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We have introduced a Taylor collocation method, which is based on collocation method for solving fractional Riccati differential
equation with delay term. This method is based on first taking the truncated Taylor expansions of the solution function in the
fractional Riccati differential equation and then substituting their matrix forms into the equation. Using collocation points, we
have the system of nonlinear algebraic equation. Then, we solve the system of nonlinear algebraic equation using Maple 13, and we
have the coefficients of the truncated Taylor sum. In addition, illustrative examples are presented to demonstrate the effectiveness
of the proposed method. Comparing the methodology with some known techniques shows that the present approach is relatively
easy and highly accurate.

1. Introduction

The concept of fractional or noninteger order derivation
and integration can be traced back to the genesis of integer
order calculus itself [1, 2].The recent investigations in science
and engineering have demonstrated that the dynamics of
many systems may be described more accurately by using
differential equations of noninteger order. The fractional dif-
ferential equations FDEs have shown to be adequate models
for various physical phenomena in areas like damping laws,
diffusion processes, and so forth. For example, the nonlinear
oscillation of earthquake can be modeled with fractional
derivatives [3] and the fluid-dynamic traffic model with
fractional derivatives [4], psychology [5] and so forth, [6–9].

In this paper, we present numerical and analytical solu-
tions for the fractional Riccati differential equationwith delay
term
𝐷
𝛼

∗
𝑦 (𝑥) = 𝐴 (𝑥) + 𝐵 (𝑥) 𝑦 (𝜆𝑥 + 𝛽) + 𝐶 (𝑥) 𝑦

2

(𝑥) ,

𝑥 > 0, 0 < 𝛼 ≤ 1

(1)

subject to the initial conditions

𝑦 (0) = 𝜆, (2)

where 𝐴(𝑥), 𝐵(𝑥), and 𝐶(𝑥) are given functions, 𝛼 is a
parameter describing the order of the fractional derivative
and 𝜆, 𝛽 are appropriate constants, and 𝜆𝑥 + 𝛽 > 0 for all 𝑥 ∈
[0, 1]. The general response expression contains a parameter
describing the order of the fractional derivative that can be
varied to obtain various responses. In the case of 𝛼 = 1, the
fractional equation reduces to the classical Riccati differential
equation. The importance of this equation usually arises in
the optimal control problems [10]. The existing literature on
fractional differential equations tends to focus on particular
values for the order 𝛼. In modern applications (see e.g.,
[11]) much more general values of the order appear in the
equations, and therefore one needs to consider numerical and
analytical methods to solve differential equations of arbitrary
order. This equation is solved the numerically in [12–14].
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We seek the approximate solution of (1) under the condi-
tions (2) with the fractional Taylor series as 𝐷𝑘𝛼

𝑎
𝑦(𝑥) ∈

𝐶(𝑎, 𝑏],

𝑦
𝑁
(𝑥) =

𝑁

∑

𝑖=0

(𝑥 − 𝑎)
𝑖𝛼

Γ (𝑖𝛼 + 1)
(𝐷
𝑖𝛼

𝑎
𝑦 (𝑥))

𝑥=𝑎

, (3)

where 0 < 𝛼 ≤ 1. In recently, collocation method has become
a very useful technique for solving equations [15–22]. This
method transforms each part of the equation into matrix
form and using the collocation points as

𝑥
𝑖
=
𝑖

𝑁
, 𝑖 = 0, 1, . . . , 𝑁, (4)

we get the nonlinear algebraic equation. Then this equation
is solved, we obtained the coefficients, the approximate
solutions for various 𝑁. All computations are performed on
the computer algebraic system Maple 13 in this paper.

2. Basic Definitions

In this section, we first give some basic definitions and then
present properties of fractional calculus [1, 2, 23].

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0 is said to be in space
𝐶
𝜇
, 𝜇 ∈ 𝑅 ∈ if there exists a real number 𝑝(> 𝜇), such that

𝑓(𝑥) = 𝑥
𝑝

𝑓
1
(𝑥), where 𝑓

1
(𝑥) ∈ [0,∞), and it is said to be in

the space 𝐶𝑚
𝜇
iff 𝑓(𝑚) ∈ 𝐶

𝜇
, 𝑚 ∈ 𝑁.

