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ABSTRACT
The purpose of this study is to compare the Partial Least Squares
(PLS), Ridge Regression (RR) and Principal Components Regression
(PCR) methods, used to fit regressors with severe multicollinearity
against a dependent variable. To realize this, a great number of vary-
ing groups of datasets are generated from standard normal distribu-
tion allowing for the inclusion of different degrees of collinearities
for 10000 replications. The design of the study is based on a sim-
ulation work that has been performed for six different degrees of
multicollinearity levels and sample sizes. From the generated data,
a comparison is made using the value of mean squares error of
the regression parameters. The findings show that each prediction
method is affected by the sample size, number of regressors or mul-
ticollinearity level. However, in contrast to literature (say n <= 200),
whatever the number of regressors is, PCR had significantly better
results compared to the other two.
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1. Introduction

A significant relationship among the explanatory variables in a linear regression model is
called multicollinearity. When multicollinearity exists in a linear regression model, using t
test statistics for testing the coefficients of the independent variables becomes problematic.
To overcome the problem there are a great number of prediction methods that can be used
to appropriately fit the respective linear regression model.

Regression analysis is the most common statistical method used to estimate the quanti-
tative relationship between a dependent variable (Y) and one ormore explanatory variables
(X). The most common method used for model estimation is Ordinary Least Square
(OLS) method, provided that it satisfies some assumptions required in regression analysis.
This method is based on the idea of minimizing the sum of the squares of the differ-
ences between the Y values and the predicted values obtained from the measurements.
The reliability of the model obtained depends on satisfaction of the OLS assumptions.
The existence of multicollinearity between the examined explanatory variables may lead
to misinterpretation of the coefficients belonging to the regression parameters estimated
using OLS. Estimation of results obtained in fields such as agriculture, socioeconomics,
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medicine and biology viaOLSmethod, without considering the required assumptions,may
be misleading.

Ridge Regression (RR), Principle Component Regression (PCR), and Partial Least
Square (PLS) regression are biased predictionmethods developed to eliminate the negative
effect that will occur on parameter estimates in case of multicollinearity.

The main purpose of the study is to compare the three biased prediction methods
(PLS, PCR and RR) used in the presence of multicollinearity between explanatory vari-
ables included in a linear regression model. Since this comparison could not be made
analytically, a simulation study was conducted and the obtained results were interpreted.

2. Literature review

The studies done in this field are chronologically listed below.
Hoerl andKennard [1] suggested in their extended study that a separate k value could be

selected for each regression. However, they also stated that there is no guarantee that this
will give better results than the k trace in any case.Hoerl andKennard [2] stated that there is
no single value of k that is the ridge parameter estimator and that the results would be better
thanOLS if the optimal k could be determined. They suggested the ridge trace for the selec-
tion of k. Hoerl et al. [3] suggested an algorithm for selecting the parameter kwith superior
features than OLS. Kidwell and Brown [4] used generated data for applying RR method in
their study on multicollinearity. Based on the obtained results, it was observed that the RR
model yielded different outcomes compared to the OLS method when predictors were not
orthogonal. In a study performed by Yeniay and Göktaş [5], OLS, PLS, RR and PCRmeth-
ods were compared using a real and a single data set. The PLS method was found to yield
better results for the data than the othermethods used. Kibria [6] proposed a few new ridge
parameter estimators based on a generalized ridge regression approach. Graham [7] noted
that in multiple-regression analysis applied to ecological data, a multicollinearity problem
was encountered. Graham showed the use of different statistical techniques in response to
the multicollinearity problem using real ecological data. As a result, he stated that ecologi-
cal data could enhance the explanation of multicollinearities inmultiple regressionmodels
and the reliability of the model through the use of different methods.

