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Abstract
This paper focuses on nonparametric regression modeling of time-series observa-
tions with data irregularities, such as censoring due to a cutoff value. In general, 
researchers do not prefer to put up with censored cases in time-series analyses 
because their results are generally biased. In this paper, we present an imputation 
algorithm for handling auto-correlated censored data based on a class of autore-
gressive nonparametric time-series model. The algorithm provides an estimation of 
the parameters by imputing the censored values with the values from a truncated 
normal distribution, and it enables unobservable values of the response variable. 
In this sense, the censored time-series observations are analyzed by nonparametric 
smoothing techniques instead of the usual parametric methods to reduce model-
ling bias. Typically, the smoothing methods are updated for estimating the censored 
time-series observations. We use Monte Carlo simulations based on right-censored 
data to compare the performances and accuracy of the estimates from the smooth-
ing methods. Finally, the smoothing methods are illustrated using a meteorological 
time- series and unemployment datasets, where the observations are subject to the 
detection limit of the recording tool.
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1 Introduction

In the statistical literature, researchers use the term “right-censored observation” 
for a unit’s failure time that is only known to exceed a detection limit. Gener-
ally, the measurements collected over time are observed with data irregularities, 
such as censoring due to a threshold value. Ordinary statistical methods cannot 
be applied directly to such observations, especially for time-series data. As is 
known, time-series measurements are often auto correlated and analyzed by mod-
eling autocorrelations via their appropriate autoregressive structures. Box and 
Jenkins (1970) presented the first study dealing with time-series analysis within a 
parametric framework. However, although parametric approaches are highly use-
ful for analyzing time-series data, they can produce biased estimates or lead to 
wrong conclusions, especially for censored data.

When using time series, we may encounter severe problems using data with 
censored or auto-correlated errors. During the last decade, many techniques have 
been proposed for dealing with such problems in which the dependent variable is 
subject to censoring. Our view is that these techniques are fundamentally divided 
into parametric and nonparametric methods, depending on the estimated autocor-
relation function. Here, we focus only on the nonparametric approaches and try to 
discern which will provide a better estimation of auto-correlated censored data.

Suppose we consider a nonparametric time-series regression model with 
autoregressive errors for censored response observations at time t, given by

where Yt represents a stationary time series, and its prediction depends on the 
explanatory variable Xt , and f is an unknown smooth function giving the conditional 
mean of Yt given Xt . In addition, et , defined in (1), is a stationary autoregressive 
error term generated by

where � = 
(
𝜙1,… ,𝜙p

)⊤ is the vector of the autoregressive coefficients and �t repre-
sents independent and identically distributed random variables with zero mean and 
variance �2 . Model (1) does not contain lagged Y ′

t
s and has auto-correlated error 

terms. This makes it an appropriate model for the regression analysis of certain 
kinds of time-series data.

Our objective is to estimate both the unknown function f (.) and the autore-
gressive structure in (1) by nonparametric methods using censored time- series 
data. There are numerous studies suitable for the estimation approaches of f (.) 
in a nonparametric regression model based on censored data (Zheng 1984; Dab-
rowska 1992; Kim and Truong 1998; Yang 1999; Cai and Betensky 2003; and 
Aydin and Yilmaz 2017). As noted, while there are extensive studies on estimat-
ing nonparametric models with censored responses, the literature on censored 
time-series response data is limited. Examples of these works include Zeger and 
Brookmeyer (1986), Park et al. (2007), and Wang and Chan (2017).

(1)Yt = f
(
Xt

)
+ et, t = 1,… , n

(2)et = �et−1 + �et−2 +⋯ + �et−p + �t
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Problems with censored time- series data are commonly solved using data aug-
mentation techniques. Several researchers, including Robinson (1983), Parzen 
(1983), Tanner (1991), Hopke et al. (2001), and Park et al. (2007, (2009), have 
used this technique for regression models with autoregressive errors when cen-
sored response observations are considered. Note that both imputation and aug-
mentation methods are addressed by several authors for missing values, excluding 
time- series observations. For example, see the studies of Rubin (1996), Dempster 
et al. (1977), Heitjan and Rubin (1990), and Meng (1994). In addition, there are 
several nonparametric estimation methods for obtaining the autocovariance func-
tion in the literature, such as Hall and Patil (1994), who suggested a nonparamet-
ric estimation method for estimating the autocovariance function based on kernel 
smoothing (KS). Elogne et al. (2008) estimated the autocovariance function with 
interpolation techniques, and there are several similar studies: Glasbey (1988), 
Shapiro and Botha (1991), Sampson and Guttorp (1992), Bjørnstad and Grenfell 
(2001), and Wu and Pourahmadi (2003).

In the literature, there are essentially two approaches to handling censoring. 
One is to eliminate the censored values, and the other is to use the censored data 
points as observed. However, the study of Park et  al. (2007) demonstrates that 
both approaches yield biased and inefficient estimates. It is possible that the per-
formance of the parameter estimation can be improved by using datasets that have 
a lower censoring rate (Helsel 1990). However, such methods are often not appli-
cable, and outcomes depend heavily on rigid parametric model assumptions. As 
indicated above, even though some numerical solutions have been proposed in the 
literature to cope with the problem of censored responses in autoregressive error 
models, there are no studies making inferences for censored time-series models 
in terms of nonparametric approaches. By contrast, we propose nonparametric 
estimation procedures for time-series containing right-censored observations, 
instead of using parametric approaches. Thus, our study is remarkably different 
from other similar studies used in the statistical literature.

In this paper, we consider three nonparametric approaches, smoothing spline 
(SS), kernel smoothing (KS), and regression (penalized) spline (RS), for estimat-
ing an autoregressive time-series regression model with right- censored obser-
vations. Note that these nonparametric approaches cannot be applied directly to 
censored observations, and a data transformation is required to estimate the cen-
sored response observations. To overcome this problem and to get stable solu-
tions, we used a data augmentation method, namely a the Gaussian imputation 
technique. This data transformation method, which is a modified extension of 
ordinary Gaussian imputation, is used to adjust the censoring response variable in 
the setting of a time series. We also compare the performances of the smoothing 
methods with the benchmark AR(1) model. To the best of our knowledge, such a 
study has not been conducted. It should be noted that the best estimation of the 
censored lifetime observations Yt that depend on an explanatory variable Xt = x 
could be expressed as the conditional mean of the response E(Yt|Xt = x) = f (x) , 
which minimizes the quantity
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Normally, it is not necessary that function f be linear, and the conditional variance 
is homoscedastic, but the error term indicated in model (1) is generally presented as 
follows

As indicated above, the minimization of Eq. (3) is carried out through three smooth-
ing methods, the SS, KS , and RS methods. The primary purpose of this study is to 
estimate a right-censored time series non- parametrically and provide consistency in 
the estimation with the help of the data augmentation method for censored observa-
tions. One of the important points of data augmentation is to estimate the covariance 
function (Park et  al. 2009). Here, this function is estimated with a nonparametric 
Nadaraya-Watson estimator. With this method, there is no need to describe the prior 
distribution of the time- series data because data augmentation is achieved using the 
nonparametric method.

The paper is organized as follows. Section 2 introduces the thory of the censored 
autoregressive model and algorithm of Gaussian imputation to make data augmenta-
tion. In Sect. 3, the three smoothing methods are explained, and their modifications are 
illustrated according to censored data. Section 4 involves the evaluation measurements 
for the three modified smoothing techniques. Furthermore, an estimation of the covari-
ance functions of the estimators are expressed. To obtain empirical results, a detailed 
simulation study is done in Sect.  5. Also, two real-data applications with cloud and 
unemployement datasets are realized in Sect. 6. Finally, conclusions and discussion are 
presented in Sect. 7.

2  Censored Autoregressive Model and Preliminaries

Consider the nonparametric regression model defined in Eq. (1). In many applications, 
we may be unable to directly observe the response variable Yt . Instead of attempting to 
observe all the values of the response variable, we may observe only Yt when Yt exceeds 
a constant value Ct that denotes a cut-off value or a detection limit. Time- series obser-
vations are often obtained with a detection limit. For example, a monitoring tool usu-
ally has a detection limit, and it records the limit value when the true value exceeds the 
detection limit. This case is often called censoring, which is also a type of missing data 
mechanism. Censoring of the response measurements occurs in different situations in 
the physical sciences, business, and economics. If censored observations are ignored, 
the resulting parameter estimates are usually biased.

Let Zt be the value we observe instead of Yt due to censoring. Then, in the right-
censored cases, we consider the following type of censoring, given by

(3)E
{
Yt − f (x)

}2
= E

{
Yt − Ŷt

}2

E
(
�t|Xt

)
= 0 ,Var

(
�t|Xt

)
= 1.