Definition 2. The Riemann-Liouville fractional derivative of
order 𝛼 with respect to the variable 𝑡 and with the starting
point at 𝑥 = 𝑎 is

𝑎
𝐷
𝛼

𝑥
𝑓 (𝑥)

=

{{{{{{{

{{{{{{{

{

1

Γ (−𝛼 + 𝑚 + 1)

𝑑
𝑚+1

𝑑𝑥𝑚+1

×∫
𝑥

𝑎

(𝑥 − 𝜏)
𝑚−𝛼

𝑓 (𝜏) 𝑑𝜏, 0 ≤ 𝑚 ≤ 𝛼 < 𝑚 + 1

𝑑
𝑚

𝑓 (𝑥)

𝑑𝑡𝑚
, 𝛼 = 𝑚 + 1 ∈ 𝑁.

(5)

Definition 3. The Riemann-Liouville fractional integral of
order 𝛼 is

𝑎
𝐷
−𝛼

𝑥
𝑓 (𝑥) =

1

Γ (𝛼)
∫

𝑥

𝑎

(𝑥 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 𝑝 > 0. (6)

Definition 4. The fractional derivative of 𝑓(𝑥) by means of
Caputo sense is defined as

𝐷
𝛼

𝑓 (𝑥) =
1

Γ (𝑛 − 𝛼)
∫

𝑥

0

(𝑥 − 𝜏)
𝑛−𝛼−1

𝑓
(𝑛)

(𝜏) 𝑑𝜏 (7)

for 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑥 > 0, 𝑓 ∈ 𝐶𝑛
−1
.

For the Caputo’s derivative we have 𝐷𝛼𝐶 = 0, 𝐶 is a
constant,

𝐷
𝛼

𝑥
𝑛

=

{

{

{

0, 𝑛 ∈ 𝑁, 𝑛 < ⌈𝛼⌉

Γ (𝑛 + 1)

Γ (𝑛 + 1 − 𝛼)
𝑥
𝑛−𝛼

, 𝑛 ∈ 𝑁, 𝑛 < ⌊𝛼⌋ .
(8)

Theorem 5 (generalized Taylor formula). Suppose that
𝐷
𝑘𝛼

𝑎
𝑓(𝑥) ∈ 𝐶(𝑎, 𝑏] for 𝑘 = 0, 1, . . . , 𝑛 + 1, where 0 < 𝛼 ≤ 1,

then one has [23]

𝑓 (𝑥) =

𝑛

∑

𝑖=0

(𝑥 − 𝑎)
𝑖𝛼

Γ (𝑖𝛼 + 1)
(𝐷
𝑖𝛼

𝑎
𝑓) (𝑎)

+

(𝐷
(𝑛+1)

𝑎
𝑓) (𝜉)

Γ ((𝑛 + 1) 𝛼 + 1)
(𝑥 − 𝑎)

(𝑛+1)𝛼

(9)

with 𝑎 ≤ 𝜉 ≤ 𝑥, for all 𝑥 ∈ (𝑎, 𝑏], where

𝐷
𝑛𝛼

𝑎
= 𝐷
𝛼

𝑎
⋅ 𝐷
𝛼

𝑎
⋅ 𝐷
𝛼

𝑎
⋅ ⋅ ⋅ 𝐷
𝛼

𝑎
(𝑛 times) . (10)

3. Fundamental Relations

In this section, we consider the fractional Ricatti differential
equations (1). We use the Taylor matrix method [15–22] to
find the truncated Taylor series expansions of each term
in expression at 𝑥 = 𝑐 and their matrix representations
for solving 𝛼th order linear fractional part and nonlinear
part. We first consider the solution 𝑦(𝑥) of (1) defined by a
truncated Taylor series (3). Then, we have the matrix form of
the solution 𝑦

𝑁
(𝑥)

