
High-Throughput Identification and Screening of Novel
Methylobacterium Species Using Whole-Cell MALDI-TOF/
MS Analysis
Akio Tani1*, Nurettin Sahin2, Yumiko Matsuyama3, Takashi Enomoto1, Naoki Nishimura4, Akira Yokota5,

Kazuhide Kimbara6

1 Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, Japan, 2 Faculty of Education, Mugla Sitki Kocman University, TR-48170

Kotekli, Mugla, Turkey, 3 Bruker Daltonics, K.K., 3-9 A6F, Moriya, Kanagawa, Yokohama, Japan, 4 Botanical Garden, Okayama University of Science Japan, 1-1 Ridai-cho,

Okayama, Japan, 5 Faculty of Mathematics and Natural Sciences, University of Indonesia, Campus UI, Depok, Indonesia, 6 Faculty of Engineering, Shizuoka University, 3-5-1

Johoku, Kita-ku, Hamamatsu, Japan

Abstract

Methylobacterium species are ubiquitous a-proteobacteria that reside in the phyllosphere and are fed by methanol that is
emitted from plants. In this study, we applied whole-cell matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry analysis (WC-MS) to evaluate the diversity of Methylobacterium species collected from a variety of plants. The
WC-MS spectrum was reproducible through two weeks of cultivation on different media. WC-MS spectrum peaks of M.
extorquens strain AM1 cells were attributed to ribosomal proteins, but those were not were also found. We developed a
simple method for rapid identification based on spectra similarity. Using all available type strains of Methylobacterium
species, the method provided a certain threshold similarity value for species-level discrimination, although the genus
contains some type strains that could not be easily discriminated solely by 16S rRNA gene sequence similarity. Next, we
evaluated the WC-MS data of approximately 200 methylotrophs isolated from various plants with MALDI Biotyper software
(Bruker Daltonics). Isolates representing each cluster were further identified by 16S rRNA gene sequencing. In most cases,
the identification by WC-MS matched that by sequencing, and isolates with unique spectra represented possible novel
species. The strains belonging to M. extorquens, M. adhaesivum, M. marchantiae, M. komagatae, M. brachiatum, M.
radiotolerans, and novel lineages close to M. adhaesivum, many of which were isolated from bryophytes, were found to be
the most frequent phyllospheric colonizers. The WC-MS technique provides emerging high-throughputness in the
identification of known/novel species of bacteria, enabling the selection of novel species in a library and identification
without 16S rRNA gene sequencing.
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Introduction

The surface of plant leaves (phyllosphere) is a preferred niche

for various kinds of bacteria. Healthy leaf surface contains 106 to

107 bacterial cells/cm2 of leaf, and the terrestrial leaf surface area

that may be colonized by microbes is estimated to be approx-

imately 6.46108 km2 [1]. Plants emit a huge amount of various

volatile organic compounds, including C1 compounds such as

methane [2] and methanol. The global emission of methanol from

plants is estimated to be 100 Tg per year [3,4] as a result of pectin

degradation during plant cell elongation and division [5].

The community composition of phyllospheric bacteria has been

studied in a number of culture-independent studies, which

demonstrate that the predominant species belongs to a- and c-

proteobacteria, and are dependent on plant species (clone library

method, reviewed in [6]). A recent metagenomic study showed

that a-proteobacteria predominate the phyllosphere of soybean

samples up to 42.8%, including Methylobacterium species as one of

the main components. A concomitant meta-proteomic study

demonstrated an abundance of the enzymes involved in methanol

oxidation originated from the species [7]. Thus, methanol is

unequivocally one of the important carbon and energy sources for

Methylobacterium species inhabiting the phyllosphere.

Plant species and, more strongly, location, influence the phyllo-

spheric Methylobacterium community composition [8]. Moreover, in a

competition experiment, M. extorquens strain PA1 was reported to be a

highly competitive colonizer in a model experimental system using

Arabidopsis [9]. Many isolates that belong to the genus are known to

promote plant growth, possibly by synthesizing plant hormones such

as auxin [10,11,12] and cytokinin [13,14], and through the activity of

1-aminocyclopropane-1-carboxylate (ACC) deaminase, which lowers

ethylene levels in plants [15,16]. Their other activities, such as
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siderophore production [15], nitrogen fixation [17], and calcium

phosphate solubilization [18] are considered to be involved in

nutrient acquisition for plants. Thus, the genus is considered to be one

of the major bacteria affecting plant growth.

At the time of writing, the genus comprises 35 recognized species

(http://www.bacterio.cict.fr/m/methylobacterium.html). An in-

creasing number of descriptions for novel species in the genus, many

of which were isolated from plants, have been reported. The genus

contains species sharing higher than 97% [19] and even more than

98.6% [20] pairwise similarity of 16S rRNA gene sequences,

rendering it difficult to differentiate the species. For precise

classification, the DNA-topoisomerase gene (gyrB) and methanol

dehydrogenase gene (mxaF) were also used [21,22] as alternative

molecular evolutionary markers. A cultivation-independent method,

automated ribosomal intergenic spacer analysis (ARISA), has been

applied to evaluate Methylobacterium communities of leaf samples [8–9]

[23], revealing that there are many species of potentially new lineages.

Recent advances in mass spectrometry have shed light on the

rapid and precise identification and classification of microorgan-

isms. Whole-cell matrix-assisted laser desorption ionization-time of

flight mass spectrometry (WC-MS) profiling of whole cell proteins

is an emerging technology for the identification of bacteria. WC-

MS-based identification can accurately resolve bacterial identity at

the genus, species, and subspecies levels in some taxa [24]. The

mass spectral profiles primarily represent ribosomal proteins,

which are the most abundant cellular proteins and are synthesized

under all growth conditions [25]. Therefore, the spectral

fingerprints are reproducible even in different growth media and

cell growth states [25]. Different mass spectral fingerprints enable

the correct identification of unknown strains through comparison

with a reference library of known strains. The fingerprints can also

be used to construct a hierarchical dendrogram (cluster analysis)

based on the spectral similarity [26,27,28].