(4)Zt = min
(
Yt,Ct

)
, �t = I

(
Yt ≤ Ct

)
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where I(.) is an indicator function,� = 0 denotes a censored observation, and 
Zt and Ct are the failure times (or observed lifetimes) and the censoring times, 
respectively. In light of (4), we assume that only the response variable Yt is cen-
sored on the right by censoring variable Ct , so our observations are the triples {
(Zt, �t, Xt), t = 1, 2,… , n

}
 . Then, model (1) along with Eq.  (4), reduce the cen-

sored autoregressive nonparametric regression model of order p. It should be noted 
that Yt and Zt have different distributions. Therefore, Zt cannot be used directly to 
make inferences about model (1) described by Yt . To use the Zt series as a response 
variable, a conditional distribution is constructed through a truncated normal 
distribution.

Assume that Yt = (Y1,… , Yn)
⊤ is a realization from a stationary time series 

described by model (1) with autoregressive error terms, which has a Gaussian 
disturbance �t , as defined in (2). Note that the autoregressive errors follow an 
n-dimensional multivariate normal distribution with a mean zero and stationary 
n × n covariance matrix Σ. In other words, et = (e1,… , en)

⊤ ∽ Nn(0,�) , where 
� = �2Rn(�) is a n × n covariance matrix, given by

where �0, �1,… , �n−1 are theoretical autocovariances of the process and 
�h =

{
�h∕�0, h = 1, 2, .., p

}
 are the theoretical autocorrelations of the process. 

It should be noted that 𝛾h = E(𝜀t𝜀
⊤
t−h

) denotes the autocovariance at lag h and 
𝛾0 = E

(
𝜀t𝜀

⊤
t

)
= �2 gives the constant variance at lag zero.

In light of the equations and explanations outlined above, it is understood that 
Yt ∼ Nn(�, �) for complete data. When we consider the responses with a cen-
soring mechanism, as in (4), Yt ∼ TNn(�,�;Rc ) , where TNn(. ; Rc ) denotes the 
truncated normal distribution on the interval Rc (see Vaida and Liu (2009) for a 
more detailed discussions). Note that the interval Rc depends on whether a data 
point is censored. Basically, the interval Rc is 

(
0,Ct

)
 if �t = 1(observed values) and 

Rc is [Ct,∞) if �t = 0 (censored values) . To calculate the unknown function in the 
censored autoregressive nonparametric regression model, the first task is to con-
sider separately the observed and censored data points of the response variable at 
the beginning of the estimation procedure. In this context, by using permutation 
matrix P, which maps (1,… , k)⊤ into the permutation vector p = (p1,… , pk)

⊤ , the 
order of the data can be rearranged as

where Yo denotes the observed part of the Y ′
t
s , whereas Yc indicates the right- cen-

sored part of the same variable. Furthermore, PYt provides a multivariate normal 
distribution defined by

Rn(�) =
1

�2
�t

⎛
⎜⎜⎜⎝

�0 �1 …

�1 �0 …

⋮

�n−1

⋮

�n−2

⋱

…

�n−1
�n−2
⋮

�0

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

1 �1 …

�1 1 …

⋮

�n−1

⋮

�n−2

⋱

…

�n−1
�n−2
⋮

1

⎞⎟⎟⎟⎠

(5)PYt =

(
Po

Pc

)
Yt =

(
Yo

Yc

)



 D. Aydin, E. Yilmaz 

1 3

where 𝚺oo = E
[
(Yo − �o)(Yo − �o)

⊤
]
 shows the covariance matrix obtained by 

taking the observed part of the Yt , while 𝚺cc = E
[
(Yc − �c)(Yc − �c)

⊤
]
 states the 

covariance matrix that corresponds to the right-censored data points of the Y ′
t
s , and 

𝚺oc = 𝚺co =
[
(Yc − �c)(Yo − �o)

⊤
]
.

It should be noted that the conditional distribution of Yc given Yo is also a multivari-
ate normal distribution with parameters � and � (see, for example, Anderson 1984). In 
a similar manner to that used to obtain (5), the observed data vector Zt can be portioned 
into sub-vectors, and is given by

One of the reasons for the study of conditional distribution derived from the multi-
variate normal distribution outlined above is to find an appropriate substitute for the 
right-censored data vector Zc . The basic idea is to replace the elements of the right-
censored vector Zc by sampling values obtained from the conditional distribution 
of the censored response vector Yc given Zo and Zc . This procedure is equivalent to 
applying the truncated multivariate normal distribution (Park et al. 2007):

wherenc denotes the number of censored data points, TNnc
shows a truncated multi-

variate normal distribution with nc-dimension, and Rc determines the region asso-
ciated with the censoring of the response observations, as previously defined. The 
symbols M and V expressed in (8) are the parameters that correspond to the condi-
tional mean and covariance of a non-truncated variant of a conditional multivariate 
normal distribution.

Now, suppose that we have a time-series vector Yt = (Y1,… , Yn)
⊤ that can be 

parametrized by the mean � , variance �2 , and autocorrelation � . As indicated 
above, these time series measurements are also considered a random vector from a 
multivariate normal distribution Yt ∼ Nn(�, �) where � = �1n and 
{𝚺}i,j = E

(
ete

⊤
t

)
= �2

et
=

�2
�t

1−�2
�|i−j|, i, j = 1,… , n . The conditional distribution of Zt , 

given other observations, is a univariate normal distribution; if Zt is censored, then 
the conditional distribution is a truncated univariate normal distribution. Many sta-
tistical approaches for obtaining the truncated normal distribution depend on a 
compacted simulation. Examples of such studies include Tanner and Wong (1987), 
Chen and Deely (1996), Gelfand et al. (1992), and so on. In general, the mentioned 
studies focus on the data augmentation method with a truncated normal distribu-
tion, Bayesian methods, and Gibbs samplers. In this study, we use a truncated nor-
mal distribution whose probability density function can be defined as

(6)PYt ∼ Nn

(
�

(
Po

Pc

)
,

[
Po�P

⊤
o
Po�P

⊤
c

Pc�P
⊤
o
Pc�P

⊤
c

])
= Nn

((
�o

�c

)
,

[
�oo �oc

�co �cc

])

(7)PZt =

(
Po

Pc

)
Zt =

(
Zo

Zc

)

(8)
(
Yc|Zo,Zc ∈ Rc

)
∼ TNnc

(
M,V,Rc

)

(9)f
(
Zt
)
= g

(
Zt
)
I(�t = 0)∕

[
1 − F

(
Ct

)]
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where I(.) denotes the indicator function, that is, I = 1 if �t = 0 , and g(.) and F(.) are 
the probability density function of the standard normal distribution and its cumula-
tive distribution function, respectively. It should be noted that Gaussian density g(.) 
is used for observations in the interval [Ct,∞] to obtain the distribution of the right-
censored part of the data.

In this paper, we focus on the data imputation method to find a solution to the cen-
sored data problem. One should note that the basic idea in the imputation of the cen-
sored values is to replace every censored observation with a real value. To carry out 
this procedure, in the first stage, the parameters of the distributions outlined above must 
be estimated by iteratively applying an appropriate algorithm.

2.1  Imputation Algorithm

Let � = (�,�) be the true parameter vector based on the distribution of Yt with auto-
correlation � and � = (M,V) be a parameter vector based on the conditional distri-
bution of the censored response variable Yc . By introducing the censored variable to 
the model (1), the imputation algorithm simplified to the generation of values from the 
truncated normal distribution defined in (9). Usually, all the censored observations are 
set equal to some constant value. The idea of the algorithm is to update the parameter 
estimates by filling (or imputing) the censored values with the values from a condi-
tional sample. The iteratively updated algorithm is essentially divided into two compo-
nents: data augmentation and parameter estimation. It should be emphasized that one 
needs to use a random sample generated from a truncated multivariate normal distribu-
tion for data augmentation, whereas any traditional method for the parameter estima-
tion can be used.