[𝑦
𝑁
(𝑥)] = T (𝑥)A = X (𝑥)M

0
A, (11)

where

X (𝑥) = [1 (𝑥 − 𝑐)𝛼 (𝑥 − 𝑐)2𝛼 ⋅ ⋅ ⋅ (𝑥 − 𝑐)𝑁𝛼] ,

M
0
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

Γ (1)
0 0 ⋅ ⋅ ⋅ 0

0
1

Γ (𝛼 + 1)
0 ⋅ ⋅ ⋅ 0

0 0
1

Γ (2𝛼 + 1)
⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅
1

Γ (𝑁𝛼 + 1)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

A =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐷
0𝛼

∗
𝑦 (𝑐)

𝐷
1𝛼

∗
𝑦 (𝑐)

𝐷
2𝛼

∗
𝑦 (𝑐)

...

𝐷
𝑁𝛼

∗
𝑦 (𝑐)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(12)
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Then, the matrix representation of the function 𝐷𝛼
∗
𝑦
𝑁
(𝑥)

becomes

𝐷
𝛼

∗
𝑦
𝑁
(𝑥) = 𝐷

𝛼

∗
X (𝑥)M

0
A, (13)

where we compute the𝐷𝛼
∗
X(𝑥), then

𝐷
𝛼

∗
X (𝑥) = [𝐷𝛼

∗
1 𝐷
𝛼

∗
(𝑥 − 𝑐)

𝛼

𝐷
𝛼

∗
(𝑥 − 𝑐)

2𝛼

⋅ ⋅ ⋅ 𝐷
𝛼

∗
(𝑥 − 𝑐)

𝑁𝛼

]

= [0
Γ (𝛼 + 1)

Γ (1)

Γ (2𝛼 + 1)

Γ (𝛼 + 1)
(𝑥 − 𝑐)

𝛼

⋅ ⋅ ⋅
Γ (𝑁𝛼 + 1)

Γ ((𝑁 − 1) 𝛼 + 1)
(𝑥 − 𝑐)

(𝑁−1)𝛼

]

= X (𝑥)M
1
,

(14)

where

M
1
=

[
[
[
[
[
[
[
[
[
[
[

[

0
Γ (𝛼 + 1)

Γ (1)
0 ⋅ ⋅ ⋅ 0

0 0
Γ (2𝛼 + 1)

Γ (𝛼 + 1)
⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅
Γ (𝑁𝛼 + 1)

Γ ((𝑁 − 1) 𝛼 + 1)

0 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]
]

]

.

(15)

Then, so the matrix representation of fractional differential
part as

𝐷
𝛼

∗
𝑦
𝑁
(𝑥) = X (𝑥)M

1
M
0
A. (16)

Additionally, using (11) we can write

[𝑦
𝑁
(𝜆𝑥 + 𝛽)] = X (𝜆𝑥 + 𝛽)M

0
A = X (𝑥)M

0
A, (17)

where

X (𝑥) = X (𝜆𝑥 + 𝛽)

= [1 (𝜆𝑥 + 𝛽 − 𝑐)
𝛼

⋅ ⋅ ⋅ (𝜆𝑥 + 𝛽 − 𝑐)
𝑁𝛼

] .

(18)

Moreover, since [21, 22]

Y𝑚 = Y𝑚−1Y, (19)

where

Y𝑚−1 (𝑥) =
[
[
[
[

[

𝑦
𝑚−1

(𝑥)

𝑦
𝑚−1

(𝑥)

...
𝑦
𝑚−1

(𝑥)

]
]
]
]

]

,

Y (𝑥) =
[
[
[
[

[

𝑦 (𝑥) 0 ⋅ ⋅ ⋅ 0

0 𝑦 (𝑥) ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝑦 (𝑥)

]
]
]
]

]

,

(20)

and using collocation points in (11)

Y = TA, (21)

where

T (𝑥) =
[
[
[
[

[

T (𝑥) 0 ⋅ ⋅ ⋅ 0

0 T (𝑥) ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ T (𝑥)

]
]
]
]

]

,

A =
[
[
[
[

[

A 0 ⋅ ⋅ ⋅ 0

0 A ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ A

]
]
]
]

]

(22)

then we construct the following relation

𝑦 (𝑥
𝑖
) 𝑦 (𝑥
𝑖
) = 𝑦 (𝑥

𝑖
) 𝑦 (𝑥
𝑖
) = (TA)X (𝑥

𝑖
)M
0
A. (23)

Hence, the fundamental matrix relation of (1) is

(X (𝑥)M
1
M
0
− 𝐵 (𝑥)X (𝑥)M

0

−𝐶 (𝑥) (TA)X (𝑥)M
0
)A = 𝐴 (𝑥) .

