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In this study, we will obtain the approximate solutions of the HIV infection model of CD4+T
by developing the Bessel collocation method. This model corresponds to a class of nonlin-
ear ordinary differential equation systems. Proposed scheme consists of reducing the prob-
lem to a nonlinear algebraic equation system by expanding the approximate solutions by
means of the Bessel polynomials with unknown coefficients. The unknown coefficients of
the Bessel polynomials are computed using the matrix operations of derivatives together
with the collocation method. The reliability and efficiency of the proposed approach are
demonstrated in the different time intervals by a numerical example. All computations
have been made with the aid of a computer code written in Maple 9.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In this study, we consider the HIV infection model of CD4+T cells is examined [1]. This model is given by the components
of the basic three-component model are the concentration of susceptible CD4+T cells, CD4+T cells infected by the HIV viruses
and free HIV virus particles in the blood. CD4+T cells are also called as leukocytes or T helper cells. These with order cells in
human immunity systems fight against diseases. HIV use cells in order to propagate. In a healthy person, the number of
CD4+T cells is 800

1200 mm3. This model is characterized by a system of the nonlinear differential equations
dT
dt ¼ q� aT þ rT 1� TþI

Tmax

� �
� kVT

dI
dt ¼ kVT � bI
dV
dt ¼ lbI � cV

8>><
>>: ; Tð0Þ ¼ r1; Ið0Þ ¼ r2; Vð0Þ ¼ r3; 0 6 t 6 R <1: ð1Þ
Here, R is any positive constant, T(t), I(t) and V(t) show the concentration of susceptible CD4+T cells, CD4+T cells infected by
the HIV viruses and free HIV virus particles in the blood, respectively, a, b and c denote natural turnover rates of uninfected T

cells, infected T cells and virus particles, respectively, 1� TþI
Tmax

� �
describes the logistic growth of the healthy CD4+T cells, and

proliferation of infected CD4+T cells is neglected. For k > 0 is the infection rate, the term KVT describes the incidence of HIV
infection of healthy CD4+T cells. Each infected CD4+T cell is assumed to produce l virus particles during its lifetime, including
any of its daughter cells. The body is believed to produce CD4+T cells from precursors in the bone marrow and thymus at a
constant rate q. T cells multiply through mitosis with a rate r when T cells are stimulated by antigen or mitogen. Tmax denotes
the maximum CD4+T cell concentration in the body [2–5]. In this article, we set q = 0.1, a = 0.02, b = 0.3, r = 3, c = 2.4,
k = 0.0027, Tmax = 1500, l = 10.
. All rights reserved.
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For solving numerically a model for HIV infection of CD4+T cells, Ongun [6] have applied the Laplace adomian decompo-
sition method, Merdan have used the homotopy perturbation method [7] and Merdan et al. have applied the Padé approx-
imate and the modified variational iteration method [8].

Recently, Yüzbas�ı et al. [9–15] have studied the Bessel collocation method for the approximate solutions of the Lane–Em-
den differential, neutral delay differential, pantograph, Volterra integro-differential and Fredholm integro-differential-differ-
ence equations, Fredholm integro-differential equation systems and the pollution model of a system of lakes, and also
Yüzbas�ı [16–18] have developed the Bessel collocation method for solving numerically the singular differential-difference
equations, a class of the nonlinear Lane–Emden type equations arising in astrophysics and the continuous population models
for single and interacting species.

In this paper, we will obtain the approximate solutions of model (1) by developing the Bessel collocation method studied
in [1–10]. Our purpose is to find approximate solutions of model (1) in the truncated Bessel series forms
TðtÞ ¼
XN

n¼0

a1;nJnðtÞ; IðtÞ ¼
XN

n¼0

a2;nJnðtÞ and VðtÞ ¼
XN

n¼0

a3;nJnðtÞ ð2Þ
so that a1,n, a2,n and a3,n (n = 0,1,2, . . . ,N) are the unknown Bessel coefficients and Jn(t), n = 0,1,2, . . . ,N are the Bessel polyno-
mials of first kind defined by
JnðtÞ ¼
XsN�n