In a study conducted by Albayrak [8], researchers investigated whether the RR and PCR
methods were more effective than the OLS method in predicting body weight. The RR,
PCR andOLSmethods were applied to explanatory variables havingmulticollinearity. The
RR and PCR methods were observed to yield more stable predictions with lower standard
error. Karadavut et al. [9] compared the parameter estimates obtained for some charac-
ters affecting the yield of the chick pea plant using M-regression methods, one of the RR,
OLS and Robust Regression methods. In the regression model that impacts the variables
affecting the grain weight of the chickpea plant, the parameters were first estimated using
the OLSmethod and, by detecting the multicollinearity between the exploratory variables,
parameter estimateswere also obtained via the RRmethod.Mansson et al. [10] conducted a
simulation study to compare the performance of some ridge estimators based on bothMSE
values and Prediction Sum of Square (PRESS) values. Topal et al. [11] aimed to develop
a model that estimates carcass weights using various body measurements of 91 carp at
different ages. They used OLS regression, RR and PCR methods to eliminate the multi-
collinearity problem emerging between the obtained body measurements. According to
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the results, it was stated that it is more accurate to use the RR and PCR methods in place
of OLS to eliminate the multicollinearity problem. Li [12] conducted the first simulation
work to compare the bias regression methods with few and unacceptable replication (100)
for different scenarios. She was unwilling to present a definite priority in favour of any of
the three bias regressionmethods. Rathert et al. [13] compared the OLS and PCRmethods
for estimating egg internal quality characteristics in Japanese quail. As a result, it was stated
that the multicollinearity problem had been eliminated via the PCR model. Acharjee et al.
[14] applied OLS regression and some other regression methods such as RR, PCR, and
PLS regression to the omic data set and analytically compared the results on a single data
set. Mahesh et al. [15] compared the estimates of protein content and hardness values of
Canadian wheat obtained at different sites and sowing times. OLS and PCR methods were
used for these comparisons. In the end, it was reached to a conclusion that the OLS model
performed better than the PCR model in estimating protein content and wheat hardness.
In an empirical study conducted by Simeon et al. [16], the classic OLS regression, RR and
PCR results were compared over gynecological data with multicollinearity. As a result, RR
was found to be the most appropriate statistical method. In an empirical study conducted
by Goharnejad, Zarei and Tahmasebi [17], multiple regression method, PCR, PLS regres-
sion and RR results were compared over pasture biomass data. The results showed that the
best estimates were given by the PLS regression and RR. Polat and Günay [18] conducted
a study where PLS regression, PCR, RR and OLS regression results were compared over a
real data set related to air pollution. Brito, Almeida and Matos [19] performed an applica-
tion on water flow rate in urban areas by applying the PLS method. Firinguetti, Kibria and
Araya [20] studied the OLS, PLS and RRmethods used in case of a multicollinearity prob-
lem. Results from the simulation study comparing the performances demonstrated that
RR performed better in cases where the error variance was large and that the PLS method
achieved the best results when the model included more variables. Kibria and Banik [21]
have performed a simulation study to present the power and nominal size of the test used
for the linear regression model for RR method only.

When these studies are examined, it becomes clear that comparisons have generally
been made on a single data set. As it is not possible to generalize results on the basis of a
single data set, the current study conducts a simulation under specific scenarios to present
more general conclusions. In the literature, the work done by Firinguetti, Kibria and Araya
[20] in this area is also a simulation study. However, the current study differs from theirs in
that the PCRmethod is also included and amore sophisticated simulation design has been
used. The findings obtained from our simulation study have thus been compared with the
results obtained by Firinguetti, Kibria and Araya [20].

3. Methodology

Multicollinearity is generally observed due to the strong correlation between explanatory
variables in regression models. The presence of multicollinearity increases the variance of
parameter estimates. While models with particularly small and medium sample sizes are
found to be strongly significant, the explanatory variables are individually less significant.
Multicollinearity can also lead to imprecise results about the relationship between depen-
dent and explanatory variables. Because of all these negativities, biased predictors used in
the case of multicollinearity are introduced below.
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3.1. Partial least squaremethod (PLS)

PLSmethod is amethod developed byWold [22], which is especially useful when the num-
ber of explanatory variables is large and the number of samples is small. PLS method aims
to find the number of components that maximizes the covariance between the dependent
and explanatory variables in a data set. In this method, centralization and rescaling are
performed to ensure that all variables are at the samemeasurement andmake comparisons
possible before conducting analyses.

In order to rotate the Y-dependent variable with X1, · · · ,Xp explanatory variables
via the PLS method, new components are obtained which have a similar role to the X-
explanatory variables and are generally identified as latent variables. The latent variables
obtained by reducing the size of the explanatory variables are linear combinations of the
explanatory variables. PLS pretends similar to PCR in terms of working with less factors in
place of all explanatory variables. In the PLS and PCR methods, the dimensionality of the
regression problem is reduced by using fewer components than the number of X variables.
Each component is a linear combination of X1, · · · ,Xp. The main difference between PLS
and PCR (given in the Sub-section 3.3) is that while determining the basic components in
PLS the dependent variable has an important role; whereas the basic components in the
PCR method do not use the dependent variable as a reference.