The imputation algorithm consists of the following steps:
Step 1 Generate the truncated normal distribution and compute the density of the 

censored partition of the data.
Step 2 Obtain the initial parameter estimates �̂ (0) , �̂ (0) , and �̂ (0) by using the 

equations

�̂
(0)

=

�∑n

t=2

�
Z

(0)

t−1
− Z

(0)

−n

�2
�−1�∑n

t=2

�
Z
(0)
t − Z

(0)

−1

��
Z
(0)

t−1
− Z

(0)

−n

��
, and

where notation �̂
(0) denotes the estimated mean for iteration zero, 

Z
(0)

−n
= (n − 1)−1

∑n−1

t=1
Zt and similarly Z

(0)

−1
= (n − 1)−1

∑n

t=2
Zt . By using Step 1, 

determine the initial estimates of parameter vector (�,�) :

�̂
(0)

= n−1
n∑
i=1

Z
(0)
t ,

(
�̂

(0)
)2

= (n − 3)−1
n∑
t=2

(
Z
(0)
t − �̂

(0)
− �̂

(0)
(
Z
(0)

t−1
− �̂

(0)
))2
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Step 3 Compute the conditional mean and variance M̂
(0)and V̂

(0)
 based on the cen-

sored part of the parameter vector � = (M,V) according to
M̂

(0)
= �̂

(0)

c
+ Σ̂

(0)

co

(
Σ̂

(0)

oo

)−1(
Zo − �̂

(0)

o

)
 and,

where covariance matrices are described in (6).
Step 4 Generate the vector Z(1)

c
 of the right-censored observations from truncated 

normal distribution, TNnc

(
M̂

(0)
, V̂

(0)
,Rc

)
 , where Rc denotes the interval [Ct,∞).

Step 5 By applying the instructions expressed in Eqs. (5) and (7), construct the 
following augmented data from the observed part and the vector Z(1)

c
 defined in the 

previous step:

Step 6 Re-compute the estimates of the parameter � , �2 , and � according to Z(1) and 
update the parameters � , M, and V , as defined in Steps 2 and 3.

Step 7 Repeat the algorithm from Step 2 to Step 6 under the condition 𝜓 < 0.005 
(for our simulations). Note that � indicates the convergence ratio of the parameter 
estimates at the kth iteration, given by

where � = ( 𝜇, 𝜎2, 𝜌 )⊤ denotes the parameter vector.
We should recall, as stated about the imputation algorithm, we are not restricted 

to a specific method for the parameter estimation. For the autoregressive time- 
series models, once the augmented data is obtained, any suitable method (for 
example, Yule–Walker, least squares, or maximum likelihood) can be used to 
estimate the parameters (see, Park et  al. 2007). In this paper, we update the 
smoothing splines (SS), kernel smoothing (KS), and regression spline (RS) methods 
to estimate the parameters of the nonparametric autoregressive time- series model 
with right-censored data.

3  Modified Estimation Methods

In this section, we introduce three different modified estimation procedures to 
estimate the unknown function in the autoregressive time- series model, which is 
defined in (1). The modified methods are based on a generalization of the ordinary 

�̂
(0)

=�̂
(0)
1n,

{𝚺 }i,j =

{(
�̂

(0)
)2

/(
1−

[
�̂

(0)
]2)}

�̂
(0)|i−j|

, i, j = 1,… , n,

V̂
(0)

= Σ̂
(0)

cc
− Σ̂

(0)

co

(
Σ̂

(0)

oo

)−1

Σ̂
(0)

oc

Z(1) = P−1

[
Zo

Z(1)
c

]
.

(10)𝜓 =

[(
��

(k+1)
− ��

(k)
)⊤(

��
(k+1)

− ��
(k)
)]/(

��
(k)
)⊤

��
(k)



1 3

Censored Nonparametric Time‑Series Analysis with…

SS, KS, and RS methods or conventional censored nonparametric regression mod-
els. Examples studies using mentioned methods include Zheng (1998), Dabrowska 
(1992), Fan and Gijbels (1994), Guessoum and Ould Said (2008), Aydin and Yilmaz 
(2017).

3.1  Smoothing Splines

Now we consider ways to estimate the unknown regression function f(x) stated in 
model (1), where E

(
Yt|Xt = x

)
= f (x) . The first way to approach to the nonparamet-

ric regression is to fit a spline with knots at every data point. The main idea is to 
find a regression function f (.) that minimizes the penalized residual sum of squares 
(PRSS) criterion

where Z(k)
t  is the response variable that provides the criterion (10) at the kth iteration, 

f ∈ C2[a, b] is a unknown smooth function, and � is a positive smoothing parameter, 
controlling the tradeoff between the closeness of the estimate to the data and rough-
ness of the function estimate. If � → ∞ , the roughness penalty term dominates and 
the the parameter � forces f �� (x) → 0 , yielding the linear least squares estimate. If 
� → 0 , the penalty term becomes negligible, and the solution tends to an interpo-
lating estimate. Therefore, the choice of the smoothing parameter is an important 
problem and the GCV method has been used to address this problem in this paper. 
Note that minimizing the PRSS in (11) over the space of all continuous differenti-
able functions leads to a unique solution, and this solution is a natural cubic spline 
with knots at the unique values x1,… , xn for a fixed smoothing parameter �.

Suppose that f is a natural cubic spline (NCS) with knot points x1 < ⋯ < xn . By 
giving its value and second derivative at each knot points we can determine the fol-
lowing NCS vectors

and

that specify the curve f completely. However, not all possible vectors f and � repre-
sent NCSs. In this sense the following theorem, discussed by Green and Silverman 
(1994), provides a condition for the vectors to be an NCS on the given knot points.

Theorem 3.1 (Green and Silverman 1994). The vectors f and � determine an NCS f 
if and only if the following criterion

(11)

PRSS(f , �) =

n∑
t=1

{
Z
(k)
t − f

(
Xt

)}2

+ ��
b

a

{
f
��

(x)
}2
dx, a ≤ x1 ≤ ⋯ ≤ xn ≤ b

f
(
Xt

)
=
(
f
(
x1
)
,… , f (xn)

)⊤
= (f1,… , fn)

⊤ = f

f
��(
Xt

)
=
(
f ��
(
x2
)
,… , f ��

(
xn−1

))⊤
=
(
𝜗2,… , 𝜗n−1

)⊤
= �

(12)Q⊤f = R𝝑
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is satisfied. If Eq. (12) is satisfied, then the roughness penalty term will provide

A useful algebraic result from Theorem 3.1 is that the penalty term in (11) may be 
written in quadratic form. In matrix and vector form, the criterion in (11) can be 
rewritten as

Notice that Kin Eqs.  (13) and (14) is a symmetric n × n positive definite penalty 
matrix that can be decomposed to

where Q is a tri-diagonal (n − 2) × n matrix with elements Qii = 1∕hi , 
Qi, (i+1) =

(
1

hi
+

1

hi+1

)
 , and Qi,(i+2) = 1∕hi+1 , R is a symmetric tri-diagonal matrix of 

order (n − 2) with R(i−1),i = Ri,(i−1) = hi∕6 , Rii =
(
hi + hi+1

)
∕3 , and hi = xi+1 − xi 

denotes the distance between successive knot points.

For some constant 𝜆 > 0 , the corresponding solution based on the smoothing 
splines (SS)for the vector f , which specify the unknown smooth function f in (1), can 
be obtained by

where � is the n-dimensional regularity matrix for autocorrelated errors and 
SSS
�

= (� + �K)−1� is a positive definite spline smoother matrix that depends on 
parameter � . Details on the derivation of Eq. (15) can be found in the “Appendix 1”.

3.2  Kernel Smoothing

As explained in the imputation algorithm, the idea is that, instead of Yt , we consider the 
response variable Z(k)

t  , which is employed to estimate the censored observations. In this 
case, model (1) reduces to the following nonparametric regression model

This model can be considered as equivalent to the regression model with autore-
gressive errors. Consequently, kernel smoothing can be used as an alternative non-
parametric approach to (SS) to get a suitable estimate of function f. Analogous to 
(15), this leads to the kernel regression estimator, in other words, (KS) introduced by 
Nadaraya (1964) and Watson (1964). Accordingly, the estimate of f (.) at fixed x can 
be computed by

(13)∫
b

a

{
f
��

(x)
}2
dx = 𝝑⊤

R𝝑 = f⊤Kf

(14)PRSS(f, 𝜆) =
‖‖‖Z

(k) − f
‖‖‖
2

2
+ 𝜆f⊤Kf.