2 t

k¼0

ð�1Þk

k!ðkþ nÞ!
t
2

� �2kþn

; n 2 N; 0 6 t <1: ð3Þ
2. Method for solution

Firstly, let us show model (1) in the form
dT
dt ¼ qþ ðr � aÞT � r

Tmax
T2 � r

Tmax
TI � kVT

dI
dt ¼ kVT � bI

dV
dt ¼ lbI � cV

8>>><
>>>: : ð4Þ
We consider the approximate solutions T(t), I(t) and V(t) given by (2) of the system (4).
Now, let us write the matrix forms of the solution functions defined in relation (2) as
TðtÞ ¼ JðtÞA1; IðtÞ ¼ JðtÞA2 and VðtÞ ¼ JðtÞA3 ð5Þ
where
JðtÞ ¼ ½ J0ðtÞ J1ðtÞ � � � JNðtÞ �; A1 ¼ ½ a1;0 a1;1 � � � a1;N �T ; A2 ¼ ½ a2;0 a2;1 � � � a2;N �T
and A3 ¼ ½ a3;0 a3;1 � � � a3;N �T .
Also, the relations given by (5) can be written in matrix forms
TðtÞ ¼ TðtÞDTA1; IðtÞ ¼ TðtÞDTA2 and VðtÞ ¼ TðtÞDTA3 ð6Þ
so that TðtÞ ¼ ½1 t t2 � � � tN � and if N is odd,
D ¼

1
0!0!20 0 �1

1!1!22 � � � ð�1Þ
N�1

2

N�1
2ð Þ! N�1

2ð Þ!2N�1 0

0 1
0!1!21 0 � � � 0 ð�1Þ

N�1
2

N�1
2ð Þ! Nþ1

2ð Þ!2N

0 0 1
0!2!22 � � � ð�1Þ

N�3
2

N�3
2ð Þ! Nþ1

2ð Þ!2N�1 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � 1
0!ðN�1Þ!2N�1 0

0 0 0 � � � 0 1
0!N!2N

2
666666666666666666664

3
777777777777777777775
ðNþ1Þ�ðNþ1Þ

;
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if N is even,
D ¼

1
0!0!20 0 �1

1!1!22 � � � 0 ð�1Þ
N
2

N
2ð Þ! N

2ð Þ!2N

0 1
0!1!21 0 � � � ð�1Þ

N�2
2

N�2
2ð Þ! N

2ð Þ!2N�1 0

0 0 1
0!2!22 � � � 0 ð�1Þ

N�2
2

N�2
2ð Þ! Nþ2

2ð Þ!2N

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � 1
0!ðN�1Þ!2N�1 0

0 0 0 � � � 0 1
0!N!2N

2
6666666666666666664

3
7777777777777777775
ðNþ1Þ�ðNþ1Þ

:

On the other hand, the relation between the matrix T(t) and its derivative T(1)(t) is
Tð1ÞðtÞ ¼ TðtÞBT ð7Þ
where
BT ¼

0 1 0 � � � 0
0 0 2 � � � 0
..
. ..

. ..
. . .

. ..
.

0 0 0 � � � N

0 0 0 � � � 0

2
6666664

3
7777775:
By aid of the relations (6) and (7), we have recurrence relations
Tð1ÞðtÞ ¼ TðtÞBT DTA1; Ið1ÞðtÞ ¼ TðtÞBT DTA2 and V ð1ÞðtÞ ¼ TðtÞBT DTA3: ð8Þ
Thus, we can express the matrices y(t) and y(1)(t) as follows:
yðtÞ ¼ TðtÞDA and yð1ÞðtÞ ¼ TðtÞBDA ð9Þ
so that yðtÞ ¼ ½ TðtÞ IðtÞ VðtÞ �T ; yð1ÞðtÞ ¼ ½ T ð1ÞðtÞ Ið1ÞðtÞ V ð1ÞðtÞ �T ,
TðtÞ ¼
TðtÞ 0 0

0 TðtÞ 0
0 0 TðtÞ

2
64

3
75;D ¼ DT 0 0

0 DT 0
0 0 DT

2
64

3
75;B ¼ BT 0 0

0 BT 0
0 0 BT

2
64

3
75 and A ¼

A1

A2

A3

2
64

3
75:
Now, we can show the system (4) with the matrix form
yð1ÞðtÞ � PyðtÞ �M�yðtÞyðtÞ � Ly1;2ðtÞ � Ky1;3ðtÞ ¼ q ð10Þ
where
q ¼
q