The PLS method gives linear decompositions of X by following a path similar to Prin-
cipal Component Analysis (PCA). In Equation (3.1), tj’s are the linear combination of
X. p × 1 dimensional pj’s are defined as loads. Algorithms called NIPALS and SIMPLS
are used to find PLS estimators. In the conventional NIPALS algorithm, the tj’s given by
Equation (3.2) are obtained as linear combinations of Ej residual matrices.

X = t1p
′
1 + t2p

′
2 + · · · + tpp

′
p =

p∑
j=1

tjp
′
j = TP′ (3.1)

tj = Ej−1wj, Ej = X −
j∑

i=1
tip

′
i E0 = X (3.2)

wj and rj (j = 1, 2, · · · , h) weight clusters are in the same space. wj’s here are orthonormal.
For univariate and multivariate PLS, it is necessary to first obtain wj or rj (j = 1, 2, · · · , h)
in order to calculate the linear combination of tj in many algorithms. Then by rotating X
matr tj, pj is found. The reduced dimension h is obtained and the following equations can
be written [5, 23].

Th = XRh (3.3)

Ph = X′Th(T
′
hTh)

−1 (3.4)

Rh = Wh(P
′
hWh)

−1 (3.5)

The subset h here consists of the first h sequences of the corresponding vectors of the
matrix. Equation (3.5) shows that a set of two weight vectors is combined to a linear
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transformation. Equations (3.3) and (3.4) show that P′
hRh = Ih and R′

hPh is equal to Ih.

R
′
hPh = R

′
hX

′Th(T
′
hTh)

−1 = T
′
hTh(T

′
hTh)

−1 = Ih (3.6)

After determining the dimension h, the vector of fitting values obtained with PLS can
be shown as in Equation (3.7).

ŷhPLS = Th(T
′
hTh)

−1T
′
hy (3.7)

When XRh is substituted in place of Th in Equation (3.7) and Xβ̂OLS is substituted in
place of y,

ŷhPLS = XRh(R
′
hX

′XRh)−1R
′
hX

′Xβ̂OLS (3.8)

is obtained. On the basis of Equation (3.8), it is expressed as

β̂h
PLS = Rh(R

′
hX

′XRh)−1R
′
hX

′Xβ̂OLS (3.9)

In the multivariate case, instead of ŷhPLS vector Ŷ
h
PLS matrix is used. By means of a non-

singular rotation, Rh in Equations (3.8) and (3.9) can be changed without changing the
outcome.Wh can be used in place of Rh. In order to reach a more simplified form of β̂h

PLS,
when the corresponding term in Equation (3.4) is written in place of Th in Equation (3.5);

Ph = X′XRh(R
′
hX

′XRh)−1 (3.10)

is obtained. From here, with the inequality in Equation (3.9);

β̂h
PLS = RhP

′
hβ̂OLS = Wh(P

′
hWh)

−1P
′
h β̂OLS (3.11)

is obtained. For the multivariate case;

β̂h
PLS = RhP

′
hB̂OLS = Wh(P

′
hWh)

−1P
′
h B̂OLS (3.12)

is obtained where matrixWh(P′
hWh)

−1 is a projection matrix. However, since this matrix
is not symmetrical, it is referred to as an oblique projector. The PLS regression predictor
for the h component shown in Equation (3.11) is the oblique reflection ofWh vertical to Ph
along Ph space on β̂OLS. The degree of bias in the PLS regression can be controlled with the
dimension of space corresponding to vertical reflection of β̂OLS. The smaller the dimension
is, the larger the bias is.

3.2. Ridge regressionmethod (RR)

The RR method is a method developed by Hoerl and Kennard (1970) to eliminate the
multicollinearity problem. The RR aims to reduce the degree of collinearity by adding pos-
itive and small k values to the diagonal elements of the X′X correlation matrix. Estimates
obtained using the RR method, are more reliable than the ones obtained with the OLS
method.

The use of the RR method is recommended for the following situations;
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(i) For finding estimates with a variance smaller than the OLS estimate in cases where
the explanatory variables are related to each other in the multiple linear regression
models,

(ii) In the case of strong multicollinearity, for the graphical representation of the
instabilities in coefficients,

(iii) For reducing the Mean Square Error (MSE) value by changing the variance and the
bias square in regression;

(iv) For eliminating the multicollinearity found in explanatory variables,

In theRRmethod,when calculating regression coefficient estimates, a small and positive
constant has been added to the diagonal elements of the X′X matrix. Thus, RR solution is,

β̂ = (X′X + kI)−1X′Y (3.13)

where I is the pxp dimensional unitmatrix andX′X is the correlationmatrix of the explana-
tory variables. Much work has been done on the selection of k value. However, there is no
work yet to provide a definite solution on the optimum k-value.