K = Q⊤R−1Q

(15)f̂
SS

�
= (� + �K)−1�Z(k) = SSS

�
Z(k)

(16)Z
(k)
t = f

(
Xt

)
+ et, t = 1,… , n
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where SKS
�

 is a kernel smoother matrix defined by weights

with a bandwidth � (also called a smoothing parameter), which is a nonnegative 
number determining the degree smoothness of f̂

KS

�
(x) , as in (SS). In fact, it is pos-

sible to write the weighted sum (17) in a more general form

In the expressions above, K(u) is a real-valued kernel function assigning weights 
to each data point, and the kernel K satisfies the following conditions: (u) ≥ 0 , 
∫ K(u)du = 1 , and K(u) = K(−u) for all u ∈ R . Moreover, Eq.  (19) shows that the 
kernel regression estimator is a weighted average of the response observations Z(k)

t  . 
Also, as expressed above, the � is a critical parameter in kernel regression esti-
mation. A large bandwidth � provides an over-smooth estimate, whereas a small 
bandwidth � produces a wiggly function curve. For example, when � → 0 , then 
w�

(
x,Xt

)
→ n , and hence, the estimator (17) reproduces the response observations 

(i.e., f̂ KS
�

(x) → Z
(k)
t  ). When � → ∞ , then s�

(
x,Xt

)
→ 1 , and the estimator (17) con-

vergences to the mean of the response observations (i.e., f̂ KS
�

(x) → Z
(k)

t
 ). In this con-

text, the GCV method is used in to determine the amount of smoothness required, as 
with the SS method.

3.3  Regression Spline

One alternative approach to estimating a function non-parametrically is to fit a qth-
order RS (or penalized spline), which can be computed in terms of truncated power 
functions. To be specific, it is assumed that the unknown univariate function f (.) can 
be estimated by a penalized spline with a truncated polynomial basis

where � is a positive smoothing parameter, as in the other two approaches, q is the 
degree of spline, 

{
�r, r = 1,… ,m

}
 are spline knot points,

(17)f̂
KS

�
(x) =

n∑
t=1

Σtw�

(
x,Xt

)
Z
(k)
t = SKS

�
Z(k)

(18)s�
(
x,Xt

)
= K

(
Xt − x

�

)
∕

n∑
t=1

K

(
Xt − x

�

)
= K(u)∕

∑
K(u)

(19)

f̂ KS
�

(x) =
n−1

∑n

t=1
K(u)Z

(k)
t

n−1
∑n

t=1
K(u)

=
1

n

n�
t=1

⎛
⎜⎜⎜⎝

K
�

Xt−x

�

�

n−1
∑n

t=1
K
�

Xt−x

�

�
⎞
⎟⎟⎟⎠
Z
(k)
t =

1

n

n�
t=1

Σts�
�
x,Xt

�
Z
(k)
t

(20)f
(
Xt

)
= b0 + b1Xt + b2X

2
t
+⋯ + bqX

q

t
+ �

m∑
r=1

bq+r
(
Xt − �r

)q
+
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is a set of regression coefficients, 
(
Xt − �r

)q
+
=
(
Xt − �r

)q when Xt > 𝜅r and oth-
erwise 

(
Xt − �r

)q
+
= 0 . It is also assumed that min

(
Xt

)
< 𝜅1 < ⋯ < 𝜅m<max

(
Xt

)
 , 

such that spline knot points 
{
�1,… , �m

}
 represent a subset of 

{
X1,… ,Xn

}
 (see, 

Ruppert 2002 for knot selection).
It follows from Eq.  (20) that, for a truncated polynomial basis, the nonparametric 

time-series model (1) is

where Z(k)
t  is the observed response variable, as with the previous two approaches. 

As displayed in the Eq. (21), the truncated qth-degree power basis with knots �r has 
basis vectors. In a matrix and vector form, model (21) can be rewritten as

where

Z(k) =

⎡⎢⎢⎣

Z
(k)

1

⋮

Z(k)
n

⎤⎥⎥⎦
 , =

⎡⎢⎢⎣

1 X1 … X
q

1

�
X1 − �1

�q
+

…
�
X1 − �m

�q
+

⋮

1 Xn … Xq
n

�
Xn − �1

�q
+

…
�
Xn − �m

�q
+

⎤⎥⎥⎦
, b =

⎡
⎢⎢⎢⎣

b0
b1
⋮

bq+m

⎤⎥⎥⎥⎦
 , and  

e =

⎡⎢⎢⎣

e1
⋮

en

⎤⎥⎥⎦
.

For the penalized- spline- fitting problem, the key is to choose the vector b that 
minimizes

where D = diag
(
0(q+1), 1m

)
 is a diagonal penalty matrix whose first (q+1) elements 

are 0 and whose other elements are 1. Note that 𝜆
∑m

r=1
b2
q+r

= 𝜆b⊤Db in (23) is 
referred to as a penalty term whose magnitude is determined by a positive smooth-
ing parameter � . It is clear that � plays an important role in estimating the regression 
model. As with the (SS) and the (KS) expressed in the previous sections, � is selected 
by a GCV criterion.

Minimization of the Eq. (23) yields to estimates of the vector b, where

For (24) the fitted values f̂  based on the (RS) can be stated as

{
b0, b1,… , bq, bq+1,… , bq+m

}

(21)

Z
(k)
t = b0 + b1Xt + b2X

2
t
+⋯ + bqX

q

t
+ �

m∑
r=1

bq+r
(
Xt − �r

)q
+

+ et, t = 1,… , n

(22)Z(k) = Xb + e

(23)

PRSS(b, 𝜆) =

n∑
t=1

Σt

(
Z
(k)
t − f

(
Xt

))2

+ 𝜆

m∑
r=1

b2
q+r

= �
‖‖‖Z

(k) − Xb
‖‖‖
2

2
+ 𝜆b⊤Db

(24)�b =
(
X⊤�X + 𝜆D

)−1
X⊤�Z(k)

(25)�f
RS

𝜆
= X�b = X

(
X⊤𝚺X + 𝜆D

)−1
X⊤𝚺Z(k) = SRS

𝜆
Z(k)
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where SRS
𝜆

= X
(
X⊤𝚺X + 𝜆D

)−1
X⊤𝚺 is the smoother matrix based on the penalized 

spline that is dependent on a smoothing parameter � , as in the other smoother matri-
ces. Details on the derivation of Eq. (25) can be found in “Appendix 2”.

The penalized spline method uses polynomial functions to best fit the data and includes 
a penalty term to prevent the overfitting problem. Thus, the method can produce more 
accurate estimates. As noted, the penalized spline fits the model with the help of specified 
nodes. These nodes need to be optimally selected. In this paper, the full search algorithm 
is used for selecting the nodes defined by Ruppert et al. (2003). For more details about 
knot selection using censored data, see the study of Aydin and Yilmaz (2017).

4  Evaluating the Performance of the Estimators

For a given smoothing parameter � the regression estimators studied here (such as 
smoothing spline, kernel and regression spline) can be written in the form

where Z(k) = ( Z
(k)

1
,… , Z(k)

n
)� and S� is a n × n dimensional smoother matrix, as men-

tioned in previous sections. Note that this smoother matrix depends on x1,… , xn and 
a parameter � , but not on response variable Z(k) . It should also be expressed that the 
estimators defined in (26) is referred to as linear smoothers. The considered smooth-
ers in this paper need a choice of smoothing parameter � . In this sense, the men-
tioned parameter � is chosen by minimizing the generalized cross validation (GCV) 
score (see Craven and Wahba 1979), given by

When addressing the problem of smoothing parameter selection, an important 
issue is to have a good idea into bias and variance of the estimators, since a bal-
ance between these two quantities constitutes the core of selection criteria (27). As 
in the usual parametric inference, there are two main matters: systematic error that 
occurs in the form of bias and random error that occurs in the form of variance. The 
parameter � that provides a balance between these two aspects is also obtained by 
minimizing the mean square error (MSE) of an estimation:

One often refers to the first term in (28) as the squared bias and to the second term as 
the variance. To include both of these components, we consider the MSE values of 

(26)

f̂�
(
Xt

)
=
(
f̂�
(
x1
)
,… , f̂�

(
xn
))⊤

=
((

f̂�

)
1
,… ,

(
f̂�

)
n

)⊤

= f̂𝝀 = S𝝀Z
(k) = Ŷ

(27)

GCV(�) =
n−1

‖‖‖
(
I-S�

)
Z(k)‖‖‖

2

[
n−1tr

(
I-S�

)]2 = n ×
Residual sum of squares(RSS(�))

(Equavalent degrees of freedom(EDF))2

(28)
MSE(�) =E

‖‖‖RSS(�) =
(
I-S�

)
Z(k)‖‖‖

2

=
‖‖‖
(
I-S�

)
f
‖‖‖
2

+ �2
[
n − 2

(
S�
)
+
(
S�⊤S�

)]
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the estimators. Details on the derivation of the Eq. (28) can be found in the “Appen-
dix 3”.

Due to the optimalMSE(�) in (28) depend on unknown quantity of �2 , and it 
is not directly applicable in practice. In this case, just as in the ordinary linear 
regression model, the variance �2 can be estimated by the residual sum of squares 
(27):

where

Supposing that the bias term ‖‖‖
(
I-S�

)
f
‖‖‖
2

 given in (28) is negligible, it turns out that 
RSS(�)∕EDF is an unbiased estimate of �2. Hence, the EDF for residuals,(n − p) , is 
used to correct for bias, as in a linear model.