0
0

2
64
3
75; P ¼

r � a 0 0
0 �b 0
0 lb �c

2
64

3
75; yðtÞ ¼

TðtÞ
IðtÞ
VðtÞ

2
64

3
75; M ¼

�r=Tmax 0 0
0 0 0
0 0 0

2
64

3
75; �yðtÞ ¼

TðtÞ 0 0
0 IðtÞ 0
0 0 VðtÞ

2
64

3
75;

L ¼
�r=Tmax

0
0

2
64

3
75; y1;2ðtÞ ¼ ½TðtÞIðtÞ�; K ¼

�k

k

0

2
64

3
75 and y1;3ðtÞ ¼ ½VðtÞTðtÞ�:
In Eq. (10), we use the collocation points
ti ¼
R
N

i; i ¼ 0;1; . . . ;N; ð0 6 t 6 RÞ; ð11Þ
and thus we obtain a system of the matrix equations
yð1ÞðtsÞ � PyðtsÞ �M�yðtsÞyðtsÞ � Ly1;2ðtsÞ � Ky1;3ðtsÞ ¼ q
or briefly the fundamental matrix equation
Yð1Þ � PY �MYY � LeY � KY ¼ Q ð12Þ
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where
Yð1Þ ¼

yð1Þðt0Þ
yð1Þðt1Þ

..

.

yð1ÞðtNÞ

2
66664

3
77775; P ¼

P 0 � � � 0
0 P � � � 0
..
. ..

. . .
. ..

.

0 0 � � � P

2
66664

3
77775
ðNþ1Þ�ðNþ1Þ

; Y ¼

yðt0Þ
yðt1Þ

..

.

yðtNÞ

2
66664

3
77775; Q ¼

q
q

..

.

q

2
66664

3
77775
ðNþ1Þ�1

;

M ¼

M 0 � � � 0
0 M � � � 0
..
. ..

. . .
. ..

.

0 0 � � � M

2
66664

3
77775
ðNþ1Þ�ðNþ1Þ

; Y ¼

�yðt0Þ 0 � � � 0
0 �yðt1Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � �yðtNÞ

2
66664

3
77775; eY ¼

y1;2ðt0Þ
y1;2ðt1Þ

..

.

y1;2ðtNÞ

2
666664

3
777775;

L ¼

L 0 � � � 0
0 L � � � 0
..
. ..

. . .
. ..

.

0 0 � � � L

2
66664

3
77775
ðNþ1Þ�ðNþ1Þ

; K ¼

K 0 � � � 0
0 K � � � 0
..
. ..

. . .
. ..

.

0 0 � � � K

2
66664

3
77775
ðNþ1Þ�ðNþ1Þ

and Y ¼

y1;3ðt0Þ
y1;3ðt1Þ

..

.

y1;3ðtNÞ

2
666664

3
777775:
By using relations (9) and the collocation points (11), we have
yðtsÞ ¼ TðtsÞDA and yð1ÞðtsÞ ¼ TðtsÞBDA
which can be written as
Y ¼ TDA and Yð1Þ ¼ TBDA ð13Þ
where
T ¼ Tðt0Þ Tðt1Þ . . . TðtNÞ
� �T

; TðtsÞ ¼
TðtsÞ 0 0

0 TðtsÞ 0
0 0 TðtsÞ

2
64

3
75 and s ¼ 0;1; . . . ;N:
By aid of the collocation points (11) and the matrix �yðtÞ given in Eq. (10), we have
Y ¼

�yðt0Þ 0 � � � 0
0 �yðt1Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � �yðtNÞ

2
66664

3
77775 ¼

Tðt0ÞDA 0 � � � 0
0 Tðt1ÞDA � � � 0

..

. ..
. . .

. ..
.