3.2.1. The relationship of the ridge estimator with the OLS estimator
The OLS estimator is determined to be,

β̂ = (X′X)−1X′Y (3.14)

It is clear from Equation (3.14) that the following equivalency can be obtained,

(X′X)β̂ = X′Y (3.15)

Remember that the ridge estimator was given as;

β̂∗ = (X′X + kI)−1X′Y (3.16)

When its equivalent given in Equation (3.15) is written in place of X′Y ,

β̂∗ = (X′X + kI)−1X′Xβ̂ (3.17)

is obtained. As the inverse of the inverse of (X′X) matrix is equal to itself, Equation (3.17)
may be rewritten as follows,

β̂∗ = (X′X + kI)−1[(X′X)
−1]−1β̂ (3.18)

As both of the matrices are not singular,

β̂∗ = [(X′X)
−1

(X′X + kI)]−1β̂ (3.19)

From here,

β̂∗ = [(X′X)
−1

(X′X) + k(X′X)
−1]−1β̂ (3.20)

is obtained. After the necessary operations,

β̂∗ = [I + k(X′X)
−1]−1β̂ (3.21)

is obtained.
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If

Z = [I + k(X′X)
−1]−1 (3.22)

Then

β̂∗ = Zβ̂ (3.23)

This equation shows that the ridge estimator is a transformation of the OLS estimator.
At the same time, the length of β̂∗ is shorter for k �= 0 than β̂ and shown as follows:

β̂∗′
β̂∗ < β̂

′
β̂ (3.24)

3.2.2. Characteristics of Z andWmatrices
The Ridge estimator was given as β̂∗ = (X′X + kI)−1X′Y . WhenW matrix is defined as,

W = (X′X + kI)−1 (3.25)

β̂∗ = WX′Y (3.26)

Matrix Z was defined as,

Z = [I + k(X′X)
−1]−1 (3.27)

From here, eigenvalues ofW matrices;

τi(w) = 1
λi + k

(3.28)

Eigenvalues of Z matrix:

τi(z) = λi

λi + k
(3.29)

is at the same time given with the following equation,

Z = I − k(X′X + kI)−1 = I − kW (3.30)

In our study, the ridge parameter estimate proposed by Hoerl and Kennard (1970) has
been used as follows,

k = σ̂ 2
OLS

max(β̂OLS)
(3.31)

3.2.3. Some characteristics of the ridge estimator
(i) (i) β̂(k) minimizes residual sum of squares on the origin-centered sphere whose

radius is in the length of β̂(k).
(ii) Residual sum of squares is the increasing function of k.
(iii) (iii) β̂(k)′β̂(k) < β̂ ′β̂ and k → ∞ for β̂(k)′β̂(k) → 0.
(iv) (iv) λ1 ≥ · · · ≥ λp, X′X being the eigenvalues, X′X + kI is the ratio of the biggest

eigenvalue to the smallest eigenvalue (λ1 + k)/(λn + I) and k is a decreasing
function. The square root of this ratio is called X condition number [24].
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(v) The Ridge estimator gives the OLS estimator for k = 0. Moreover, the ridge estima-
tor can also be written as a linear transformation of the OLS estimator:

β̂(k) = (X′X + kI)−1X′y

Hoerl and Kennard (1970) have shown that the total variance of the ridge estimator is a
continuous monotonically decreasing function of k and the square of the bias is a contin-
uous monotonically increasing function of k. Therefore, the ridge estimator is said to be a
good technique as long as the variance reduction is greater than the increase in the square
of the bias.

3.3. Principal component regression (PCR)

Another biased predictor used to eliminate multicollinearity is PCR. It was first used by
Hotelling [25]. PCR is applied to explanatory variables having high correlation between
them. It is also considered a dimension reduction method reserving the highest amount
of variance from the explanatory variables and assuring a lower number of uncorrelated
explanatory variables. These new explanatory variables are called components. The score
values of these components are used in the regression model established to explain the
outcome variable. Factor analysis is sometimes performed instead of PCR for dimension
reduction. The factor scores obtained as a result of factor analysis are used as explanatory
variables in regression analysis.