In this study, we applied the WC-MS technique to classify and

identify Methylobacterium isolates collected from various plant

samples. For this purpose, we first optimized the analytical

condition and analyzed the attribution of the detected peaks. Next,

we established a method for rapid identification and clustering

analysis based on the spectral similarity using the type strains, and

then evaluated the relationship between similarities based on

16SrRNA gene sequences and on WC-MS spectra. Furthermore,

we analyzed 213 isolates belonging to the genus Methylobacterium

from plants with WC-MS using MALDI Biotyper software (Bruker

Daltonics). Though limited, the relation between the isolates and

plant species as isolation sources was analyzed, and a brief

phenotypic characterization of isolates was also conducted.

Materials and Methods

Media for Isolation and Cultivation
The methanol medium used in this study contained 0.3 g (NH4)

2HPO4, 0.1 g KCl, 0.05 g yeast extract, 0.1 mg MgSO4.H2O,

10 mL vitamin solution, 10 mL metal solution, and 5 mL methanol

per liter. The vitamin solution contained 0.4 g calcium pantothe-

nate, 0.2 g inositol, 0.4 g niacin, 0.2 g p-aminobenzoic acid, 0.4 g

pyridoxine HCl, 0.4 g thiamin HCl, 0.2 g biotin, and 0.2 g vitamin

B12 per liter. The metal solution contained 1.9 g CoCl2.6H2O,

1.0 g MnCl2.6H2O, 0.7 g ZnCl2, 0.06 g H3BO3, 0.36 g Na2-

MoO4.H2O, 0.24 g NiCl2.6H2O, and 0.02 g CuCl2.2H2O per

liter. R2A medium (Difco) was also used.

Isolation of Methylobacterium Species from Various Plants
Leaf samples of various plants natively grown or cultured in the

area or farm field in the Institute of Plant Science and Resources,

Okayama University (Kurashiki, Okayama Japan) were collected

in April 2008. No specific permits were required for the described

field studies. The location is not protected in any way, and the field

studies did not involve endangered or protected species. A piece of

each leaf sample was briefly washed with 50 mL sterile water to

remove dust, and then washed vigorously with 10 mL sterile

water. Next, the wash solution was spread on methanol medium

containing 50 mg/L cycloheximide. Samples that were not plants

were appropriately diluted or suspended in water and spread as

above. After incubation at 28uC for 3 to 7 days, pink-pigmented

colonies were preferentially picked up and purified by re-streaking

on agar plates of the same medium. When no pink-pigmented

colonies were obtained, the leaf suspension (50 mL) was inoculated

in 5 ml liquid methanol medium. After cultivation at 28uC for 3

days, the appropriately diluted media were spread onto the

solidified methanol medium, and pink-pigmented colonies were

isolated. The names of these isolates were designated as the ‘‘z’’

series.

In total, 409 isolates were obtained. They were then subjected to

a growth test in liquid methanol medium. Approximately half of

the isolates exhibited turbidity in liquid medium, and their

colonies grown on methanol solid medium were subjected to WC-

MS analysis, as described below. For some isolates exhibiting poor

growth on methanol medium, colonies grown on R2A solid

medium were used. Almost all type strains of Methylobacterium

species were included in the analysis. M. thiocyanatum JCM 10893

and M. platani JCM 14648 were provided by the RIKEN BRC

through the National Bio-Resource Project of the MEXT, Japan.

The type strains of M. populi [29], M. cerastii [30], and some that

have been published but not validated, such as ‘‘M. funariae’’ [31],

‘‘M. goesingense’’ [32], and ‘‘M. longum’’ [33], were not included in

our mass spectrometry analysis.

WC-MS Procedure
A loopful of well-grown bacterial cells from the last quadrant of

streaked colonies (3–7 days old, usually 5–10 mg wet weight) from

methanol mineral agar or R2A agar was suspended in 300 mL of

75% ethanol. The samples could be stored at -20uC without

recognizable spectral changes (data not shown). The suspension

was then centrifuged at 15,000 rpm for 2 min. The supernatant

was discarded completely and 50 mL of 70% formic acid was

added and mixed well. Next, 50 mL of acetonitrile was added and

mixed well again. One microliter of the sample was placed onto a

spot of a MALDI steel target plate and dried in air. Then, 2 mL of

matrix solution (saturated solution of sinapinic acid in 50%

acetonitrile and 2.5% trifluoroacetic acid) was overlaid onto the

sample, and the samples were dried in air.

The samples were analyzed with MALDI-TOF/MS equipped

with a 50 Hz nitrogen laser (Ultraflex, Bruker Daltonics). Mass

spectra were obtained using a positive linear mode in the range of

mass to charge ratio (m/z) 2,000 to 20,000 with suppression

800 Da (parameter settings: ion source 1, 25 kV; ion source 2,

23.35 kV; lens, 6.35 kV; detector gain, 8.4 x). Protein standard

was comprised of insulin ([M+H]+ = 5734.56), ubiquitin-I

([M+H]+ = 8565.89), cytochrome c ([M+H]+ = 12361.09 and

[M+2H]2+ = 6181.05), and myoglobin ([M+H]+ = 16952.55 and

[M+2H]2+ = 8476.77) (Bruker Daltonics). The laser shots were

applied until the intensity (arbitary unit) of the highest peak

reached between 6000 and 10,000 (usually 300–1000 shots).

Escherichia coli DH5a (a derivative of E. coli K12) was also used as

a standard to evaluate the method. The overnight-grown cells in

LB liquid medium were used to evaluate the technique, and

attribution of the detected peaks to ribosomal proteins was

confirmed.

Whole-Cell Mass Spectrometry of Methylobacterium
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WC-MS in Different Growth Conditions
To check whether WC-MS patterns change depending on

cultivation time, M. extorquens strain AM1 (ATCC 14718) was

cultured in liquid and on solid medium of methanol medium and

R2A, and the samples were analyzed every day for 2 weeks. The

cells from solid cultures were treated as described above. The cells

in liquid culture medium (200 mL) were collected by centrifuga-

tion (5 mL each time), washed with water, and treated as above.