0 0 � � � TðtNÞDA

2
666664

3
777775 ¼ TDA ð14Þ
so that
T ¼

Tðt0Þ 0 � � � 0
0 Tðt1Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � TðtNÞ

2
666664

3
777775; TðtÞ ¼

TðtÞ 0 0
0 TðtÞ 0
0 0 TðtÞ

2
64

3
75; D ¼

D 0 � � � 0
0 D � � � 0
..
. ..

. . .
. ..

.

0 0 � � � D

2
66664

3
77775
ðNþ1Þ�ðNþ1Þ

;

D ¼
DT 0 0
0 DT 0
0 0 DT

2
64

3
75; A ¼

eA 0 � � � 0
0 eA � � � 0
..
. ..

. . .
. ..

.

0 0 � � � eA

2
66664

3
77775
ðNþ1Þ�ðNþ1Þ

and eA ¼ A1 0 0
0 A2 0
0 0 A3

2
64

3
75:
Similarly, substituting the collocation points (11) into the y1,2(t) and y1,3(t) given Eq. (10), we obtain the matrix
representation
eY ¼
y1;2ðt0Þ
y1;2ðt1Þ

..

.

y1;2ðtNÞ

2
666664

3
777775 ¼

Iðt0ÞTðt0Þ
Iðt1ÞTðt1Þ

..

.

IðtNÞTðtNÞ

2
66664

3
77775 ¼ IT and Y ¼

y1;3ðt0Þ
y1;3ðt1Þ

..

.

y1;3ðtNÞ

2
666664

3
777775 ¼

Vðt0ÞTðt0Þ
Vðt1ÞTðt1Þ

..

.

VðtNÞTðtNÞ

2
66664

3
77775 ¼ VT ð15Þ
where
I ¼ eT eDA2; V ¼ eT eDA3 and T ¼ eeT eeDA ð16Þ
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so that
eT ¼
Tðt0Þ 0 � � � 0

0 Tðt1Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � TðtNÞ

2
66664

3
77775; eD ¼

DT 0 � � � 0
0 DT � � � 0
..
. ..

. . .
. ..

.

0 0 � � � DT

2
66664

3
77775
ðNþ1Þ�ðNþ1Þ

;

A2 ¼

A2 0 � � � 0
0 A2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � A2

2
66664

3
77775
ðNþ1Þ�ðNþ1Þ

; A3 ¼

A3 0 � � � 0
0 A3 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � A3

2
66664

3
77775
ðNþ1Þ�ðNþ1Þ

;
eeT ¼

Tðt0Þ
Tðt1Þ

..

.

TðtNÞ

2
66664

3
77775;

eeD ¼ ½DT 0 0 �; 0 ¼

0 0 � � � 0
0 0 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � 0

2
66664

3
77775
ðNþ1Þ�ðNþ1Þ

and A ¼
A1

A2

A3

2
64

3
75:
Substituting relations (13)–(16) into Eq. (12), we have the fundamental matrix equation
TBD� PTD�MTDATD� LeT eDA2
eeT eeD � KeT eDA3

eeT eeD� 	
A ¼ Q : ð17Þ
We can write briefly Eq. (17) in the form
WA ¼ Q or ½W; Q �; W ¼ TBD� PTD�MTDATD� LeT eDA2
eeT eeD � KeT eDA3

eeT eeD ð18Þ
which corresponds to a system of the 3(N + 1) nonlinear algebraic equations with the unknown Bessel coefficients a1,n, a2,n

and a3,n, (n = 0,1,2, . . . ,N).
By aid of the relation (9), the matrix form for conditions given in model (1) can be written as
UA ¼ ½R� or ½U; R� ð19Þ
so that U ¼ Tð0ÞDA and R ¼
r1

r2

r3

2
4

3
5. Consequently, by replacing the rows of the matrix ½U; R� by three rows of the augmented

matrix [W;Q], we have the new augmented matrix
½fW; eQ � or fWA ¼ eQ ð20Þ

which is a nonlinear algebraic system. The unknown the Bessel coefficients can be computed by solving this system. The un-
known Bessel coefficients ai,0,ai,1, . . . ,ai, N, (i = 1,2,3) is substituted in Eq. (2). Thus we obtain the Bessel polynomial solutions
TNðtÞ ¼
XN