In PCR, the data matrix constituted by n (the number of observations) and p (the num-
ber of variables) can be expressed as a population formed by a large number of points
according to the state of X in p-dimensional space. If raw data is used in this matrix, the
variance-covariance matrix is utilized. However, if standardized data is used, the correla-
tionmatrix is utilized.Which of these twoways yielding different results is used depends on
the unit ofmeasure of the data. If the units ofmeasure are the same, the variance-covariance
matrix should be used, otherwise, the correlation matrix is preferable.

For reference, PCR is a multivariate statistical method that explains the variance-
covariance structure of a set of variables with linear combinations of these variables and
allows dimension reduction and interpretation.

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11 X12 X13 · · · X1j · · · X1p
X21 X22 X23 · · · X2j · · · X2p
...

...
...

. . .
...

. . .
...

Xi1 Xi2 Xi3 · · · Xij · · · Xip
...

...
...

. . .
...

. . .
...

Xn1 Xn2 Xn3 · · · Xnj · · · Xnp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

p different number of random variables can be specified as follows;

X1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11
X21
...

Xi1
...

Xn1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,X2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X12
X22
...

Xi2
...

Xn2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, · · · ,Xj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1j
X2j
...
Xij
...

Xnj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, · · · ,Xp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1p
X2p
...

Xip
...

Xnp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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In amathematical sense, the basic components are linear combinations ofX1,X2, · · · ,Xp
variables. Geometrically, these linear combinations aim at the generation of new indepen-
dent coordinate systems by rotating the original systems whose interrelated coordinate
axes are X1,X2, · · · ,Xp. Newly obtained axes show directions with maximum variance,
but at the same time allow the structure of change to be explained with simpler and fewer
numbers of variables. The equation for the first principal component of the X observation
matrix with highest information is:

Z1 = t11X1 + t21X2 + · · · + tp1Xp = t
′
1 (3.32)

Here, it can be written as;

t
′
1 = (t11, t21, · · · , tp1) andX′ = (X1,X2, · · · ,Xp) (3.33)

Eigenvalues and eigenvectors of the variance-covariance matrix are used to find the
linear components of p different variables presented in matrix X.

4. Simulation study

In this section, the efficiencies of the above-mentioned PLS, RR and PCR methods were
investigated via a simulation study. With the Minitab 16.0 programme, a great number of
varying groups of datasets are generated from standard normal distribution allowing for
the inclusion of different degrees of collinearities for 10000 replications. The design of the
study is based on simulation work that has been performed for six different degrees of
multicollinearity levels (0.0, 0.3, 0.5, 0.7, 0.9, 0.99), three different number of variables (4,
7 and 9) and six different sample sizes (30, 50, 100, 200, 500 and 1000). The three proposed
prediction regression methods are applied to the generated data. The Mean Square Error
(MSE) value of the parameter estimates for each of these models is calculated and their
means are computed. β∗ and β in Equation (4.1) denote parameter estimation and the real
parameter value, respectively.

MSE(β∗) = 1
10000

10000∑
i=1

p∑
j=1

(β∗ − β)′(β∗ − β) (4)

Taking these MSE values into consideration, an attempt is made to determine which of
the PLS, RR and PCR methods is more preferable under which condition. The mean MSE
values obtained from the generated data are shown in Table 1; graphical representations of
the results are given in App.1. Explanatory variables (X) were generated as follows,

xij = (1 − ρ2
j )

1/2uij + ρjuip, j = 1, · · · , p − 1; i = 1, · · · , n

uij ∼ N(0, 1), j = 1, · · · , p ; i = 1, · · · , n
Observations for the dependent variable were obtained with the following equation.

Yi = β1 + β2Xi2 + β3Xi3 + . . . + βpXip + εi, i = 1, · · · , n
In the preliminary study, models were created with different mass parameter values.

