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Abstract
Soft sets are efficient mathematical structures to model systems in multiple relations. Since a soft set is basically set system,
it is possible to endow them with a proper distance function to obtain a metric space. By this embedding, we propose a
discretization of the Ricci curvatures that stresses the relational character of universe elements in a soft set through the
analysis of parameters rather than the elements themselves. The Forman and Ollivier-type Ricci curvatures we propose here
quantifies the trade-off between parameter size and the cardinality of participation of parameterized universe elements in
other parameters. Such discretizations of the Ricci curvature have already been applied to complex systems; however, it has
not yet been formulated for soft sets. In this study, our main question is whether the defined geometric concept determines
statistics for soft set models. Two examples are discussed for the answer to this question. The first example Ricci on soft
sets model of occupational accidents occurred in Turkey in 2013–2014 is compared with the Wasserstein distance of the
curvature distributions. The second example is the use of Ricci curvatures as an indicator in the soft sets model of a financial
system while the system is in stress. These real world examples show that discrete Ricci curvatures for soft sets offer effective
statistics.

Keywords Soft sets · Computational simplex · Forman Ricci curvature · Ollivier Ricci curvature

1 Introduction

The complexities of a multi-agent system emerge from the
interaction of many components. The problem of determin-
ing the characteristics of systems such as the human brain
andworld economy,whose behavior is difficult to predict and
control, is one of the fundamental questions of multi-agent
systems. Uncertainty can also be observed in the behavior of
components in nonlinear relationships. In order to define such
uncertainties, soft set theory emerges as an effective tool. Soft
set theory is firstly presented by Molodtsov (1999); such as
the theory is separated by arbitrary selection of parameters
regarding to fuzzy sets, vogue sets, and rough sets theories.
The main characteristic of soft sets is that they are com-
pletely free from the membership degrees. Mathematically,
a soft set is characterized by the help of arbitrary parameter
transformation of the elements given in the initial universe.
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One may conclude that a soft set is a neighborhood sys-
tem which are special case of context-dependent fuzzy sets
(Aktaş andCağman 2007). To be neighborhood system, iden-
tity leads at least one topological structure on a soft set, and
context dependency identity makes soft sets to applicable in
many soft computing areas. Intelligence computations and
missing value predictions play key role in soft computing
(Al-Janabi andAlkaim2020;Al-Janabi et al. 2019, 2014;Ali
2013;Kalajdzic et al. 2015;Alkaim andAl Janabi 2019; Patel
et al. 2015). Soft sets are also used to perform these types
of tasks. For instance, recently, Alcantud and Santos-Garcia
(Alcantud and Santos-García 2016, 2017) have contributed
to decision making with incomplete information. Particu-
larly, in Alcantud and Santos-García (2016), authors show
that soft sets are efficient mathematical structures to per-
form decision making in Economics. Their method is based
on defining Laplacian for soft sets. Similarly, recent surveys
(Ma et al. 2017; Zhan and Zhu 2015; Zhan et al. 2017) show
that soft sets can be used for decision making in multiple
disciplines. One of the remarkable applications of soft sets
emerges in conflict analysis. In Sutoyo et al. (2016), authors
briefly show that binary relations of coalition, neutrality, and
conflict among agents can be efficiently modeled via soft
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sets. Besides, there are some recent studies show the appli-
cations of soft sets in decision-making practices in medicine.
In medical diagnosis, intuitionistic and interval-valued fuzzy
soft sets are used (Chetia and Das 2010; Saikia et al. 2003)
as fuzzy techniques. Moreover, Yuksel et al. (2013) use soft
set theory in the diagnosis of risk of prostate cancer, and
Alcuntad et al. extend this idea to lung cancer resections and
surgical decision making in Alcantud et al. (2019). Soft sets,
which are very effective in decision supper, are used not only
in these processes, but also for modeling systems with multi-
ple interactions. For instance, in Balci and Akguller (2015),
authors briefly introduce soft setmodel of ametabolic system
and adapt mathematical morphological operations. Further-
more, in Balci andAkguller (2016), authors present amethod
to obtain soft set models of financial systems and analyze
systems in econophysics point of view.