(24)

Finally, we obtainedmatrix representation of the condition in
(2)

U
0
= X (0)M

0
A = [𝑢

0
𝑢
1
𝑢
2
⋅ ⋅ ⋅ 𝑢
𝑁
] = [𝜆] . (25)

4. Method of Solution

Using collocation points in (4), we can write (24)

(X (𝑥
𝑖
)M
1
M
0
− 𝐵 (𝑥

𝑖
)X (𝑥

𝑖
)M
0

−𝐶 (𝑥
𝑖
) (TA)X (𝑥

𝑖
)M
0
)A = 𝐴 (𝑥

𝑖
)

(26)

or briefly the fundamental matrix equation

(XM
1
M
0
− BXM

0
− C (TA)XM

0
)A = F, (27)

where
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X =

[
[
[
[
[
[
[

[

1 (𝑥
0
− 𝑐)
𝛼

(𝑥
0
− 𝑐)
2𝛼

⋅ ⋅ ⋅ (𝑥
0
− 𝑐)
𝑁𝛼

1 (𝑥
1
− 𝑐)
𝛼

(𝑥
1
− 𝑐)
2𝛼

⋅ ⋅ ⋅ (𝑥
1
− 𝑐)
𝑁𝛼

1 (𝑥
2
− 𝑐)
𝛼

(𝑥
2
− 𝑐)
2𝛼

⋅ ⋅ ⋅ (𝑥
2
− 𝑐)
𝑁𝛼

...
...

... d
...

1 (𝑥
𝑁
− 𝑐)
𝛼

(𝑥
𝑁
− 𝑐)
2𝛼

⋅ ⋅ ⋅ (𝑥
𝑁
− 𝑐)
𝑁𝛼

]
]
]
]
]
]
]

]

, F =
[
[
[
[
[
[

[

𝐴 (𝑥
0
)

𝐴 (𝑥
1
)

𝐴 (𝑥
2
)

...
𝐴 (𝑥
𝑁
)

]
]
]
]
]
]

]

,

X =

[
[
[
[
[
[
[

[

1 (𝜆𝑥
0
+ 𝛽 − 𝑐)

𝛼

(𝜆𝑥
0
+ 𝛽 − 𝑐)

2𝛼

⋅ ⋅ ⋅ (𝜆𝑥
0
+ 𝛽 − 𝑐)

𝑁𝛼

1 (𝜆𝑥
1
+ 𝛽 − 𝑐)

𝛼

(𝜆𝑥
1
+ 𝛽 − 𝑐)

2𝛼

⋅ ⋅ ⋅ (𝜆𝑥
1
+ 𝛽 − 𝑐)

𝑁𝛼

1 (𝜆𝑥
2
+ 𝛽 − 𝑐)

𝛼

(𝜆𝑥
2
+ 𝛽 − 𝑐)

2𝛼

⋅ ⋅ ⋅ (𝜆𝑥
2
+ 𝛽 − 𝑐)

𝑁𝛼

...
...

... d
...

1 (𝜆𝑥
𝑁
+ 𝛽 − 𝑐)

𝛼

(𝜆𝑥
𝑁
+ 𝛽 − 𝑐)

2𝛼

⋅ ⋅ ⋅ (𝜆𝑥
𝑁
+ 𝛽 − 𝑐)

𝑁𝛼

]
]
]
]
]
]
]

]

,

T =
[
[
[
[
[
[

[

𝑇 (𝑥
0
) 0 0 ⋅ ⋅ ⋅ 0

0 𝑇 (𝑥
1
) 0 ⋅ ⋅ ⋅ 0

0 0 𝑇 (𝑥
2
) ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑇 (𝑥
𝑁
)