In general, a comparison of the estimators can be made by using a quadratic 
risk function that measures the expected loss of a vector f̂� . This so-called quad-
ratic risk is given in the Definition 4.1. Our application of the results of the simu-
lation experiments is to approximate the risk in the nonparametric autoregressive 
time series model with right censored. Such approximates have the advantage of 
being simpler to optimize the practical selection of smoothing parameters. For 
convenience, we will consider with the scalar valued mean square error.

Remark 4.1 The quadratic risk is closely related to the MSE matrix of an estimator 
f̂� . The scalar valued version of this MSE matrix is

Remark 4.2 The covariance matrix for the fitted vector such as f̂� = S�Z
(k) is speci-

fied as

Lemma 4.1 Consider different estimators f̂� . The scalar valued MSE values of 
these estimators can be defined as the sum of the covariance matrix and the squared 
bias vector:

See “Appendix 4” for Proof of the Lemma 4.1

(29)�𝜎2 =
RSS(𝜆)

EDF
=

(Z(k))⊤
(
I-S𝜆

)2
(Z(k))

tr
(
I-S𝜆

)2 =
(Z(k))⊤

(
I-S𝜆

)2
(Z(k))

n − p

(30)EDF = tr
(
I-S�

)2
= (n− 2) × [tr

(
S�
)
]+ tr(S�⊤S�)

(31)SMSE
(
�f� , f

)
= E

(
�f� − f

)(
�f� − f

)⊤

= tr
(
MSE(�f� , f )

)

(32)Cov
(̂
f𝝀

)
= �2( S𝝀S

⊤
𝝀
)

(33)
SMSE

(
�f𝝀 , f

)
=E

n∑
i=1

(
f̂𝜆i
(
Xt

)
− fi(Xt

)2
= E

‖‖‖�f𝝀 − f
‖‖‖
2

=
‖‖‖
(
I-S𝜆

)
f
‖‖‖
2

+ 𝜎2tr( S𝝀S
⊤
𝝀
)
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Note also that when we adopt the smoothing spline, the computation of 
SSS
�

= (I + �K)−1 in (15) instead of S� as stated in Eqs. (from (26) to (33)) above is 
needed. In a similar fashion, for kernel smoothing and penalized spline methods, we 
have to calculate the SKS

�
 in (17) and SRS

�
 in (25) matrices, respectively. The traces of 

the matrices, tr(SSS
�
) tr(SKS

�
) and tr(SRS

�
) can be found in O(n) algebraic operations, 

and hence, these matrices can be calculated in only a linear time.
The first term in (33) measures squared bias while the second term measures var-

iance. Hence, we can compare the quality of two estimators by looking at the ratio 
of their SMSE. This ratio gives the following definition concerning the superiority of 
any two estimators.

Definition 4.1 The relative efficiency of an estimator f̂
E1

�
 compared to another esti-

mator f̂
E2

�
 is defined by

where R(.) denotes the scalar risk that is equivalent to the Eq. (33). f̂
E2

�
 is said to be 

more efficient than f̂
E1

�
 if RE < 1.

Additional to evaluating the scale-dependent measures based on squared errors 
expressed above, we have also examined the alternative accuracy measures based 
on prediction errors to compare the smoothing methods. The most commonly used 
measures are briefly defined in the following way (see study of Chen and Yang 
2004; Gooijer and Hyndman 2006; Chen et al. 2017 for more detailed discussion):

The mean absolute percentage error, MAPE is described by

KL-N measure is computed based on the Kullback–Leibler (KL) divergence. 
It corresponds to the quadratic loss function scaled with variance estimate, and is 
given by the formula

where Z
(k)

t−1
 is the mean of the first (t-1) value of variable Z(k)

t
.

Inter quartile range, IQR is calculated by the formula

(34)RE =

R
(̂
f
E1

�
, f

)

R
(̂
f
E2

�
, f

) =

SMSE
(̂
f
E1

�
, f

)

SMSE
(̂
f
E1

�
, f

)

(35)MAPE =
1

n

n∑
t=1

|||Z
(k)
t

− Ŷt
|||

Z(k)
t

(36)KL − N =

√√√√√1

n

n∑
t=1

(
Ŷt − Z(k)

t

)

S2t
, with S2

t
=
(

1

t − 1

) t−1∑
j=1

(
Z
(k)

j
− Z

(k)

t−1

)2

(37)IQR =

√√√√1

n

n∑
t=1

Z(k)
t

− Ŷt

Iqr2
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where Iqr is the inter-quantile range of the vector Z(k)
t

 defined as the difference 
between the third quantile and first quantile of the data.

The relative squared error, RSE is defined by

The relative absolute error, RAE is described by the formula

It should be noted that the response variable Z(k)
t

 obtained iteratively and their esti-
mation values ( ̂Yt ) as expressed in Eqs. (from (35) to (39)) above are needed to cal-
culate based on each smoothing methods, SS, KS , and RS.

5  Simulation Study

As indicated, the simulation studies were conducted to compare the estima-
tion performances of the updated smoothing methods SS, KS , and RS defined in 
Sect. 3. For all the simulation studies, we considered a right-censored autoregres-
sive model of order p = 1 (i.e. the, AR(1)- model) with one explanatory variable. 
The data- generating process from the model defined in (1) is as follows.

Step 1 The explanatory variable Xt is generated from Uniform distribution 
Xt ∼ �U[0, 1] , where � is the multiplier that determines the spatial variation for 
function f (.). Note that the values of � are �1 = 6.4 (meaning this function has 
two peaks) and similarly �2 = 12.8 (meaning this function has four-peaks).

Step 2 Unknown smooth function f (.) is determined as 
f
(
Xt

)
= sin

(
Xt

) 2
+ 𝜔, 𝜔 > 1 , where � is a constant that prevents the unidentifi-

ability caused by log -transformation.
Step 3 Random error terms are generated as et = �et−1 + ut , where 

ut ∼ N
(
� = 0, �2 = 1

)
 and � = 0.7.

Step 4 The completely observed response values are generated using the 
expressions defined in Steps 1, 2 and 3: Yt = f

(
Xt

)
+ et.

Step 5 In this simulation setup, the censoring procedure of the response vari-
able is stated in the following way: 

1. Three censoring levels are considered, � = 5%, 20%, 40%;.
2. For this simulation’s purposes, the cutoff value c is determined by (see, Park et al. 

2007): 

(38)RSE =

√√√√√√√
1

n

n∑
t=1

(
Z(k)
t

− Ŷt

)2

(
Z(k)
t

− Z
(k)

t−1

)2

(39)RAE =

√√√√√
n∑
t=1

|||Z
(k)
t

− Ŷt
|||

|||Z
(k)
t

− Z
(k)

t−1

|||
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where � is the censoring probability expressed as 𝜂 = P
(
Yt > c

)
 , F(.) represents 

the standard normal distribution function, � is the autocorrelation parameter, and √
1 − �2(n+1) is the correction term for the finite sample sizes;. 

1. After deciding cutoff point c, censored time-series Ct can be generated as 

2. Hence, the new incompletely observed response measurements Zt are constructed 
by means of Eq. (4). However, because of the censoring, these measurements 
cannot be applied directly. To overcome this problem, we used the variable Z(k)

t  
that provides the criterion (10) at the kth iteration, as described in the imputation 
algorithm.

For each simulation setting, we generated 1000 random samples of sizes 
n = 25, 50, 100 , and 300 based on censoring levels and the Steps expressed above. 
Notice that the censored variable Z(k)

t  is modeled by AR(1), which is considered a 
naïve model here, , in order to compare the finite sample performances of the pro-
posed methods.

5.1  Results from the Simulations

In the simulation study, many simulated configurations were implemented to pro-
vide perspective on the adequacy of the smoothing methods examined in Sect.  3. 
Because 36 different configurations were analyzed, it was not possible to display the 
details of each configuration. Therefore, the main outcomes from the Monte Carlo 
simulation study, performed under different conditions, are summarized numerically 
and graphically. In general, the tables and figures are based on the comparison of fits 
from the methods under varying sample sizes and censoring levels.

Each panel in Fig.  1 presents a single realization of simulated censored and 
uncensored observations and therefore, two different curves. A cutoff point is deter-
mined for each simulation setting, and response observations are then censored 
according to this cutoff value. Hence, a nonparametric estimation of the regression 
functions in the case of right-censored data can be obtained via smoothing meth-
ods using the iterated response variable stated in the imputation algorithm. The out-
comes from this simulation study are presented in the following tables and figures.