n¼0

a1;nJnðtÞ; INðtÞ ¼
XN

n¼0

a2;nJnðtÞ and VNðtÞ ¼
XN

n¼0

a3;nJnðtÞ:
We can easily check the accuracy of this solutions as follows:
Since the truncated Bessel series (2) are approximate solutions of the system (1), when the function TN(t), IN(t), VN(t) and

theirs derivatives are substituted in system (1), the resulting equation must be satisfied approximately; that is, for
t = tq 2 [0,R] q = 0,1,2, . . .
E1;NðtqÞ ¼ T ð1ÞN ðtqÞ � qþ aTNðtqÞ � rTNðtqÞ 1� TNðtqÞþIN ðtqÞ
Tmax

� �
þ kVNðtqÞTNðtqÞ




 


 ffi 0;

E2;NðtqÞ ¼ Ið1ÞN ðtqÞ � kVNðtqÞTNðtqÞ þ bINðtqÞ



 


 ffi 0;

E3;NðtqÞ ¼ V ð1ÞN ðtqÞ � lbINðtqÞ þ cVNðtqÞ



 


 ffi 0

8>>>><
>>>>:

ð21Þ
and Ei;NðtqÞ 6 10�kq ; i ¼ 1;2;3 (kq positive integer).
If max 10�kq ¼ 10�k (k positive integer) is prescribed, then the truncation limit N is increased until the difference Ei, N(tq),

(i = 1,2,3) at each of the points becomes smaller than the prescribed 10�k, see [9–22].

3. Numerical applications

In this section, we have applied the method presented for model (1) with the initial conditions T(0) = 0.1, I(0) = 0,
V(0) = 0.1 in the intervals 0 6 t 6 1, 0 6 t 6 2, 0 6 t 6 5, 0 6 t 6 10, 0 6 t 6 15 and 0 6 t 6 20. We get the approximate solu-
tions by applying the present method for N = 3, 8 in the above intervals. By using the present method for N = 3, 8 in interval
0 6 t 6 1, we obtain the approximate solutions, respectively,



Fig. 1. For N = 8 in the interval 0 6 t 6 1, (a) comparison of the approximate solutions TN(t), (b) comparison of the approximate solutions IN(t) and
(c) comparison of the approximate solutions VN(t).
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Fig. 2. For N = 3, 8 with the present method in the interval 0 6 t 6 1, (a) graph of the error functions obtained with accuracy of solution TN(t), (b) graph of
the error functions obtained with accuracy of solution IN(t) and (c) graph of the error functions obtained with accuracy of solution VN(t).
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Fig. 3. For N = 8 in the interval 0 6 t 6 1, (a) comparison of the error functions obtained with accuracy of solution TN(t), (b) comparison of the error
functions obtained with accuracy of solution IN(t) and (c) comparison of the error functions obtained with accuracy of solution VN(t).
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Fig. 4. For N = 8 in the interval 0 6 t 6 2, (a) comparison of the approximate solutions TN(t), (b) comparison of the approximate solutions IN(t) and (c)
comparison of the approximate solutions VN(t).
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Fig. 5. For N = 3, 8 with the present method in the interval 0 6 t 6 2, (a) graph of the error functions obtained with accuracy of solution TN(t), (b) graph of
the error functions obtained with accuracy of solution IN(t) and (c) graph of the error functions obtained with accuracy of solution VN(t).
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Fig. 6. For N = 8 in the interval 0 6 t 6 2, (a) comparison of the error functions obtained with accuracy of solution TN(t), (b) comparison of the error
functions obtained with accuracy of solution IN(t) and (c) comparison of the error functions obtained with accuracy of solution VN(t).
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Fig. 7. For N = 8 in the different intervals, (a) comparison of the error functions obtained with accuracy of solution TN(t), (b) comparison of the error
functions obtained with accuracy of solution IN(t) and (c) comparison of the error functions obtained with accuracy of solution VN(t).
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Table 1
Numerical comparison for T(t).