However, it was observed that parameter selection did not change the end result. For this
reason, all of the mass parameters in our study were taken as ’1’.
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Table 1. MSE Values.

n= 30 n= 50 n= 100

ρ PLS PCR RR ρ PLS PCR RR ρ PLS PCR RR

p= 4 0 0.0423 0.4303 0.0349 0 0.0222 0.4283 0.0227 0 0.0121 0.3952 0.0109
0.3 0.0380 0.1824 0.0378 0.3 0.0211 0.1386 0.0216 0.3 0.0108 0.1328 0.0104
0.5 0.0440 0.127 0.047 0.5 0.0238 0.1022 0.0264 0.5 0.0116 0.0967 0.0129
0.7 0.0538 0.0748 0.0591 0.7 0.0365 0.0746 0.0385 0.7 0.0206 0.0622 0.0210
0.9 0.1745 0.0662 0.1695 0.9 0.0786 0.0432 0.0843 0.9 0.0500 0.0340 0.0491
0.99 1.2815 0.3121 0.5200 0.99 0.7709 0.1927 0.3895 0.99 0.3780 0.0988 0.2621

p= 7 0 0.0673 0.6716 0.0477 0 0.0326 0.5923 0.0256 0 0.0125 0.5995 0.0113
0.3 0.0431 0.2655 0.0421 0.3 0.0276 0.2055 0.0261 0.3 0.0137 0.1840 0.0107
0.5 0.0407 0.1454 0.0556 0.5 0.0224 0.1225 0.0301 0.5 0.0127 0.1128 0.0157
0.7 0.0534 0.0806 0.0835 0.7 0.0297 0.0693 0.0460 0.7 0.0187 0.0610 0.0233
0.9 0.1237 0.0404 0.1767 0.9 0.0791 0.0339 0.1166 0.9 0.0426 0.0263 0.0543
0.99 1.1879 0.1314 0.6007 0.99 0.7797 0.0868 0.4316 0.99 0.4084 0.0460 0.2597

p= 9 0 0.0957 0.7329 0.0543 0 0.0432 0.7429 0.0247 0 0.0169 0.7265 0.0120
0.3 0.0567 0.2868 0.0538 0.3 0.0342 0.2396 0.0250 0.3 0.0195 0.1974 0.0123
0.5 0.0394 0.1451 0.0659 0.5 0.0254 0.1252 0.0347 0.5 0.0129 0.1093 0.0148
0.7 0.0430 0.0760 0.0991 0.7 0.0300 0.0651 0.0504 0.7 0.0153 0.0561 0.0223
0.9 0.1089 0.0304 0.2185 0.9 0.0783 0.0267 0.1132 0.9 0.0409 0.0204 0.0602
0.99 1.0542 0.1044 0.7882 0.99 0.6874 0.0665 0.5328 0.99 0.3796 0.0382 0.3379

n= 200 n= 500 n= 1000

ρ PLS PCR RR ρ PLS PCR RR ρ PLS PCR RR

p= 4 0 0.0052 0.3988 0.0051 0 0.0018 0.3957 0.0018 0 0.0010 0.4055 0.0010
0.3 0.0046 0.1259 0.0048 0.3 0.0023 0.1278 0.0020 0.3 0.0012 0.1266 0.0010
0.5 0.0049 0.0898 0.0054 0.5 0.0022 0.0890 0.0024 0.5 0.0013 0.0890 0.0012
0.7 0.0117 0.0587 0.0094 0.7 0.0060 0.0565 0.0036 0.7 0.0036 0.0555 0.0018
0.9 0.0261 0.0288 0.0237 0.9 0.0136 0.0241 0.0111 0.9 0.0086 0.0223 0.0048
0.99 0.1853 0.0503 0.1621 0.99 0.0762 0.0224 0.0826 0.99 0.0383 0.0125 0.0459

p= 7 0 0.0056 0.6170 0.0050 0 0.0021 0.5835 0.0020 0 0.0010 0.6248 0.0010
0.3 0.0093 0.1707 0.0054 0.3 0.0042 0.1578 0.0021 0.3 0.0010 0.0153 0.0010
0.5 0.0059 0.1018 0.0062 0.5 0.0028 0.1008 0.0029 0.5 0.0012 0.0031 0.0012
0.7 0.0091 0.0582 0.0101 0.7 0.0042 0.0558 0.0041 0.7 0.0017 0.0011 0.0016
0.9 0.0234 0.0220 0.0288 0.9 0.0119 0.0200 0.0116 0.9 0.0045 0.0009 0.0041
0.99 0.2108 0.0260 0.1508 0.99 0.0858 0.0110 0.0678 0.99 0.0438 0.0058 0.0362

p= 9 0 0.0063 0.7193 0.0053 0 0.0021 0.7232 0.0020 0 0.0010 0.7007 0.0010
0.3 0.0120 0.1759 0.0060 0.3 0.0069 0.1668 0.0022 0.3 0.0040 0.1612 0.0011
0.5 0.0074 0.1019 0.0073 0.5 0.0037 0.0962 0.0027 0.5 0.0024 0.0977 0.0014
0.7 0.0089 0.0530 0.0111 0.7 0.0038 0.0514 0.0044 0.7 0.0022 0.0519 0.0021
0.9 0.0239 0.0183 0.0354 0.9 0.0109 0.0166 0.0131 0.9 0.0072 0.0168 0.0062
0.99 0.1968 0.0221 0.2062 0.99 0.0817 0.0103 0.1029 0.99 0.0416 0.0063 0.0575