]
]
]
]
]
]

]

, B =
[
[
[
[
[
[

[

𝐵 (𝑥
0
) 0 0 ⋅ ⋅ ⋅ 0

0 𝐵 (𝑥
1
) 0 ⋅ ⋅ ⋅ 0

0 0 𝐵 (𝑥
2
) ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝐵 (𝑥
𝑁
)

]
]
]
]
]
]

]

,

C =
[
[
[
[
[
[

[

𝐶 (𝑥
0
) 0 0 ⋅ ⋅ ⋅ 0

0 𝐶 (𝑥
1
) 0 ⋅ ⋅ ⋅ 0

0 0 𝐶 (𝑥
2
) ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝐶 (𝑥
𝑁
)

]
]
]
]
]
]

]

.

(28)

Hence, the fundamental matrix equation (27) corresponding
to (1) can be written in the form

WA = F or [W; F] , W = [𝑤
𝑖,𝑗
] , 𝑖, 𝑗 = 0, 1, . . . , 𝑁,

(29)

where

W = XM
1
M
0
− BXM

0
− C (TA)XM

0
. (30)

To obtain the solution of (1) under conditions (2), by
replacing the rowmatrices (25) by the last 2 rows of thematrix
(26), we have the new augmented matrix,

[W̃; F̃] =

[
[
[
[
[
[
[
[
[

[

𝑤
00

𝑤
01

⋅ ⋅ ⋅ 𝑤
0𝑁

; 𝐴 (𝑥
0
)

𝑤
10

𝑤
11

⋅ ⋅ ⋅ 𝑤
1𝑁

; 𝐴 (𝑥
1
)

...
... d

...
...

...

𝑤
𝑁−20

𝑤
𝑁−21

⋅ ⋅ ⋅ 𝑤
𝑁−2𝑁

... 𝐴 (𝑥
𝑁−2
)

𝑤
𝑁−10

𝑤
𝑁−11

⋅ ⋅ ⋅ 𝑤
𝑁−1𝑁

; 𝐴 (𝑥
𝑁−1
)

𝑢
0

𝑢
1

⋅ ⋅ ⋅ 𝑢
𝑁

; 𝜆

]
]
]
]
]
]
]
]
]

]

. (31)

So, we obtained a system of (𝑁+1) nonlinear algebraic equa-
tions with unknown Taylor coefficients.

We can easily check the accuracy of the method. Since
the truncated fractional Taylor series (3) is an approximate
solution of (1), when the solution 𝑦

𝑁
(𝑥) and its derivatives

are substituted in (1), the resulting equation must be satisfied
approximately; that is, for 𝑥 = 𝑥

𝑞
∈ [0, 1], 𝑞 = 0, 1, 2, . . .

𝐸
𝑁
(𝑥
𝑞
) =

𝐷
𝛼

∗
𝑦 (𝑥
𝑞
) − 𝐴 (𝑥

𝑞
) − 𝐵 (𝑥

𝑞
) 𝑦 (𝜆𝑥

𝑞
+ 𝛽)

−𝐶 (𝑥
𝑞
) 𝑦
2

(𝑥
𝑞
)

≅ 0.

(32)

5. Examples

In order to illustrate the effectiveness of themethod proposed
in this paper, several numerical examples are carried out in
this section. In the following computations, for convenience,
absolute errors between 𝑁th-order approximate values 𝑦

𝑁

and the corresponding exact values 𝑦ex as 𝑁𝑒 = |𝑦𝑁 − 𝑦ex|
are determined and all computations performed computer
algebraic system with mathematical programing in Maple 13.

Example 1. Consider the following fractional Riccati equa-
tion:

𝐷
𝛼

∗
𝑦 (𝑥) = 𝑦

2

(𝑥) − 𝑥
2

𝑦 (𝑥 + 1) +
Γ (3)

Γ (5/2)
𝑥
3/2

− 2𝑥
3

− 𝑥
2

,

𝑥 > 0, 0 < 𝛼 ≤ 1

(33)

with initial conditions

𝑦 (0) = 0. (34)
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Figure 1: Comparison of the HPM and PMN for 𝛼 = 0.5.
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Figure 2: Comparison of the HPM and PM for 𝛼 = 1.