The topological structures of soft sets, which are consid-
ered as neighborhood systems, are defined by the interactions
of the elements through parameters in the system. Interaction
through these parameters indicates that the soft set theory is
an effective tool to study the structural feature of systemswith
uncertainty conditions. Although a soft set can be considered
as a set-valued mapping, we need to conduct a more detailed
research to examine the effect of parameterization on struc-
tural analysis. Hence, our focus in this study is to develop
quantitative understanding of the interactions in multi-agent
systems modeled by soft sets. Such numerical understand-
ing is performed on the trade-off between parameter volumes
and the cardinality of participation of parameterized universe
elements in other parameters. Since soft sets encode a strong
information system in themselves, it is possible to consider
themas abstractmanifolds. Suchmanifolds have geometriza-
tion in some n-dimensional space. The concept of geometric
soft sets is first presented in Akguller (2017), as the initial
universe is the points in general position inRd and the param-
eters are determinedby incidencemapping.Different than the
other well-known computational complexes, the geometric
soft sets do not have to have heredity property. Such identity
of geometric soft sets lets us to determine fuzziness in the
computational complex. Geometrization of soft sets let us to
determine soft set statistics by using Ricci curvature which
is one of the fundamental concepts in Riemannian geometry.
Let us assume M is a complete connected Riemannian mani-
fold equipped with the metric g. Then, Ricci curvature tensor
measures the degree to which the geometry determined by g
differs from that of Euclidean space (Jost and Jost 2008). The
Ricci curvature in soft set setting can be consider in twoways:
first one captures the volume growth of parameters, and the
second one uses transportation distance between topologi-
cal balls emerge from parametrization. Both approaches are
consistent with the infinitesimal setting definition of Ricci
curvature that is quantifying divergence of geodesics and
volume growth. There are also several studies to define the

different types of Ricci curvatures in more general metric
spaces (Erbar et al. 2015; Fathi andMaas 2016; Lott and Vil-
lani 2009; Ni et al. 2015; Ollivier 2007; Saucan et al. 2019).

In this present study, we employ two different approaches
to define Ricci curvature on soft sets. Our first approach
is based on a definition proposed by Forman (2003). For-
man’s definition on discrete Ricci curvature is based on
Bochner-Weitzenbock decomposition of the Laplacian. Such
discretization is recently applied to network science stud-
ies (Ache and Warren 2019; Gao et al. 2019; Ni et al.
2019; Saucan and Weber 2018). Second approach follows
general framework of finite Markov processes. In Ollivier
(2007), Ollivier presented that discrete Ricci curvature of
a metric measure space can be defined by associating a
probability measure on a point. It should be noted that
Ricci curvature controls the local behavior of geodesics. In
the neighborhoods with negative curvature, the geodesics
diverge, whereas when the curvature is positive, they con-
verge. Ricci curvature is a fundamental tool also in discrete
heat calculus by providing an upper bound on the heat ker-
nel (Münch and Wojciechowski 2019; Wang et al. 2014).
However, in this study, our interest in discrete Ricci curva-
tures such as Forman and Ollivier types rather stems from its
discrete heat calculus properties in terms of volumes of the
parameters and transportation cost.

In the subsequent sections, first, we give some basic
definitions on geometric soft sets. In order to define Forman-
Ricci curvature, we present a soft set Laplacian defined
on p-chains. Then, we define Forman-Ricci curvature on
soft sets which have weighted parameters. Afterward, we
extend this idea to general soft sets. Similarly, in order to
define Ollivier-Ricci curvature, we first give a probability
measure on parameters. Then, we present Ollivier-Ricci cur-
vature on soft sets by using Wasserstein-1 distance. This
latter definition of Ricci curvature depends on the solution
of multi-marginal optimization problem. Therefore, we use
Wasserstein barycenter solution of such problem in order to
avoid computational complexity. In Sect. 3, we give com-
putational results on the Forman and Ollivier-type Ricci
curvatures. We apply these notions on some real multi-
agent systems such as the occupational accidents happened
in Turkey during 2013–2014, and stock market crisis of
2008. The details of soft set representations of these systems
are given in details. Our results indicate that such soft set
statistics is useful to determine similar class of a system by
distributions of discrete Ricci curvatures. Furthermore, such
statistics can also be used as an indicator of a stock market
crisis. Furthermore, in Sect. 4, we give detailed discussion on
this present method and obtained results. Finally, in Sect. 5,
we give concluding remarks and mention some further stud-
ies. It is sincerely hoped that this study can shed light on the
development of further researches on geometry of soft sets.

123



Discrete Ricci curvature-based statistics... 601

2 Discrete Ricci curvatures for soft sets

In this section, we present several definitions on geometric
soft sets including roughLaplacian, Forman andOllivier type
of discretization of Ricci curvatures on soft sets.