Purification of Ribosomal Protein
Ribosomal proteins from strain AM1 grown on methanol

medium were purified following the method reported previously

[34]. The MS spectra of ribosomal proteins were compared with

the aforementioned WC-MS profile to identify the detected

protein peaks based on the genome information of the strain.

Clustering Analysis of WC-MS Profiles
The WC-MS data of the isolates were analyzed by MALDI

Biotyper software (Bruker Daltonics) to construct a dendrogram

based on the mass spectra, under default analysis parameters

(distance measure, correlation; linkage, average). After con-

struction of the tree, 80 strains representing each cluster were

selected and used for further study. Some strains in the same

branch were also selected for further characterization to

confirm their identity and to demonstrate the reliability of

Biotyper-based classification.

To establish a Biotyper-independent technique, we developed a

method for cluster analysis based on WC-MS data. The obtained

WC-MS data were imported to SpecAlign software [35], followed

by spectrum smoothing (3 cycles Savitsky–Golay smoothing) and

baseline subtraction. The relative intensity data were used to

generate an average spectrum. The spectra aligned with the peak

matching method (maximum shift, 20) were exported to a

spreadsheet. The binary data (peaks showing .5% relative

intensities were counted as 1 and the others as 0) of m/z 3,500

to 20,000 were used for ‘cluster analysis with XLSTAT software

(Addinsoft, Paris). The Pearson correlation coefficient and group

average method were used to generate a proximity matrix and to

generate a dendrogram. The correlation between the WC-MS

data matrix of the type strains of Methylobacterium species and that

of the 16S rRNA pairwise similarity matrix were analyzed by

Mantel test statistics using XLSTAT.

16S rRNA Gene Sequencing
The selected isolates of the representative clusters were

subjected to 16S rRNA gene sequencing [36]. Sequencing was

carried out using an automated DNA sequencer (model 3130;

Applied Biosystems) and a ca. 1.5 kb sequence was determined.

Phylogenetic analysis was carried out using SILVA Aligner [37]

and MEGA5 software [38] after multiple data alignments. Genetic

distances were obtained by Kimura’s two-parameter distance

model [39]. Phylogenetic trees were constructed by the neighbor-

joining method [40]. The robustness for individual branches was

estimated by bootstrapping with 1,000 replicates [41]. Pairwise

nucleotide sequence similarity values were calculated using the

EzTaxon server version 2.1 [42]. The alignment gap was not

considered in the similarity calculation.

Methylotrophic fungi were also isolated in this study; they were

identified by 28S rRNA gene sequencing, as described previously

[43].

Physiological Properties and Phenotypic Characterization
of the Isolates

The characteristics of our isolates, which were considered to be

important for interaction with plants, were determined. PQQ

production ability was examined as reported previously [44].

Auxin (indole acetate) was measured as reported [45] using 0.5%

methanol instead of glucose. Growth was tested on nitrogen-free

medium (1 g K2HPO4, 0.2 g MgSO4, 1 g CaCO3, 0.2 g NaCl,

5 mg FeSO4, 10 g glucose [or 5 mL methanol] per liter, and 1.5%

agar; pH 7.0) to examine their growth on this medium. The

presence of the nitrogenase gene (nifH) was surveyed by

polymerase chain reaction (PCR) with nifH-a2 primer sets [46].

National Botanical Research Institute’s Phosphate (NBRIP)

growth medium [47] was used for the calcium phosphate (Ca-P)

solubilization assay. Siderophore production was also tested

according to the published method [48]. Their utilization of

sugars, and the activities of urease, DNase, and oxidase were also

tested.

Nucleotide Accession Numbers
The GenBank/EMBL/DDBJ accession numbers for the 16S

and 28S rRNA gene sequences reported in this paper are listed in

Table S5.

Results and Discussion

Isolation of Methylobacterium Species from Various Plants
In order to determine methylotrophic species diversity and to

partially characterize Methylobacterium-plant association specificity,

we isolated pink-pigmented methylotrophs from various plant

samples (112 samples). Since we were also interested in non-

Methylobacterium methylotrophs, many non-pigmented strains were

also isolated. After the isolation of 409 strains by plating,

approximately half of them did not exhibit growth in liquid

methanol medium. Most of them were non-pigmented, and were

therefore not used in further study (data not shown). A total of 213

methylotrophic isolates were used in further study (Table S1).

Effect of Culture Media and Cultivation Time on WC-MS
Profile

To check whether culture conditions affect the WC-MS profile,

strain AM1 was cultivated under different conditions for 14 days.

Figure S1 shows WC-MS patterns as gel-like images; these were

created with mMass 5.0 software [49]. Even though the intensity

of each peak changed according to time and medium, most of the

detected peaks in these conditions were identical throughout the

cultivation time. Only in the earliest cultivation time, did the

patterns differ in comparison to the older ones. Most of the

detected peaks in these samples, however, were also detected in

older samples, although their peak intensities were different. These

results suggested that the age of cells and medium composition

affected the WC-MS peak intensity but did not have a strong affect

on the position of detected peaks. WC-MS patterns have been

reported to change according to cultivation time in E. coli [50] and

B. subtilis [51]. This is due to the adaptation of cells to the changing

chemical environment during cultivation. The reason why drastic

changes in patterns were not observed may be that a nutrient-poor

medium was used in this study. We used cells grown on solid

methanol medium for 5 to 7 days–during this time, the WC-MS

pattern did not change significantly.

Whole-Cell Mass Spectrometry of Methylobacterium
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Identification of the Peaks Detected in WC-MS and
Purified Ribosome

We evaluated our WC-MS technique using E. coli DH5a cells

prepared as described in the Materials and Methods section.

Among the 58 ribosomal proteins encoded in the E. coli K12

genome, 50 proteins have a molecular weight less than 20,000 Da.