Then,𝐴(𝑥) = Γ(3)𝑥3/2/Γ(5/2)−2𝑥3 −𝑥2, 𝐵(𝑥) = −𝑥2,𝐶(𝑥) =
1. We assume that 𝛼 = 1/2, 0 ≤ 𝑥 ≤ 1, and we seek the
approximate solutions 𝑦

𝑁
by Taylor series, for 𝑐 = 0,𝑁 = 4

𝑦
4
(𝑥) =

4

∑

𝑘=0

𝑥
𝑘𝛼

Γ (𝑘𝛼 + 1)
(𝐷
𝑘𝛼

∗
𝑦 (𝑥))

𝑥=0

(35)

with collocation points being

𝑥
0
= 0, 𝑥

1
=
1

4
,

𝑥
2
=
2

4
, 𝑥

3
=
3

4
,

𝑥
4
= 1.

(36)

Fundamental matrix relation of this problem is

(XM
1
M
0
− BXM

0
− C (TA)XM

0
)A = F, (37)

where

X =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0

1
1

√4

1

4

√4

16

1

16

1
1

√2

1

2

√2

4

1

4

1
√3

√4

3

4

3√3

4√4

9

16

1 1 1 1 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, B =
[
[
[
[
[

[

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

]
]
]
]
]

]

,

X =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 2 2 2 2

1
1

√4

+ 1
1

4
+ 1

√4

16
+ 1

1

16
+ 1

1
1

√2

+ 1
1

2
+ 1

√2

4
+ 1

1

4
+ 1

1
√3

√4

+ 1
3

4
+ 1

3√3

4√4

+ 1
9

16
+ 1

1 2 2 2 2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

C =
[
[
[
[
[

[

0 0 0 0 0

0 0.0625 0 0 0

0 0 0.2500 0 0

0 0 0 0.5625 0

0 0 0 0 1

]
]
]
]
]

]

,

M
0
=

[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0

0
2

√𝜋
0 0 0

0 0 1 0 0

0 0 0
4

3√𝜋
0

0 0 0 0
1

2

]
]
]
]
]
]
]
]
]
]

]

,

M
1
=

[
[
[
[
[
[
[
[

[

0 1 0 0 0

0 0
2

√𝜋
0 0

0 0 0 1 0

0 0 0 0
4

3√𝜋

0 0 0 0 0

]
]
]
]
]
]
]
]

]

, F =
[
[
[
[
[

[

0.000000

0.188063

0.531923

0.977205

1.504505

]
]
]
]
]

]

.

(38)

Also, we have the matrix representation of conditions,

𝑦 (0) = [1 0 0 0 0 0 0]A = [0] (39)
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Table 1: Numerical result for Example 1.

𝑥 Exact solution Present Method
𝑁 = 4 𝑁

𝑒
= 4 𝑁 = 5 𝑁

𝑒
= 5 𝑁 = 6 𝑁

𝑒
= 6

0.0 0.000 0.000000 0.000𝐸 − 0 0.000000 0.000𝐸 − 0 0.00000 0.000𝐸 − 0

0.2 0.040 0.039985 0.150𝐸 − 4 0.040000 0.553𝐸 − 6 0.040000 0.740𝐸 − 8

0.4 0.160 0.159993 0.700𝐸 − 5 0.160000 0.352𝐸 − 6 0.160000 0.530𝐸 − 8

0.6 0.360 0.359996 0.446𝐸 − 5 0.360000 0.330𝐸 − 6 0.360000 0.497𝐸 − 8

0.8 0.640 0.63996 0.446𝐸 − 5 0.640000 0.337𝐸 − 6 0.640000 0.528𝐸 − 8

1.0 1.000 0.999998 0.219𝐸 − 5 1.000000 0.464𝐸 − 6 1.000000 0.673𝐸 − 8

Table 2: The numerical results with comparison HP and PM (𝑁 = 12).