Table 1 displays the results for a minimal censoring level (5%). When the perfor-
mance measures are inspected, it is shown that the three smoothing methods have 
considerable results, which is expected at a low censoring level. In addition, Table 1 
shows that the proposed methods work well compared to the AR(1) model, even at 
the lowest censoring levels. The best scores are indicated in bold color. Table 1 can 

c = � + �
F−1(1 − �)√

1 − �2

√
1 − �2(n+1)

Ct = Yt
(
1 − I

(
Yt > c

))
+ c.I

(
Yt > c

)
, t = 1,… , n;
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be inspected from two perspectives. One is by the shapes of the function, and the 
other is by the sample size. In this study, to measure the strength of the smoothing 
methods against the fluctuations in the function, two and four-peaked functions are 
used, and these peaks are censored by a determined detection limit. In this case, all 
of the obtained outcomes are presented in Tables 1, 2 and 3. When the censoring 
level is low and all the results are considered, KShas the highest number of colored 
scores (20/40), followed by. RS(19/40) and SS(15/40). Numbers in parentheses rep-
resent the number of bold scores out of the total combinations. Note that usually, 
the values of KSand SS are close or equal in all three tables. When results are exam-
ined in terms of sample sizes, for small samples, RS appears more efficient than 
the others. For medium samples (n = 50 and n = 100), KS and SS have reason-
able results, and in large samples, SS performs the best. When the results are ana-
lyzed in terms of spatial variation, it is clear that most of the methods’ performance 
decreases when fluctuation is increased, but the results are still satisfactory. The 
methods can be interpreted as being resistant to these kinds of fluctuations. How-
ever, the RS shows a difference in modeling the multi-peak function. This result is 
not unexpected because RShas some advantages in knot selection. These results can 
easily be observed in Figs. 2 and 3.

In Table 2, the effect of the censoring level can be seen distinctly when compared 
with Table  1. All of the performance measures increased. In general, RS (22/40) 
showed better results than KS and SS. The results for the others were (18/40), 
(16/40), and (1/40) for KS, SS , and AR(1) , follow RS  respectively. Surprisingly, 
although RS is last at a low censoring level, it is the best when the censoring level 
increases. This result might be worth examining further. RS is possibly better in esti-
mating censored time-series in comparison with KS and SS. As expected, RS is at 

Fig. 1  The panels show the censored and uncensored time-series observations from functions simu-
lated under varying conditions: a for n = 25 and � = 5% ; b for n = 50 and � = 20% ; c for n = 100 and 
� = 40% ; d for n = 300 and � = 20%
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the front in modelling the four-peaked function. Moreover, KS and SS have estimates 
for small and medium sample sizes that are more efficient, but for large samples, KS 
cannot match RSand SS.

The results of Table  3 support the inferences gathered in examining Table  2. 
Namely, RS can model the censored time series better than the other two methods 
in the scope of this simulation study. It is observed that, when the censoring level 
increases, the performance of RSalso increases. Similar to other censoring levels, RS 
and SS produce better results for large samples, and for medium samples, KS and SS 
both perform reasonably well. Note that AR(1) has the worst performance for almost 
all of the simulation configurations and that the, performance of AR(1) is unsatisfy-
ing under heavy censoring levels, which is due to it being a linear and parametric 
method, as displayed in Tables 1, 2 and 3 and Figs. 2 and 3. Also note that Figs. 2 
and 3 show the fits from the smoothing methods and an the AR(1) model for some 
selected combinations, as defined in Tables 1, 2 and 3, and the graphically summa-
rized results support the outcomes expressed in the tables.

Figure 2 The plots of simulated observations, right-censored data points, and fit-
ted curves from an autoregressive nonparametric time- series model using a classi-
cal AR(1) model and three smoothing methods for different simulation configura-
tions. Red points (.) denote the censored points..

Figure 3 the same as Fig. 2 but for different combinations

Fig. 2  The plots of simulated observations, right-censored data points, and fitted curves from an autore-
gressive nonparametric time-series model using a classical AR(1) model and three smoothing methods 
for different simulation configurations, with red points (.) denoting the censored points
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Figs. 2 and 3 prove that the augmented method works well in estimating right-
censored time series under different scenarios. The three smoothing methods per-
form satisfactorily, which is further illustrated in Tables4 and 5. It is worth noting 
that even if the censoring rate increases, the imputed values are still closer to real 
observations. To inspect this simulation study, see the web application available at 
https ://ey13.shiny apps.io/right -cens-times eries /, which dynamically reacts to differ-
ent combinations of sample size, censoring level, and spatial variation.

As indicated in Sect.  4, we considered four different criteria for evaluating the 
performance of the proposed methods in this paper. However, especially for the 
simulation experiments, it was shown that the scores obtained from IQR and MSE 
criteria are very similar. Consequently, paired Wilcoxon tests were used to deter-
mine whether the difference between the median values of MSEs (or median val-
ues of IQRs) of any two criteria was significant at the 5% level. For example, if the 
median MSE value of a method is significantly less than the remaining three, it will 
be ranked first. If the medianMSE value of a method is significantly larger than one 
of the methods but less than the remaining two, it will be ranked second, and so on 
ranked third. Methods having non-significantly different median values will share 
the same averaged rank. Note also that the method or methods having the smallest 
rank are superior. Similar interpretations can be made for the IQR criterion.

The Wilcoxon test results for IQR and MSE are given in Tables4 and 5. Note that 
Tables 4 and 5 are constructed from the averaged ranking values of IQRs and MSEs, 
respectively, according to Wilcoxon tests for each censoring level and sample size. 

Fig. 3  The same as Fig. 2 but for different combinations

https://ey13.shinyapps.io/right-cens-timeseries/
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Wilcoxon test results for the remaining criteria ( MAPE, KL − N, RSE and RAE) are 
not provided here to save space. For given simulation configuration, RS appears to 
be better than KS and SS according to the results obtained by 1000 repetitions. The 
overall scores of the tables further show that RS has the smallest median values in 
terms of IQR and MSE criteria. The SS and KS give similar ranking points. Moreo-
ver, as the level of censorship increases, the difference between the points of the 
models increases. Note also thatKS and SS generally have similar scores, but KS 
performs better. Lastly, according to, the overall Wilcoxon test rankings in Tables 4 
and 5, AR(1) has performed the worst.

5.2  Efficiency Comparisons

In order to illustrate and compare the relative efficiencies of the methods based 
on censored data, the bar charts of relative efficiencies computed from RE values 
are displayed in Fig.4. It is clearly shown that efficiencies ensure the outcomes in 
Tables  1, 2 and 3. As explained above, smaller efficiency values indicate a more 
efficient method. If Fig. 4 is inspected carefully, one can conclude that the KS has 
smaller values for small samples and low censoring levels, but when the censor-
ing level begins to increase, the efficiency values of the RS decrease, which means 
the RS’s performance improves. The SS provides stable performance throughout the 
simulation experiments.

As seen in Fig. 4, efficiency values of the KS method are smaller than 1 for all 
censoring levels and sample sizes. Hence, KS method is more efficient than the other 

Table 4  Averaged Wilcoxon test ranking values based on IQR criterion for the four methods under each 
sample size and censoring level

* denotes the best score

Meth./n  Two-peak ( � = 6.4)  Four-peak ( � = 12.8) Overall

 25  50  100  300  25  50  100  300

5%
SS  2.50  3.50  3.50  3.00  2.50  3.00  2.00  2.00  2.7500
KS  2.50  2.00  2.00  1.50  2.50  3.00  1.00  1.00  1.9375
RS  1.00  1.00  1.00  1.50  1.00  1.00  3.50  3.00  1.6250*
AR(1)  4.00  3.50  3.50  3.00  4.00  3.00  3.50  4.00  3.5625
20%
SS  2.50  3.00  2.50  3.00  2.50  1.00  3.00  3.00  2.5625
KS  2.50  2.00  1.00  1.50  2.50  2.00  2.00  2.00  1.9375
RS  1.00  1.00  2.50  1.50  1.00  3.00  1.00  1.00  1.5000*
AR(1)  4.00  4.00  4.00  4.00  4.00  4.00  4.00  4.00  4.0000
40%
SS  2.50  3.00  2.50  3.00  2.50  2.00  2.50  3.00  2.6250
KS  2.50  2.00  2.50  2.00  2.50  2.00  2.50  1.50  2.1875
RS  1.00  1.00  1.00  1.00  1.00  2.00  1.00  1.50  1.1875*
AR(1)  4.00  4.00  4.00  4.00  4.00  4.00  4.00  4.00  4.0000
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methods. When KS, RS, and SS are compared to the benchmark AR(1), it is shown 
that the RE values obtained from AR(1) increase. This means that AR(1) has the 
worst efficiency in terms of SMSE values.