We could detect peaks of 30 ribosomal proteins within the range

(RL7, 13, 15, 18–23, 25, and 27–36, and RS8, 10, 13–15, and 18–

22), and their post-translationally modified molecular weights were

identical to those previously reported [50] (data not shown). Thus,

WC-MS can detect ribosomal proteins using intact cells, without

the use of purified ribosome. When the cells were used, peaks that

could not be attributed to the ribosomal proteins were also

detected. These can be attributed to ribosomal proteins with

unknown modifications or abundantly produced non-ribosomal

proteins. Ribosomal proteins were modified by methionine loss

according to the N-terminal rule [52], methylation, acetylation,

methylthiolation, phosphorylation, and others [50]. Although the

biological significance of these modifications is not yet clear,

phosphorylation in many ribosomal proteins is involved in the

function and regulation of protein synthesis [53]. Moreover, a C-

terminal 8 amino acids loss for RL31, nine methylations for RL11,

and an unknown modification for RL16 also occurs in E. coli [50].

Next, we compared the spectra of the purified ribosomal

proteins and WC-MS, using M. extorquens strain AM1. Table 1 is a

list of the ribosomal proteins detected in the analyses of WC-MS

and the ribosome fraction. Among 54 ribosomal proteins encoded

in the genome, 41 were in the analysis range (m/z 2,000–20,000).

Of these, 19 (WC-MS) and 23 (purified ribosome) proteins were

detected. Those with higher molecular weight were not detected

effectively due to the ion suppression effect. The detected m/z was

in accordance with the molecular weight of proteins following the

N-terminal rule [52]. The subunits L33 and S12 were detected as

methylated and b-methylthiolated forms, respectively (they are so

modified in E. coli). Other undetected ribosomal proteins were

modified in unknown forms, since we detected many other peaks

that were unattributable to ribosomal proteins in the range.

Within the genome database, we searched the proteins with the

molecular weights of the detected masses in the ribosome fraction

sample. Table S2 is a list of m/z detected in ribosomal protein

fraction and the identification of proteins. Many of the peaks in the

low m/z range (,5000 m/z) could not be attributed to any

proteins encoded in the genome. These may contain bivalent ions

(M+2H+) or unannotated proteins. Most of the peaks could only be

attributed to hypothetical proteins, whose functions are unknown.

It is possible that the peaks that were unattributable to ribosomal

proteins are ribosomal proteins that are modified in unknown

forms. Determination of these modifications necessitates more

intensive proteomic study using separated ribosomal proteins. The

modifications of ribosomal proteins in bacteria other than E. coli

are largely uncharacterized.

We also identified the peaks detected in WC-MS using strain

AM1 cells grown on methanol for 6 days (Table S3). Similarly,

most of the detected peaks were unattributable to any protein or

were attributable to some hypothetical proteins. Interestingly,

pyrroloquinoline quinone (PQQ) synthesis protein A, cold shock

DNA binding protein (CspA), protein hfq, RNA-binding host

factor, and granule-associated 11 kDa protein, which were not

detected in the ribosomal protein fraction, were observed as

possible proteins.

Figure 1. WC-MS profiles of the type strains of Methylobacterium species, and dendrogram calculated by our method. The spectra (m/z
2000–15,000) of relative intensity are shown as gel-like images using mMass 5.0 software [49]. Asterisks indicate the type strains showing similar
spectra and are discussed in the text.
doi:10.1371/journal.pone.0040784.g001

Whole-Cell Mass Spectrometry of Methylobacterium

PLoS ONE | www.plosone.org 6 July 2012 | Volume 7 | Issue 7 | e40784



At first glance, the overall spectral patterns of purified ribosomal

proteins and WC-MS appeared considerably different, but there

were peaks in common, most of which could be attributed to

ribosomal proteins. Although the further identification of detected

peaks is of interest, the spectral pattern in WC-MS was sufficient to

use as a fingerprint for strain identification and classification.

Clustering Analysis Using Methylobacterium-type Strains
and Concordance between WC-MS &16S rRNA Sequence
Similarity

WC-MS data of the type strains of Methylobacterium cells grown

on methanol were used to generate a distance matrix based on the

Pearson correlation coefficient. Figure 1 shows WC-MS patterns

of the type strains and calculated similarity shown as a

dendrogram created by our Biotyper-independent method. Most

of the type strains showed distinct spectral patterns, since they are

genetically different. Some combinations (M. oryzae and M.

phyllosphaerae, M. extorquens group and M. rhodesianum group, marked

with asterisks) showed similar spectral patterns, which resulted in

high spectral similarity values (approximately 0.5, as calculated by

our method). This observation suggests that when one spectrum

shows similarity of less than 0.5 to any of the type strains, it will be

from a genetically novel species.

Figure 2A shows a plot of similarity matrices based on WC-MS

profiles of the type strains grown on R2A and methanol medium.

The calculated correlation p-value was lower than 0.0001 in the

Mantel test, suggesting that the matrices are significantly

correlated and that the cultivation medium did not influence the

resolution of species discrimination. Figure 2B shows a plot of

similarity matrices based on pairwise similarity of the 16S rRNA

gene and WC-MS using methanol-grown type strains. The Mantel

test p-value was less than 0.0001, suggesting that the matrices are

correlated. Plots above 97% [19] or 98.6% [20] indicated their

high 16S rRNA gene similarity, even between type strains. Plots

with high similarities in both the 16S rRNA gene and WC-MS

were combinations of strains that differed in strain level (Fig. 2C).

M. dichloromethanicum and M. chloromethanicum are synonyms of M.

extorquens, and M. lusitanum is a synonym of M. rhodesianum [54];

they share high WC-MS similarities. M. oryzae and M. phyllosphaerae

also showed high similarities, although their DNA-DNA related-

ness is reported to be 8.06% [55]. Other plots included M.

thiocyanatum, M. aminovorans, M. fujisawaense, M. phyllosphaerae, and

M. podarium. They are close relatives in the phylogenetic tree based

on the 16S rRNA gene [54], but they were shown to be different

species by DNA-DNA relatedness analyses (less than 70%). One

must be careful to discriminate the strains in this subgroup by WC-

MS or their DNA-DNA relatedness may have to be re-examined.