𝑥 𝑦exact
𝑦HPM 𝑦PM

𝛼 = 0.5 𝛼 = 1 𝛼 = 0.5 𝛼 = 1

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.096668 0.273875 0.099668 0.329929 0.096668
0.2 0.197375 0.454125 0.197375 0.436741 0.197375
0.3 0.291313 0.573932 0.291312 0.504823 0.291313
0.4 0.379949 0.644422 0.379944 0.553733 0.379949
0.5 0.462117 0.674137 0.462078 0.591156 0.462117
0.6 0.537050 0.671987 0.536857 0.620983 0.537050
0.7 0.604368 0.648003 0.603631 0.645461 0.604368
0.8 0.664037 0.613306 0.661706 0.665998 0.664037
0.9 0.716298 0.579641 0.709919 0.683545 0.716298
1.0 0.761594 0.558557 0.746032 0.698852 0.761594

and so we solve (37) and obtain the coefficients of the Taylor
series

A = [0 −0.478771𝑒 − 4 0.189414𝑒 − 3 −0.307615𝑒 − 3 2.000189] . (40)

Hence, for 𝑁 = 4, the approximate solution of Example 1 is
given as

𝑦
5
=
0.957543√𝑥

√𝜋
+ 0.189414𝑒 − 3𝑥

−
0.410153𝑥

3/2

√𝜋
+ 1.000094𝑥

2

.

(41)

Comparison of numerical results with the exact solution is
shown in Table 1 for various𝑁.

Example 2. Let us consider the following fractional Riccati
equation [13]

𝐷
𝛼

∗
𝑦 (𝑥) = 𝑦

2

(𝑥) + 1, 0 < 𝛼 ≤ 1 (42)

subject to the initial condition

𝑦 (0) = 1. (43)

Then, 𝐴(𝑥) = 1, 𝐵(𝑥) = 0, 𝐶(𝑥) = 1. Fundamental matrix
relation of this problem is

(XM
1
M
0
− C (TA)XM

0
)A = F. (44)

Also, we have the matrix representation of conditions,

𝑦 (0) = [1 0 0 0 0 0 0]A = [0] . (45)

The exact solution, when 𝛼 = 1, is

𝑦 (𝑥) =
𝑒
2𝑥

− 1

𝑒2𝑥 + 1
. (46)
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We approximately solve the fractional Ricatti equation for
𝑁 = 12 and obtained the approximate solution for 𝛼 = 1,

𝑦
12
= 𝑥 − 0.559171𝑒 − 6𝑥

2

− 0.333319𝑥
3

− 0.155476𝑒

− 3𝑥
4

+ 0.134388𝑥
5

− 0.467422𝑒 − 2𝑥
6

− 0.398472𝑒

− 1𝑥
7

− 0.295050𝑒 − 1𝑥
8

+ 0.640148𝑒

− 1𝑥
9

− 0.390402𝑒 − 1𝑥
10

+ 0.109027𝑥
11

− 0.116904𝑒 − 2𝑥
12

.

(47)

Table 2 shows the approximate solutions for Example 2
obtained by the presentmethod and compare with homotopy
perturbation method for different 𝛼. From the numerical
results in Table 2, present method is in high agreement with
the exact solution than homotopy perturbation method [13].
Moreover, using the numerical result in Table 2, Figures 1 and
2 are plotted. Figure 2 shows that numerical solution 𝑦PM is
so closed to the exact solution.

6. Conclusion

In real world systems, delays can be recognised everywhere
and there has been widespread interest in the study of delay
differential equations for many years. Although it seems nat-
ural to model certain processes and systems in engineering
and other sciences with this kind of equation, only in the last
few years has the attention of the scientific community been
devoted to them.

In this study, we present a Taylor collocation method
for the numerical solutions of fractional Riccati differential
equation with delay term. This method transforms frac-
tional Riccati differential equation with delay term into
matrix equations. The desired approximate solutions can be
determined by solving the resulting system, which can be
effectively computed using symbolic computing codes on
Maple 13. Examples show that Taylor collocation method has
been successfully applied to find the approximate solutions
of the fractional Riccati differential equation. Graphics and
tables show that this method is extremely effective and
practical for this sort of approximate solutions.
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