6  Real‑Data Studies

6.1  Cloud‑Ceiling Data

This section more explicitly examines the estimation performances of the three 
smoothing methods for right-censored time-series data by modeling cloud-ceiling 
data. Cloud-ceiling data were collected hourly by the National Center for Atmos-
pheric Research (NCAR) in San Francisco throughout March 1989. A dataset of 

Table 5  Averaged Wilcoxon test ranking values based on MSE criterion for the four methods under each 
sample size and censoring level

* denotes the best score

Meth./n  Two-peak ( � = 6.4)  Four-peak ( � = 12.8)  Overall

 25  50  100  300  25  50  100  300

 5%
SS  2.50  2.50  3.00  3.00  2.50  3.00  2.50  3.00  2.7500
KS  2.50  2.50  3.00  1.50  2.50  3.00  2.50  3.00  2.5625
RS  1.00  1.00  1.00  1.50  1.00  1.00  2.50  1.00  1.2500*
AR(1)  4.00  4.00  3.00  3.00  4.00  4.00  2.50  3.00  3.4375
20%
SS  2.50  2.00  2.00  2.00  2.50  2.00  2.00  2.50  2.1875
KS  2.50  3.50  3.00  3.00  2.50  3.50  3.00  2.50  2.9375
RS  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.0000*
AR(1)  4.00  3.50  4.00  4.00  4.00  3.50  4.00  4.00  3.8750
40%
SS  2.50  2.00  2.50  2.00  2.50  2.50  2.00  1.50  2.1875
KS  2.50  3.00  2.50  3.00  2.50  2.50  2.00  2.50  2.5625
RS  1.00  1.00  1.00  1.00  1.00  1.00  2.00  1.00  1.1250*
AR(1)  4.00  4.00  4.00  4.00  4.00  4.00  4.00  4.00  4.0000

Fig. 4  The column chart provides the relative efficiencies from the smoothing methods SS, KS, RS and 
AR(1)
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716 observations was formed. The scale of the data was originally 100 feet, but 
here, a logarithmic transformation was made. It is visualized in Fig. 5. As men-
tioned at the beginning of this paper, sometimes a measurement tool has a detec-
tion limit. For this data, this limit is 12,000 feet (4.791 in log-transformed data); 
therefore, this time series is considered to be right censored. This means that each 
observation that is larger than the detection limit is censored. In the dataset, 293 
observations are censored, and consequently, the censoring rate is 41.62%.

In Fig.  5, the points in red represent the censored observations. The follow-
ing tables and figures summarize the findings of the three smoothing methods for 
estimating right-censored time series. Note that the imputation method can also 
provide an advantage in estimating censored data when there is no detection limit 
in the process of obtaining the data.

The performance measures for the three smoothing methods and the naïve AR(1) 
model, are presented in Table  6. The method with the best performance is indi-
cated in bold. In this case, the KS had reasonable results according to almost all 
performance measures, and the KS is likely the best method for this type of censored 
time-series data. However, one must note that the RS shows its superiority for both 
absolute and relative performance measures, but in the general framework, the KS 
dominated the other two methods, while the AR(1) gave the highest scores for all 
evaluation metrics. As previously mentioned, the first three criteria for the estimated 
models measure the absolute error and the last two illustrate the relative error. In 
Tabl  6, one clearly sees that the RS performs better than the SS according to the 
first three criteria, which are MAPE, KL − N , and IQR, and, when RSE andRAE are 
inspected, it is clear that the performance of the RS is better than the SS.

Figure  6 represents the estimated values for the nonparametric regression 
model for the three smoothing methods, with the bottom right of the figure show-
ing the observed real data versus augmented data points. The figure shows that 
the three methods all perform satisfactorily. When comparing the methods using 

Fig. 5  Time plots of the log-transformed hourly cloud-ceiling height values with right-censored time 
series
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this cloud-ceiling dataset, Table 6 is more useful than Fig. 6; therefore, as men-
tioned, the KS is superior in estimating right-censored time series.

With the real data, the weakness of the RS was that it uses determined knots. 
For this kind of complex data, optimizing the number of knots can be difficult. In 
this study, a full search algorithm was used to select the number of knots, which 
was proposed by Ruppert et al. (2003). Furthermore, the KSgives weight to obser-
vations, which is one of the reasons for its success with this dataset.

6.2  Unemployment Duration Data

A second real dataset, this time an econometric time-series, was used to analyze the 
performances of the three methods The unemployment rates in Turkey were esti-
mated using the three smoothing methods and the AR(1) model. This data set com-
prises monthly unemployment rates between 2004 and 2019 (see https: //ec.europa.
eu/eurostat/data/database). Note that the data from 2004 and the last three months of 
2019 cannot be observed correctly. Since these data cannot be negative, they can be 
censored from the right with zero as detection limit. Therefore, the nonparametric 
autoregressive model applied to the data is as follows:

where UEt ’s represent the ratios of unemployment duration depend on time, UE(t−1) 
is the first lag of the response variable (UEt) and �t ’s are the random error terms with 
�i ∼ N

(
0, �2

�

)
 . The outcomes from the estimated model (40) are given in Table 7 and 

Fig. 7, in the same manner as the cloud- ceiling data example in Sect. 6.1.
The first three panels of Fig. 7 includes estimated curves obtained by the three 

smoothing methods and at the bottom-right panel includes censored data (black) 
with augmented data points (red) similar to Fig. 6. It is clearly shown that the curve 
estimated by the RS represents the data better than the other two. This case can be 
explained by the wiggly structure of the dataset. Because the RS is working with 
determined knot points, it can adapt the data structure more easily than SSand KS. 
Note that the, data are are estimated by the AR(1) model, but it cannot give compara-
ble results with introduced nonparametric techniques, which can be seen in Table 7.

The scores given in Table 7 indicate that the RS is the best qualified method for 
econometric time-series. For this dataset, the KS performed the second best. By con-
trast, the SS and AR(1) provide unsatisfactory results with respect to all evaluation 
criteria. Lastly, one should note that the KS and the RS performed similarly, which 
demonstrates that the two real- data examples give compatible outcomes.

(40)UEt = f (UE(t−1)) + �t, t = 1,… , 186

Table 6  The outcomes from the 
smoothing methods and AR(1) 
model

MSE MAPE KL-N IQR RSE RAE

SS 0.0849 0.0797 27.3869 0.1831 1.2113 64.1795
KS 0.0722 0.0502 24.8250 0.1174 0.9361 30.1658
RS 0.0761 0.0586 23.9862 0.1471 0.8693 43.3855
AR(1)  0.1052  0.2070  81.2845  0.2784  1.7426  69.5116
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7  Conclusions and Recommendations

This paper used the imputation method , to estimate right-censored time series 
with a nonparametric regression model, as initially proposed by Park et  al. 
(2007). Three different smoothing methods were to estimate the nonparametric 
regression model: SS, KS, and RS. To realize our aim, simulation experiments 
were performed and a real-data examples were presented. The results obtained 
from the simulation study and the real-data example are presented in the tables 
and figures. The nonparametric regression model was found to be quite a useful 
for estimating right-censored time series. This paper compared the three smooth-
ing methods. Therefore, the results show which method was the best under differ-
ent conditions.

The empirical results confirmed that the KS and the RS perform reasonably well 
for different combinations of sample sizes, function types, and censoring rates. As 
expected, when the censoring rate increases, the quality of the estimation worsens. 
In general, the three smoothing methods provided satisfactory results, but there are 
some advantages and disadvantages for each methods. One of the most remarkable 
results was the success of the KSand RS methods for low and high censoring lev-
els. The KS and the SS provided similar results for almost all combinations, but the 
KS performed better than the SS for lower censoring rates. Because the RS method 
works with determined knots, it was much more successful than the SS and the KS 
for numerical applications in this paper. In summary, the following suggestions and 
conclusions are offered based on the simulation study and the real- data example:

• In the simulation study, the RSmethod generally gave satisfying results, as shown 
in Tables 1, 2 and 3. Furthermore, the KS method is better than the other two 

Fig. 6  Time plots of the log-transformed observations, including right-censored time series, and the aug-
mented observations and fitted curves from an autoregressive nonparametric time-series model using 
three smoothing methods
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methods at a lower censoring level, as shown in Table 1. When the censoring 
level begins to increase, the RSmethod begins to stand out, and it gave the best 
results at both medium and high censoring levels. Although the quality of the 
estimation decreases with increases in the censoring level for all methods, these 
three smoothing methods still produce reasonable outcomes, proving that right-
censored time series can be successfully modelled with nonparametric methods.