4.1. Results and discussion

When the results given in Table 1 and Figures 1–6 are generally evaluated,

(i) Regardless of the sample size and the number of variables, the MSE value obtained
via PCR is always decreasing with increasing level of correlation.

(ii) Parallel to the study by Firinguetti, Kibria and Araya [20], regardless of the method
used, with increasing sample size, the MSE values of the obtained models decrease.

(iii) Contrary to the findings reported by Firinguetti, Kibria and Araya [20], there was a
significant decrease in theMSE values obtained by the RRmethod as the sample size
increased regardless of the level of the relationship. This is because the ridge param-
eter estimation methods used in both studies are different. The ridge parameter we
considered in our study was chosen as one of the best ridge parameters obtained
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Figure 1. For n= 30, Line Graphs for MSE Values Obtained from PLS, PCR and RR Methods.

Figure 2. For n= 50, Line Graphs for MSE Values Obtained from PLS, PCR and RR Methods.

Figure 3. For n= 100, Line Graphs for MSE Values Obtained from PLS, PCR and RR Methods.

Figure 4. For n= 200, Line Graphs for MSE Values Obtained from PLS, PCR and RR Methods.

from the study by Göktaş and Sevinç [26], which compared thirty-seven different
ridge parameters.

(iv) Unlike the study of Firinguetti, Kibria andAraya [20], the PCRmethodwas included
in the simulation design in addition to the others. In literature, it is generally stated
that PLS method is better than PCR in many of the studies performed on a single
dataset. Yet, although it is frequently stated that the PLS method is superior to the
PCR method as it is a method that considers the dependent variable information,
according to the simulation results, however it is determined that this interpretation
is not correct for each sample or each level of correlation.
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Figure 5. For n= 500, Line Graphs for MSE Values Obtained from PLS, PCR and RR Methods.

Figure 6. For n= 1000, Line Graphs for MSE Values Obtained from PLS, PCR and RR Methods.

(v) In the study by Firinguetti, Kibria and Araya [20], no definite conclusion was
reached as to which of the RR and PLS methods was superior in each case. It was
determined that RR gave better results than PLS only when the number of explana-
tory variables was smaller. In our study, when the level of correlation was very
low (< = 0.3), better results were obtained with the RR method; whereas the PLS
method gave better results when the correlation was moderate.

(vi) Generally, only at very high levels of correlation (ρ ≥ 0.9) did PCR yield better
results than the other two methods (n< = 200).

(vii) When the sample size was too large (n ≥ 500), the results obtained with RR were
found to be much better.

5. Application on real data set

In order to compare the use of the estimators investigated in the current study and their
performance on real data, ’Wage’ data of 11 variables and 534 individuals taken from the
Current Population Survey (CPS) in 1985 were used.

The definitions of dependent and explanatory variables in the data set used are given
below.

Y : Wage (dollars per hour)
X1: Occupational category (1=Management; 2=Sales; 3=Clerical; 4=Service;

5=Professional; 6=Other)
X2: Sector (0=Other; 1=Manufacturing; 2=Construction)
X3: Union (1=Union member; 0=Not union member)
X4: Education (Number of years)
X5: Experience (Number of years)
X6: Age (Years)
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Table 2. ANOVA table.

Model Sum of Squares df Mean Square F Sig.

Regression 3948.391 10 394.839 20.388 0.000
Residual 10128.308 523 19.366
Total 14076.699 533

Table 3. Coefficients.

Unstandardized coefficients
Collinearity
Statistics

B Std. Error t Sig. VIF

Constant −2.040 6.879 −0.297 0.767
X1 −0.153 0.131 −1.165 0.245 1.298
X2 0.719 0.388 1.855 0.064 1.199
X3 1.517 0.525 2.889 0.004 1.121
X4 1.326 1.108 1.197 0.232 231.196
X5 0.525 1.109 0.473 0.636 5184.094
X6 −0.428 1.108 −0.386 0.699 4645.665
X7 −2.144 0.399 −5.370 0.000 1.092
X8 0.425 0.420 1.013 0.311 1.096
X9 0.479 0.285 1.676 0.094 1.037
X10 −0.698 2.332 −1.628 0.104 1.047

Table 4. Correlation coefficients between the
variables with high degrees of collinearity.