Table S4 summarizes the calculated average molecular weight

of ribosomal proteins in Methylobacterium species whose genome

sequences are available. M. extorquens strains PA1 and AM1, M.

chloromethanicum strain CM4, and M. dichloromethanicum strain DM4

share many identical ribosomal proteins, since they all belong to

the M. extorquens group [54]. Among these, some proteins are also

shared in M. populi and M. radiotolerans. M. nodulans and

Methylobacterium sp. 4–46 also share some proteins of identical

molecular weight, but they have no identical proteins with the M.

extorquens group, M. populi (except for S20), and M. radiotolerans.

Generally, the larger the ribosomal proteins are, the more

differences their amino acid sequences contain, which results in

less identical proteins with larger molecular weights. These

observations suggested that there is no common ribosomal protein

that should always be detected in all Methylobacterium species, i.e.,

there is no ribosomal biomarker that is specific to Methylobacterium

Figure 2. Correlation of the WC-MS data using different culture
conditions and correlation of similarity between WC-MS data
and 16S rRNA gene sequences. A. Mantel tests for similarities of
WC-MS profiles of cells grown on R2A and methanol. B. Mantel tests for
similarities of 16S rRNA gene and WC-MS on methanol. C. Enlarged
image of B, showing combinations of the type strains sharing high 16S
rRNA gene and WC-MS profile similarities.
doi:10.1371/journal.pone.0040784.g002
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species. This also supports the data showing that most of the type

strains were highly discriminated in WC-MS analysis.

Clustering Analysis of Isolates Using WC-MS
Clustering analysis based on WC-MS data of the isolates was

carried out with MALDI Biotyper software (Bruker Daltonics).

This software performs clustering analysis using a highly

sophisticated pattern-matching algorithm. The result of the

clustering analysis of 222 isolates (including those previously

isolated, [56]) and all available type strains is shown in Fig. 3.

Most of the non-pigmented methylotrophs were clustered

separately from Methylobacterium clusters. As discussed above, since

the dendrogram does not necessarily reflect the evolutionary

relationships, especially in the lower branch, some non-Methylo-

bacterium species are also clustered in Methylobacterium clusters. In

the dendrogram, Methylobacterium-type strains are well distin-

guished, except for the combination of M. mesophilicum and M.

brachiatum (99.7% identity of the 16S rRNA gene), combinations of

M. fujisawaense, M. phyllosphaerae, and M. oryzae (99.0–99.6%), and

those of M. podarium, M. thiocyanatum, M. rhodesianum, M. lusitanum,

and M. aminovorans (98.4–99.7%). They share a high percentage of

16S rRNA similarity, and their positions in the Biotyper-generated

dendrogram were close. These results suggested either (i) that they

should be considered the same species even though they were

discriminated by previous studies or (ii) that while the core of their

genomes, such as regions encoding ribosomal proteins are

conserved, other accessory regions are not highly conserved.

Methylobacterium isolates from well-separated clusters were chosen

for 16S rRNA gene analysis (ITS region was sequenced for fungi),

and their identity is also shown in Fig. 3. Based on 16S rRNA gene

homology searches, non-Methylobacterium methylotrophic isolates

were related to Pseudomonas otitidis, Pelomonas puraquae, Pseudomonas

grimontii, Pseudomonas rhodesiae, Aeromonas hydrophila, Methylotenera

mobilis, Cryotococcus flavescens, Rhodotorula mucilaginosa, Penicillium sp.,

Tetracladium setigerum, Shinella zoogloeoides, Methylophilus rhizosphaerae,

and Bradyrhizobium liaoningense. Most of them exhibited slow growth

on methanol medium. Their methylotrophy needs to be studied in

detail in the future, but this is not within the scope of the current

study.

Isolates located near the type strains in the dendrogram

exhibited high similarity of 16S rRNA gene to their corresponding

type strains. This result suggested that WC-MS analysis could

identify isolates without 16S rRNA gene sequencing. Isolates

located in one of the biggest clusters of the M. extorquens group were

identified as M. zatmanii by EZtaxon identification. M. extorquens

and M. zatmanii share 99.6% 16S rRNA gene similarity. WC-MS

analysis clearly distinguished these type strains, but identification

based on pairwise similarity led to misidentification.

We generated a phylogenetic tree based on the sequences of the

16S rRNA genes of the Methylobacterium isolates (Fig. 4). Although

we used a cultivation-dependent technique, isolates exhibited a

wide range of phylogeny. Tentative identification by 16S rRNA

gene sequencing was in good agreement with their positions to the

closest type strains in the tree. However, isolates related to M.

radiotolerans (e.g., z34c and 102a), M. brachiatum (99d), M. komagatae

(37e), M. organophilum (87e, 23e, and 90c), M. cerastii (92d and z92a),

M. oxalidis (90c), M. adhaesivum (45f, 45i, z88a, 91b, 4a, z97e, 34b,

z24c, 58g, 28b, and z14c), M. soli (97c), and M. aquaticum (90a)

showed relatively low identities of the 16S rRNA gene and a

distant position to their closest type strains. Since their positions in

the BioTyper tree were also distant from their corresponding type

strains, they may represent new lineages of Methylobacterium. Thus,

the selection of unique strains by WC-MS efficiently led to the

finding of unique species. Although most of those listed above

share high 16S rRNA gene similarity to their closest type strains

(more than 97%), the clear difference in WC-MS profiles and

distance in their positions in the phylogenetic tree strongly

suggested their novelty. Indeed, strains 23e and 35a were

genetically different from M. organophilum and M. soli, which

exhibit the highest 16S rRNA gene similarity, respectively, and we

previously proposed them as new species within the genus

Methylobacterium (M. gnaphali [57] and M. oxalidis [44]), respectively.

Chemotaxonomic Properties of Isolates
After the selection of unique strains in WC-MS and the

sequencing of their 16S rRNA genes, we had a total of 190 strains

of Methylobacterium species (plus 17 non-Methylobacterium isolates).