• One other important finding from the simulation concerns the performance 
of the methods with respect to spatial variation in the regression function. As 
explained above, the regression function was produced with two different shapes, 
one, two-peaked and one four-peaked. It was shown that each peak exceeded the 
detection limit, , so data was censored. The performances of the methods were 
measured according to this scenario. As expected, the performance criteria val-
ues changed for the worse for all methods when the fluctuation of the function 
increased. However, Tables 1, 2 and 3 reveal that the RS seems to be more dura-
ble than the others.

• The real-data examples, are illustrated in Figs.  5, 6 and 7 and their outcomes 
are presented in Tables 6 and 7.The censoring rate of the real data was 41.62%, 
which matches the high censoring level in the simulation study. Here, the expec-
tation was that the RS would have the best performance since it did in the simula-
tion results. However, because the cloud-ceiling dataset is highly complex and 

Fig. 7  Estimated curves of unemployment duration data represented by three smoothing methods

Table 7  Results of four models 
for the unemployment dataset

 MSE  MAPE  KL-N  IQR  RSE  RAE

SS  0.4753  0.0211  4.5128  0.2724  0.8969  25.7752
KS  0.0722  0.0055  1.4019  0.1407  0.2594  12.4707
RS  0.0707  0.0048  0.7308  0.1324  0.2146  11.4410
AR(1)  0.3256  0.0393  8.1460  0.3774  0.9331  23.0301
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wiggly, the RS cannot follow the data completely because it uses determined 
knots. Although the KS had the best performance using real data, the RS was a 
close second.

• For both studies, fitted curves for the estimated nonparametric regression models 
are illustrated in Figs. 2 and 3, 6 and 7. The figures demonstrate that the three 
smoothing methods for estimating right-censored time series have similar out-
comes, and all are successful in representing the data.

• As shown in the simulation and real- data examples, the KS,  the RS and the 
SS approximations had the best empirical performance. By comparison, the 
classical AR(1) produced the worst performance at all censoring levels and 
sample sizes.

Finally, all of the results of the two numerical studies illustrated that for lower 
censoring levels and complicated datasets, the KS method performs best, and the 
RS method provides the most satisfactory estimates for nonparametric regression 
modeling of right-censored time-series data.
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Appendices: Supplemental Technical Materials

Appendix 1: Derivation of Equation (15)

Let Z(k)
t

 be the vector (Z(k)

1
,… , Z(k)

n
)⊤ . It is easily seen that the residual sum of 

squares about f can be rewritten as

since the vector f is definitely the vector of the values f
(
Xt

)
 . Determine the penalty 

term ∫ b

a

{
f
��

(x)
}2
dx in (11) as f⊤Kf from (13) to obtain the penalized residuals sum 

of squares criterion (14), given by

Taking the derivative with respect to f and setting it to zero:

Setting Eq. (42) equal to zero and replacing f by f̂
SS

�
, we obtain

(41)
n∑
t=1

{
Z
(k)
t − f

(
Xt

)}2

=
‖‖‖Z

(k) − f
‖‖‖
2

2
=
(
Z(k) − f

)⊤(
Z(k) − f

)

(42)
PRSS(f, 𝜆) =

(
Z(k) − f

)⊤(
Z(k) − f

)
+ 𝜆f⊤Kf = Z(k)⊤Z(k) − 2Z(k)f+f⊤(I + 𝜆K)f

�PRSS(f, �)

�f
= −2Z(k)+2f(I + �K) = 0

(43)f̂
SS

�
(I + �K) = Z(k)
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Hence, by multiplying the term (I + �K)−1 on the both sides of the equation above, 
we have the following solution based on smoothing spline for the vector

as expressed in the Eq. (15).

Appendix 2: Derivation of Equation (25)

Consider the model Z(k) = Xb + e , where b =
(
b0, b1,… , bq, bq+r, r = 1, 2,… ,m

)
 , 

with bq+rthe coefficient of the rth knot. The vector of ordinary least squares resid-
uals can be written as e = Z(k)− Xb and hence

The primary interest is to obtain the estimate b̂ that minimizes the least squares 
residuals defined above. It should be noted that such an unrestricted estimation of 
the bq+r leads to a wiggly fit. To overcome this problem, we impose the constraint ∑m

r=1
b2
q+r

< C(where > 0 ) on bq+r the coefficients. Also, we assume that SPS
�

 is a 
positive definite and symmetric smoother matrix based on penalized spline, and D is 
a (m + 2) × (m + 2) dimensional diagonal penalty matrix whose first (q + 1) entries 
are 0, and the remaining entries are 1. Then, the Eq. (23) expressed in section (11) 
can be written as

By the Lagrange multiplier method, minimizing this optimization problem subject 
to the constraint is equivalent to the following penalized residuals sum of squares

Similar to the ideas in (42), by taking the derivative with respect to b in (45) and set-
ting it to zero, we obtain

Setting (46) equal to zero and replacing b by b̂, it is easily seen that we obtain the 
penalized least squares normal equations

From (47), the estimated regression coefficients are simply

Hence, the fitted values f̂  based on RS can be given by

f̂
SS

�
= (I + �K)−1Z(k)

(44)e⊤e =
(
Z(k) − Xb

)⊤(
Z(k) − Xb

)

minimum
(
Z(k) − Xb

)⊤(
Z(k) − Xb

)
subject to 𝜆b⊤Db < C.

(45)
PRSS(b, 𝜆) =

(
Z(k) − Xb

)⊤(
Z(k) − Xb

)
+ 𝜆b⊤Db = Z(k)⊤Z(k) − 2(X⊤Z(k))b+b’(X⊤X)b+ 𝜆b⊤Db

(46)
�PRSS(b, �)

�b
= −2X⊤Z

(k)
+2b

(
X⊤X

)
+ �2bD = 0

(47)
(
X⊤X+λD

)
b̂ = X⊤Z

(k)

(48)�b =
(
X⊤X + 𝜆D

)−1
X⊤Z(k)
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as claimed.

Appendix 3: Derivation of Equation (28)

Consider the RSS(�) defined in Eq. (27). The RSS(�) can be rewritten as

It is easily seen that RSS(�) can be expressed in a quadratic form. When we take the 
expected value of this form, we obtain

as defined in the Eq. (28).

Appendix 4: Proof of the Lemma 4.1

SMSE
(̂
f� , f

)
= E

‖‖‖f̂� − f
‖‖‖
2

 , where as f̂� = S�Z
(k) Then the SMSE matrix can be 

written as the sum of variance and squared bias

As in the usual linear smoother, the bias and Var (i.e, variance) terms in (50) can be 
written, respectively, as

and

(49)�f
RS

𝜆
= X�b = X

(
X⊤X + 𝜆D

)−1
X⊤Z(k) = SRS

𝜆
Z(k)

RSS(�) =
(̂
f𝝀 − Z(k)

)
⊤
(̂
f𝝀 − Z(k)

)
= Z(k)

(
I − S𝝀

)2
Z(k)

E[RSS(�)] =E
‖‖‖Z

(k)
(
I − S𝝀

)2
Z(k)‖‖‖ = MSE(�)

=̂f
⊤

𝝀

(
I − S𝝀

)2
f̂𝝀 + �2tr

(
I − S𝝀

)2

=̂f
⊤

𝝀

(
I − S𝝀

)2
f̂𝝀 + n�2 − 2�2tr

(
S𝝀

)
+ �2tr

(
S⊤
𝝀
S𝝀

)

=̂f
⊤

𝝀

(
I − S𝝀

)2
f̂𝝀 + �2

{
n − 2tr

(
S𝝀

)
+ tr

(
S⊤
𝝀
S𝝀

)}

(50)

SMSE

(̂
f� , f

)
=

n∑
t=1

{
E

(
f̂�
(
Xt

))
− f

(
Xt

)}2

+ Var

(
f̂�
(
Xt

))

=

n∑
t=1

bias2
(
f̂�
(
Xt

))
+

n∑
t=1

Var

(
f̂�
(
Xt

))

(51)

n∑
t=1

bias2
(
f̂�
(
Xt

))
=
(
E

(̂
f𝝀

)
− f

)�(
E

(̂
f𝝀

)
− f

)
=
(
E (S𝝀Z

(k)) − f
)⊤(

E (S𝝀Z
(k)) − f

)
=

‖‖‖
(
I − S𝝀

)
f
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2
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Assume that Cov
(
Z(k)

)
= �2I in (51) and hence, bringing (51) and (52) into (50) 

yields that

This completes the proof of Lemma 4.1.
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