

n = m 5 7 9

‖en,n‖∞ 2.48 × 10−4 4.43 × 10−5 2.66 × 10−6

‖ẽ9,9‖∞ 2.45 × 10−4 4.70 × 10−5 5.65 × 10−12

‖en,n − ẽ9,9‖∞ 2.66 × 10−6 2.66 × 10−6 2.66 × 10−6

Run time (s) 1.638 20.155 107.251

Table 7. The results of the 2D-BPM and HAM for Example 3.

Degree of polynomial n = 4 (degree 8) 6 (degree 12) 8 (degree 16)
2D-BPM 1.87 × 10−3 1.57 × 10−4 2.86 × 10−5

max. abs. error
Run time (s) 0.422 4.680 44.398

HAM m = 2 (degree 8) m = 3 (degree 12) m = 6 (degree 24)
max. abs. error 1.1130 1.3272 3.0520
Run time (s) 1.778 1.950 2.340
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Figure 4. (a) absolute error; (b) estimated absolute error; (c) corrected absolute error for 2D-BPs solution
for Example 3.

6. Conclusions

In this study, we have proposed a numerical method to solve time-dependent Emden-Fowler
type equations. In the numerical scheme, the 2D-BPs are utilized. The residual correction procedure is
applied to estimate the error of the approximate solution. By using the suggested procedure, we obtain
a new approximate solution which is more accurate than the 2D-BPs approximate solution. The error
analysis as well as convergence of the proposed method have been investigated. We applied the
method to several test problems including linear and nonlinear problems and also compared with
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some other methods to show the efficiency of the new method. As seen from the results of text
examples, increasing the node numbers n, m yields a sequence which converges to the exact solution
for all examples in the norm. The computational times and necessary operations in the code increase if
n, m increases. Hence, the optimum n, m values are observed around 10. The procedure estimates the
error with a good accuracy for n, m 6= s, p. In addition, by using the procedure, more accurate results
are obtained. We can conclude that the obtained results are consistent with the results of ADM, HPM,
HAM, and VIM. Especially for the nonlinear problem, the method gives better approximate solutions
with respect to the semi-analytic methods.
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