Their phenotypic characteristics are summarized in Table S5.

Overall, among the 190 Methylobacterium isolates, many strains were

weakly positive in growth in the absence of an added nitrogen

source, and 185 (methanol as a carbon source) and 93 (glucose as a

carbon source) strains were positive in calcium phosphate

solubilization. Siderophore production was positive in 35 strains.

Average auxin production was 1.28 mg/ml, and average PQQ

production was 4.6 mg/ml. The characteristics of the selected 80

strains for 16S rRNA sequencing were further examined. Most of

the tested Methylobacterium isolates showed a negative or weak

capability to utilize the tested sugars (with the exception of

arabinose, in which 30 out of 66 isolates were positive). Urease was

positive in 32 isolates. All isolates were negative in the DNase test

and 11 strains were positive in the oxidase test. We did not find

any correlation between 16S rRNA gene similarity and these

phenotypic characteristics (data not shown).

Nitrogenase genes are encoded in the genomes of M. nodulans and

Methylobacterium sp. 4–46, but not in those of other Methylobacterium

species. Since plate tests are usually erratic, the presence of the nifH

gene was confirmed by PCR [46]. We detected an amplified PCR

product from M. nodulans as a positive control, but not from our

isolates (data not shown), suggesting that no isolates possess

nitrogenase genes. Their weak growth on nitrogen-free medium

may be due to an air-borne compound containing nitrogen. Since it

has been reported that the expression of glutamine synthetase in

phyllospheric bacteria is prominent and no proteins for dinitrogen

fixation ability were found in a metaproteomics study [58], the

Methylobacterium species may be able to access nitrogen sources such

as ammonia or amino acids and may not have to contain

nitrogenase genes in the phyllosphere, except for nodulating M.

nodulans. Calcium phosphate can be dissolved by gluconic acid,

which is produced by PQQ-dependent glucose dehydrogenase [59].

The positive results with methanol as a carbon source may suggest

another acidic substance, or acidic phosphatase activity, as reported

earlier [60], although this was not further characterized in this

study. A siderophore synthetase component (LucA/LucC family

protein) is found in the genomes of M. extorquens strains AM1, PA1,

DM4, and CM4, and M. populi but not in others, suggesting the

dispersed distribution of the trait in the genus. Auxin is synthesized

Figure 3. Biotyper-generated dendrogram based on WC-MS profile of the isolates. Non-Methylobacterium isolates are indicated with
asterisks (*), which were revealed by 16S rRNA gene sequencing. The closest 16S rRNA gene relatives were determined by pairwise similarity analysis
using the EZtaxon server [42]. Note that strains 23e and 35a were previously identified as novel species (M. gnaphalii 23e(T) and M. oxalidis 35a(T),
respectively).
doi:10.1371/journal.pone.0040784.g003
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indigenously in plants, and also in plant-pathogenic, commensal,

and symbiotic bacteria. The average value of auxin concentration in

this study (1.28 mg/ml) was slightly lower than that previously

reported for M. extorquens strain AM1 (6.1 mg/ml) [12]. Non-

pigmented methylotrophic isolates, such as Pseudomonas isolates, had

higher capability of synthesizing auxin (Fig. S2A). We are currently

establishing a strategy to measure all phytohormones, including

their derivatives synthesized by Methylobacterium species, using liquid

chromatography-mass spectrometry. PQQ was recently reported to

be an efficient plant growth promotion factor [61], and many gram-

negative bacteria produce PQQ. In our survey, a variety of

Methylobacterium species was found to produce PQQ, and some of

them produced up to around 25 mg/ml PQQ (Fig. S2B). It is

unknown whether PQQ is also one of the plant growth-promoting

factors from the Methylobacterium species, but PQQ synthesis is likely

essential for their colonization because of its necessity for methanol

dehydrogenases [62–63]. We could not find any correlation

between production levels of auxin and PQQ (data not shown),

which suggested that these traits are not necessarily cooperating in

the phyllospheric Methylobacterium species.

Species Level Specificity between Plant and
Methylobacterium Interaction

Based on 16S rRNA gene sequencing and the BioTyper-

generated tree, the identity of the 191 Methylobacterium isolates and

their isolation source is summarized in Fig. S3. The classification

of bryophytes is based on Iwatsuki [64]. The angiosperm plants

are classified based on Angiosperm Phylogeny Group III [65].

Isolates belonging to M. exorquens, M. adhaesivum, M. marchantiae, M.

komagatae, M. brachiatum, and M. radiotolerans were found to be the

most effective phyllospheric colonizers, as evidenced by the

number of isolates and the diversity of isolation sources. Among

them, most of the isolates that are phylogenetically close to M.

adhaesivum are considered to be new lineages, and these isolates

should be investigated for further characterization. Many strains

that are close to the species have also been isolated from plants in a

previous study [8]. Interestingly, 18 out of 57 isolates from

bryophytes are considered to be of new lineages. Although many

Methylobacterium species have been isolated from various plants,

only some are from mosses (M. marchantiae [22], M. funariae [31],

and M. bullatum [66], but the latter two share more than 99% 16S

rRNA gene similarity with the former). Since bryophytes also emit

methanol [56] and there are many bryophyte species that are

adapted to extreme environments, they may be interesting

isolation sources of novel bacteria. Indeed, a high diversity of

Methylobacterium species observed by a culture-independent tech-

nique has been reported [23]. We could not observe any

evolutionary relationship between the phylogenies of Methylobacter-

ium species based on 16S rRNA gene and plant classification. This

may be partly due to the limited number of isolates in this study.

Alternatively, the evolution of Methylobacterium species may not

have been dependent on that of plants.