ti LADM–Pade [6] Runge–kutta MVIM [8] VIM [8] Present method for N = 8

0 0.1 0.1 0.1 0.1 0.1
0.2 0.2088072731 0.2088080833 0.2088080868 0.2088073214 0.2038616561
0.4 0.4061052625 0.4062405393 0.4062407949 0.4061346587 0.3803309335
0.6 0.7611467713 0.7644238890 0.7644287245 0.7624530350 0.6954623767
0.8 1.3773198590 1.4140468310 1.4140941730 1.3978805880 1.2759624442
1 2.3291697610 2.5915948020 0.2088080868 2.5067466690 2.3832277428

Table 2
Numerical comparison for I(t).

ti LADM-Pade [6] Runge–kutta MVIM [8] VIM [8] Present method for N = 8

0 0 0 0.1e�13 0 0
0.2 0.603270728e�5 0.6032702150e�5 0.60327016510e�5 0.6032634366e�5 0.6247872100e�5
0.4 0.131591617e�4 0.1315834073e�4 0.13158301670e�4 0.1314878543e�4 0.1293552225e�4
0.6 0.212683688e�4 0.2122378506e�4 0.21223310013e�4 0.2101417193e�4 0.2035267183e�4
0.8 0.300691867e�4 0.3017741955e�4 0.30174509323e�4 0.2795130456e�4 0.2837302120e�4
1 0.398736542e�4 0.4003781468e�4 0.40025404050e�4 0.2431562317e�4 0.3690842367e�4

Table 3
Numerical comparison for V(t).

ti LADM-Pade [6] Runge–kutta MVIM [8] VIM [8] Present method for N = 8

0 0.1 0.1 0.1 0.1 0.1
0.2 0.06187996025 0.06187984331 0.06187990876 0.06187995314 0.06187991856
0.4 0.03831324883 0.03829488788 0.03829595768 0.03830820126 0.03829493490
0.6 0.02439174349 0.02370455014 0.02371029480 0.02392029257 0.02370431860
0.8 0.009967218934 0.01468036377 0.01470041902 0.01621704553 0.01467956982
1 0.003305076447 0.009100845043 0.009157238735 0.01608418711 0.02370431861
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T3ðxÞ ¼ 0:1þ 0:397953x� 0:139246852541x2 þ 1:53331521278x3;

I3ðxÞ ¼ 0:27e� 4xþ 0:289995348988x2 � 0:298999226352x3;

V3ðxÞ ¼ 0:1� 0:24xþ 0:298247385024x2 � 0:542232141015e� 1x3

8><
>:
and
T3ðxÞ ¼ 0:1þ0:397953xþ4:21749621198x2�46:8374786567x3þ230:175269339x4�558:172968834�x5

þ725:746949148x6�482:182048971x7þ128:938056508x8;

I3ðxÞ ¼ 0:27e�4xþð0:642886469976e�4Þx2�ð0:412063752317e�3Þx3þð0:140158881191e�2Þx4

�ð0:255342812657e�2Þx5þð0:255533881388e�2Þx6�ð0:131574760141e�2Þx7þð0:269931631166e�3Þx8;

V3ðxÞ ¼ 0:1�0:24xþ0:288039040470x2�0:230346760510x3þ0:137777316098x4�ð0:648907032780e�1Þx5

þð0:239046107135e�1Þx6�ð0:622770906496e�2Þx7þð0:843508602378e�3Þx8:

8>>>>>>>><
>>>>>>>>:
For N = 3, 8 in interval 0 6 t 6 2, we get the approximate solutions, respectively,
T3ðxÞ ¼ 0:1þ 0:397953x� 1:59009333124x2 þ 1:56477517051x3;

I3ðxÞ ¼ 0:27e� 4x� 0:740465439362e� 1x3 þ 0:139971313972x2;

V3ðxÞ ¼ 0:1� 0:24xþ 0:272037671859x2 � 0:724045813030e� 1x3

8><
>:
and
T3ðxÞ ¼ 0:1þ0:397953xþ2:62731836438x2�11:6921722967x3þ29:1204428855x4�33:9448986838x5

þ22:1742503561x6�7:35163621462x7þ1:06279788403x8;

I3ðxÞ ¼ 0:27e�4xþð0:569107121175e�4Þx2�ð0:174978901483e�3Þx3þð0:308935173003e�3Þx4

�ð0:302863950946e�3Þx5þð0:169015756614e�3Þx6�ð0:502317732093e�4Þx7þð0:618960122494e�5Þx8;