X4 X5 X6

X4 1 −0.306 (0.000) −0.107 (0.013)
X5 1 0.973 (0.000)
X6 1

Note: Terms in parentheses give p values.

X7: Sex (1=Female; 0=Male)
X8: Marital Status (0=Unmarried; 1=Married)
X9: Race (1=Other; 2=Hispanic; 3=White)
X10: Southern Region (1=Person lives in South; 0=Person lives elsewhere)

OLS estimation and collinearity diagnostic results in Tables 2 and 3 show that the VIF
values of X4, X5 and X6 variables are significantly large (VIF > > 10) and all p values that
had previously been expected to be significant were found to be insignificant. These results
suggest that correlations between variables and collinearity degree may be significant and
high.

Since variables are quantitative but not continuous, Spearman rank correlation coeffi-
cients were calculated instead of Pearson correlations and are presented in the table below
Table 4.

The results obtained when the PLS, PCR and RR biased methods that were used as
alternatives to OLS were applied to these data are given in Table 5.

TheMSE results show that even though theMSE result of themodel predicted byOLS is
smaller than those of the others, as the collinearity of themodel is high, themodel predicted
by OLS is unusable. Therefore, if one must make a choice between the biased prediction
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Table 5. Regression parameter estimates from OLS, RR,
PCR and PLS.

OLS_B RR_B PCR_B PLS_B

(Constant) −2.040 −0.482 −8.530 −4.251
X1 −0.153 −0.154 0.035 −0.161
X2 0.719 0.674 0.057 0.493
X3 1.517 1.334 0.432 1.705
X4 1.326 1.438 0.068 0.793
X5 0.525 0.665 −0.365 0.019
X6 −0.428 −0.571 −0.304 0.060
X7 −2.144 −2.006 −0.384 −2.159
X8 0.425 0.392 −0.075 0.606
X9 0.479 0.395 −0.038 0.570
X10 −0.698 −0.686 0.048 −1.072
MSE 18.338 19.389 21.060 19.170

methods, the model of the method that gives the smallest MSE value is desired. According
to our results, the smallest MSE value was obtained by the PLS method. As there are 534
observations, 10 independent variables and a high collinearity degree in the data set used
in the application, we can compare the results with n = 500, p = 9, and ρ = 0.9 in the
simulation design. Accordingly, it can be said that the results obtained in the application
are parallel to the simulation results.

6. The concluding remarks

In the current study, the PLS, RR and PCR methods used to solve the problem of multi-
collinearity emerging in multiple linear regressionmodels were compared. For the data set
obtained through simulation, which of these methods give more effective results depend-
ing on the number of variables, sample size and correlation level has been shown. However,
in a similar study by Firinguetti, Kibria and Araya [20], it was pointed out that there is no
biased prediction method that demonstrated a superior performance for a particular case.
Beside the inclusion of the PCR method, priorities for each method were determined for
different cases in the current study. In particular, it was observed that at certain levels of
correlation, the question of which method is more preferable could be easily answered. In
cases where the level of correlation was very low (ρ ≤ 0.3), RR methods have yielded bet-
ter results; whereas in the case of moderate level correlation, the PLS method generally is
better. Only at very high levels of correlation (ρ ≥ 0.9), the PCR method yielded surpris-
ingly much better results than both PLS and RR. Furthermore, when the sample size was
large (n ≥ 500), it was observed that PLS and RR generally were considerably improving.
When the degree of collinearity increases the MSE values obtained from PLS and RR are
increasing no matter what the sample size or the number of regressors is whereas the MSE
values obtained from PCR method keeps decreasing which is interesting. In conclusion
PCR method produces much better estimates when there exists severe multicollinearity
among regressors.

For illustration an empirical study of the popular ’Wage’ dataset from Current Popu-
lation Survey (1985) where the sample can be treated as n = 500, p=9, and ρ = 0.9 or
ρ = 0.99 has been used to make the comparison among the bias predictionmethods. The
results (Tables 2–5) obtained are supporting the simulation results in favour of PLSmethod.
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In addition this study offers guidance to researchers who have to use biased prediction
methods, simplifying method choice by taking into account degree of multicollinearity,
number of independent variables and sample size used.
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