In conclusion, we established a WC-MS-based technique for rapid

classification of Methylobacterium species and demonstrated its effec-

tiveness at distinguishing similar species, although there were some

exceptions for genetically similar type strains. Since many of the

detected peaks could be attributed to ribosomal proteins with some

post-translational modifications, the spectral difference reflects the

diversity and difference of the species, but not necessarily their

evolutionary relationships. Sequencing-based classification is neces-

sary to investigate evolutionary relationships, after the selection of

unique strains in WC-MS analysis. The finding of novel species and

identification of unknown isolates is quite easy with the WC-MS

technique, since the analysis can be automated (several hundred

samples a day) and there is no PCR step. This analysis would be the

fastest among other PCR-based techniques for cultivated isolates.

Based on the WC-MS-based dendrogram, we selected isolates and

their phylogenetic attribution was clearly demonstrated, as evidenced

by 16S rRNA gene sequencing. Some species were found to be

effective and wide colonizers on plants. We found many strains of

new lineages, especially from bryophytes. The evolutionary relation-

ship between plants and Methylobacterium species could not be

sufficiently clarified with our limited number of isolates. To address

this, it is necessary to use the same plant species grown in different

environments or to use different plant species in the same

environments. Both of these parameters affect the Methylobacterium

community composition [8], but it remains unknown what deter-

mines the species-level specificity of Methylobacterium residing in a

specific plant. The cataloging of data for such interaction specificity

will be necessary. We believe that this work with a wide variety of

plant species can contribute to some extent. A number of possible

novel species in the genus have been reported so far and await

description. These studies also assist in the investigation of plant–

microbe interaction specificity, especially for the M. adhaesivum group

isolated in our study. Based on the results obtained in this study, a

description for novel species ubiquitously colonizing on plants is

necessary.

Supporting Information

Figure S1 WC-MS patterns of M. extorquens strain AM1
grown under different growth conditions for 2 weeks.
The informative range of spectra (m/z 3000–12,000) of relative

intensity is shown as gel-like images using mMass 5.0 software

[49]. Samples of 1- and 2-day cultures using methanol medium

were not obtained due to poor growth.

(TIF)

Figure S2 Production of auxin and PQQ by isolates. The

production levels of auxin (A) and PQQ (B) are shown with only

50 isolates of the highest production capability.

(TIF)

Figure S3 Relationship between the identity of Methy-
lobacterium isolates and their isolation sources. The list

of Methylobacterium is in the order of the phylogenetic tree

constructed based on 16S rRNA gene sequences, as shown on

the left. The tree was made in the same manner as that in Fig. 4.

The number of isolates is shown in the table; parentheses indicate

possible new lineages.

(TIF)

Table S1 Plants used to isolate methylotrophs.

(XLS)

Figure 4. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences (ca. 1.44 kb) of the Methylobacterium isolates
(black) and Methylobacterium type strains (red). Sequence alignment was carried out by SILVA Aligner [37] and analyzed with Kimura’s two-
parameter algorithm (MEGA5) [38]. Tentative identifications by the EZtaxon site for the isolates are shown with pairwise similarity. Numbers at nodes
are bootstrap percentages (based on 1000 resampled data sets); only values above 70% are shown. The sequence of Rhodopseudomonas palustris
DSM123T (AB175650) was used as an outgroup. Note that strains 23e and 35a were previously identified as novel species (M. gnaphalii 23e(T) and M.
oxalidis 35a(T), respectively). Bar: 0.01 substitutions per nucleotide position.
doi:10.1371/journal.pone.0040784.g004
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Table S2 m/z of detected peaks of the purified
ribosome fraction and identification of proteins of M.
extorquens strain AM1.
(XLS)

Table S3 m/z of detected peaks in WC-MS of strain
AM1 and identification of proteins.
(XLS)

Table S4 Average molecular weight of ribosomal pro-
teins in Methylobacterium species whose genome se-
quences are available.
(XLS)

Table S5 Characterization of isolates.

(XLS)
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30. Wellner SA, Lodders N, Kämpfer P (2011) Methylobacterium cerastii sp. nov., a

novel species isolated from the leaf surface of Cerastium holosteoides. Int J Syst Evol

Microbiol: inpress. doi:10.1099/ijs.0.030767-0.

31. Schauer S, Kutschera U (2011) A novel growth-promoting microbe, Methylo-

bacterium funariae sp. nov., isolated from the leaf surface of a common moss. Plant

Signal Behav 6: 510–515. doi:10.4161/psb.6.4.14335.

32. Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, et al. (2006)

Characterization of Ni-tolerant methylobacteria associated with the hyperaccu-

mulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp.

nov. Syst Appl Microbiol 29: 634–644. doi:10.1016/j.syapm.2006.01.011.

33. Knief C, Dengler V, Bodelier PLE, Vorholt JA (2012) Characterization of

Methylobacterium strains isolated from the phyllosphere and description of

Methylobacterium longum sp. nov. Antonie van Leeuwenhoek 101: 169–183.

doi:10.1007/s10482-011-9650-6.

34. Kurland CG (1971) Purification of ribosomes from Escherichia coli. Methods

Enzymol 20: 379–381. doi:10.1016/S0076-6879(71)20041-0.

35. Wong J, Cagney G, Cartwright H (2005) SpecAlign - processing and alignment

of mass spectra datasets. Bioinformatics 21: 2088–2090. doi:10.1093/

bioinformatics/bti300.

36. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M,

editors. Chichester: John Wiley & Sons. 115–175.

37. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, et al. (2007) SILVA: a

comprehensive online resource for quality checked and aligned ribosomal RNA

sequence data compatible with ARB. Nucleic Acids Res 35: 7188–7196.

38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5:

Molecular evolutionary genetics analysis using maximum likelihood, evolution-

ary distance, and maximum parsimony methods. Mol Biol Evol: in press.

39. Kimura M (1980) A simple method for estimating evolutionary rates of base

substitutions through comparative studies of nucleotide sequences. J Mol Evol

16: 111–120.