V3ðxÞ ¼ 0:1�0:24xþ0:287903160914x2�0:229316016338x3þ0:134595618678x4�ð0:596985128857e�1Þx5

þð0:191703501753e�1Þx6�ð0:393310524827e�2Þx7þð0:379787858944e�3Þx8:

8>>>>>>>><
>>>>>>>>:
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In Fig. 1, the approximate solutions TN(t), IN(t) and VN (t) of the present metod applied for N = 8 in the interval 0 6 t 6 1 are
compared with the variational iteration method (VIM) [8] for N = 8. For the approximate solutions TN(t), IN(t) and VN(t) gained
by the present metod for N = 3, 8 in the interval 0 6 t 6 1, we denotes the error functions obtained the accuracy of the solu-
tion given by Eq. (23) in Fig. 2. For N = 8, the error functions obtained with accuracy of the solutions by using the present
method are compared with the VIM in Fig. 3. For N = 8 in the interval 0 6 t 6 2, the approximate solutions TN(t), IN (t) and
VN(t) of the present metod are compared with the VIM in Fig. 4. Fig. 5 shows the error functions (23) gained by the suggested
method for N = 3, 8 in the interval 0 6 t 6 2. In Fig. 6, we give the comparisons of the error functions (23) with the current
method and the VIM for N = 8 in the interval 0 6 t 6 2. It is seen from Figs. 3 and 6 that the error functions gained by the
present method is better than that obtained by the VIM. Thus, we say that the approximate solutions obtained by the present
method is better than that obtained by the VIM. Fig. 7 displays the comparisons the error functions (23) with the present
method for N = 8 in the different intervals. It is observed from Fig. 7 that the errors are some increase when the suggested
method is applied for the same N by expanding the time interval. Therefore, the better results may be obtained by increasing
value N when the time interval is expanded. The numerical values of the approximate solutions TN(t), IN(t) and VN(t) of the
present metod for N = 8 in the interval 0 6 t 6 1 are compared with the variational iteration method (VIM) [8], the modifield
variational iteration method (MVIM) [8], the Laplace Adomian decomposition-pade method(LADM-pade) [6] and the Runge–
kutta method in Tables 1–3. We can say that the numerical solutions of the current method is better than the other methods
since the error function gained by the present method is better than that gained by the VIM in Figs. 3 and 6 and the numer-
ical solutions of the VIM are quite close to the numerical solutions of the MVIM, LADM-pade and the Runge–kutta method in
Tables 1–3. From Figs. 1 and 4, it is observed that, T(t), the concentration of susceptible CD4+T cells increases speedily, I(t),
the number of CD4+T cells infected by the HIV viruses increases to a steady state of 0.07 for N = 5, 8 and V(t), the number of
free HIV virus particles in the blood decreases in a very short time after the onset of infection.

4. Conclusions

In this paper, the Bessel collocation method has been developed for finding approximate solutions of HIV infection model
of CD4+T which a class of nonlinear ordinary differential equation systems. We have demonstrated the accuracy and effi-
ciency of the present technique with an example. We have assured the correctness of the obtained solutions by putting them
back into the original equation with the aid of Maple, it provides an extra measure for confidence of the results. Graphs of the
error functions gained the accuracy of the solution show the effectiveness of the present scheme. It seems from Figs. 2 and 5
that the accuracy of the solutions increases as N is increased. The better results may be obtained by increasing value N when
the time interval is expanded. This situation can be interpreted from Fig. 7. The comparisons of the present method by the
other methods show that our method gives better results. Because it is observed from Figs. 3 and 6 that the error function
obtained by the current method is better than that obtained by the VIM [8] and it is seen from Tables 1–3 that the numerical
solutions of the VIM [8], the MVIM [8], LADM-pade [6] and the Runge–kutta method are almost same. A considerable advan-
tage of the method is that the approximate solutions can be calculated easily in shorter time with the computer programs
such as Matlab, Maple and Mathematica. The computations associated with the example have been performed on a com-
puter by aid of a computer code written in Maple 9. The basic idea described in this paper is expected to be further employed
to solve other similar nonlinear problems.
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