40. Saitou N, Nei M (1987) The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

Whole-Cell Mass Spectrometry of Methylobacterium

PLoS ONE | www.plosone.org 12 July 2012 | Volume 7 | Issue 7 | e40784



41. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the

bootstrap. 39: 783–791.
42. Chun J, Lee J-H, Jung Y, Kim M, Kim S, et al. (2007) EzTaxon: a web-based

tool for the identification of prokaryotes based on 16S ribosomal RNA gene

sequences. Int J Syst Evol Microbiol 57: 2259–2261. doi:10.1099/ijs.0.64915-0.
43. Kurtzman CP, Robnett CJ (1997) Identification of clinically important

ascomycetous yeasts based on nucleotide divergence in the 59 end of the
large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35: 1216.

44. Tani A, Sahin N, Kimbara K (2011) Methylobacterium oxalidis sp. nov. isolated

from leaves of Oxalis corniculata. Int J Syst Evol Microbiol. in press.
45. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the

Salkowski reagent for indolic compounds produced by phytopathogenic
bacteria. Appl Environ Microbiol 61: 793–796.

46. Bürgmann H, Widmer F, Sigler Von W, Zeyer J (2004) New molecular
screening tools for analysis of free-living diazotrophs in soil. Appl Environ

Microbiol 70: 240–247.

47. Nautiyal C (1999) An efficient microbiological growth medium for screening
phosphate solubilizing microorganisms. FEMS Microbiol Lett 170: 265–270.

48. Schwyn B, Neilands J (1987) Universal chemical assay for the detection and
determination of siderophores. Anal Biochem 160: 47–56.

49. Strohalm M, Hassman M, Kosata B, Kodı́cek M (2008) mMass data miner: an

open source alternative for mass spectrometric data analysis. Rapid Commun
Mass Spec 22: 905–908. doi:10.1002/rcm.3444.

50. Arnold RJ, Reilly JP (1999) Observation of Escherichia coli ribosomal proteins and
their posttranslational modifications by mass spectrometry. Anal Biochem 269:

105–112. doi:10.1006/abio.1998.3077.
51. Saenz AJ, Petersen CE, Valentine NB, Gantt SL, Jarman KH, et al. (1999)

Reproducibility of matrix-assisted laser desorption/ionization time-of-flight mass

spectrometry for replicate bacterial culture analysis. Rapid Commun Mass Spec
13:1580–1585. doi:10.1002/(SICI)1097-0231(19990815)13:15,1580::AID-

RCM679.3.0.CO;2-V.
52. Sherman F, Stewart JW, Tsunasawa S (1985) Methionine or not methionine at

the beginning of a protein. Bioessays 3: 27–31. doi:10.1002/bies.950030108.

53. Soung GY, Miller JL, Koc H, Koc EC (2009) Comprehensive analysis of
phosphorylated proteins of Escherichia coli ribosomes. J Proteome Res 8: 3390–

3402. doi:10.1021/pr900042e.
54. Kato Y, Asahara M, Arai D, Goto K, Yokota A (2005) Reclassification of

Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later
subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum

as a later subjective synonym of Methylobacterium rhodesianum. J Gen Appl

Microbiol 51: 287–299. doi:10.2323/jgam.51.287.

55. Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM (2009) Methylobacterium

phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the

phyllosphere of rice. Int J Syst Evol Microbiol 59: 22–27. doi:10.1099/

ijs.0.001693-0.

56. Tani A, Takai Y, Suzukawa I, Akita M, Murase H, et al. (2012) Practical

application of methanol-mediated mutualistic symbiosis between Methylobacterium

species and a roof greening moss, Racomitrium japonicum. PLoS ONE 7: e33800.

doi:10.1371/journal.pone.0033800.

57. Tani A, Sahin N, Kimbara K (2011) Methylobacterium gnaphalii sp. nov., isolated

from leaves of Gnaphalium spicatum. Int J Syst Evol Microbiol. in press.

58. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, et al. (2009)

Community proteogenomics reveals insights into the physiology of phyllosphere

bacteria. Proc Natl Acad Sci USA 106: 16428–16433.

59. Han SH, Kim CH, Lee JH, Park JY, Cho SM, et al. (2008) Inactivation of pqq

genes of Enterobacter intermedium 60-2G reduces antifungal activity and induction

of systemic resistance. FEMS Microbiology Letters 282: 140–146. doi:10.1111/

j.1574-6968.2008.01120.x.

60. Jayashree S, Vadivukkarasi P, Anand K, Kato Y, Seshadri S (2011) Evaluation

of pink-pigmented facultative methylotrophic bacteria for phosphate solubiliza-

tion. Arch Microbiol 193: 543–552. doi:10.1007/s00203-011-0691-z.

61. Choi O, Kim J, Kim JG, Jeong Y, Moon JS, et al. (2007) Pyrroloquinoline

quinone is a plant growth promotion factor produced by Pseudomonas fluorescens

B16. Plant Physiol 146: 657–668. doi:10.1104/pp.107.112748.

62. Sy A, Timmers ACJ, Knief C, Vorholt JA (2005) Methylotrophic metabolism is

advantageous for Methylobacterium extorquens during colonization of Medicago

truncatula under competitive conditions. Appl Environ Microbiol 71: 7245–7252.

doi:10.1128/AEM.71.11.7245-7252.2005.

63. Schmidt S, Christen P, Kiefer P, Vorholt JA (2010) Functional investigation of

methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1.

Microbiology 156: 2575–2586. doi:10.1099/mic.0.038570-0.

64. Iwatsuki Z (2001) Mosses and liverworts of Japan. Iwatsuki Z, editor Tokyo:

Heibonsha Ltd.

65. THE ANGIOSPERM PHYLOGENY GROUP (2009) An update of the

angiosperm phylogeny group classification for the orders and families of

flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105–

121. doi:10.1111/j.1095-8339.2009.00996.x.

66. Hoppe T, Peters K, Schmidt F (2011) Methylobacterium bullatum sp. nov., a

methylotrophic bacterium isolated from Funaria hygrometrica. Syst Appl Microbiol:

1–5. doi:10.1016/j.syapm.2010.12.005.

Whole-Cell Mass Spectrometry of Methylobacterium

PLoS ONE | www.plosone.org 13 July 2012 | Volume 7 | Issue 7 | e40784