2.1 Geometric soft sets and Laplacian

In mathematical point of view, a soft set (F, E) is a parame-
terized family of subsets of the universe set U which can be
stated as a set of ordered pairs

(F, E) = {(e, F(e)) : e ∈ E, F(e) ⊂ U } ,

where F : E → 2U is a parameter mapping (Molodtsov
1999). The basic operations on soft set can be found in Maji
et al. (2003), and soft and fuzzy-soft topological identities
can be found in Hazra et al. (2012); Varol and Aygun (2012).

The definition of the geometric soft sets regarding to inci-
dence relation is first given inAkguller (2017) by considering
the elements of the universeU are the points inRd in general
position.

Definition 1 LetU ⊂ R
d be the finite set of points in general

position, A ⊆ U , and P(A, i) denotes the set of subsets of A
with i elements. For FA : E → 2A \ {∅} incidence mapping,
(FA, E) is called a geometric soft set if

i. for A = {a1, . . . , ak}, the tuple (e0, P(A, 1)) ∈ (Fa, E)

ii. for all i = 1, . . . , k − 2, if (ek−1, P(A, k)) ∈ (Fa, E),
then (ei−1, P(B, i)) ∈ (FA, E) for ∃B ⊂ A.

The soft p-face of a geometric soft set (FA, E) is
a parametrization of cardinality p + 1, and Sp((FA, E))

denotes the set of all soft p-faces of a (FA, E). The soft
faces that are maximal under soft inclusion are called soft
facets. A geometric soft set (FA, E) is said to be regular if
all facets have the same dimension.

In order to explain the geometric realization of soft sets
and corresponding concepts, let us consider the geometric
soft set

(FA, E) = (FA1, E) ∪ (FA2 , E) ∪ (FA3 , E), (1)

where

(FA1 , E) =

⎧
⎪⎪⎨

⎪⎪⎩

(e0, {{a}, {b}, {c}, {d}})
(e1, {{a, c}, {a, d}, {b, c}, {b, d}, {c, d}})
(e2, {{a, b, c}, {a, c, d}, {a, b, d}})
(e3, {{a, b, c, d}})

⎫
⎪⎪⎬

⎪⎪⎭

,

(FA2 , E) =
⎧
⎨

⎩

(e0, {{b}, {d}, {e}})
(e1, {{b, d}, {d, e}})
(e2, {{b, d, e}})

⎫
⎬

⎭
,

a

c

b

d

e

f

g

Fig. 1 Geometric realization of (FA, E) defined as in 1

(FA3 , E) =
⎧
⎨

⎩

(e0, {{d}, {e}, { f }, {g}})
(e1, {{d, e}, {e, f }, { f , g}, {d, g}})
(e2, {{d, e, f }, {d, e, g}, {d, f , g}, {e, f , g}})

⎫
⎬

⎭
.

Geometric realization of (FA, E) is given in Fig. 1. In
this realization, the elements of the sub-soft sets with-
out heredity are presented with dashed-red lines. We shall
note that, the volume element of (FA1 , E) is included
whilst (FA3 , E) excluded. (FA, E) given in Equation 1 is
not regular and has dimension 3. 2-faces of (FA1, E) are
(e2, {{a, b, c}},(e2, {{a, c, d}} and (e2, {{a, b, d}}). More-
over, 2-chain on (FA1, E) can be obtained by

(e2, {{a, b, c}})⊕̃(e2, {{a, c, d}})⊕̃(e2, {{a, b, d}}),

on free Abelian soft group (G̃, ⊕̃). To our best knowledge,
algebraic identities of such group have not been studied yet.
Since it is subject to another study, we give no further details
on (G̃, ⊕̃).

Forman-type discretization of Ricci curvature on soft sets
is given regarding to soft set Laplacian that we define in this
study. The definition ofLaplacian operator for soft sets in pre-
vious studies are defined by the parameterization numbers of
the elements of the initial universe. However, such definition
would be insufficient to obtain geometric statistics. More-
over, only examining the cardinality of the parameters will
be insufficient in determining the trade-off between param-
eters of soft sets. The Laplacian operator we present in this
study is obtained from the adjoint of p-co-chains of geo-
metric soft sets. Moreover, such Laplacian can be useful for
spectral analysis in soft set theoretical point of view.

Definition 2 Let (FA, E) be a geometric soft set with non-
empty parameter and universe set. The dual of the soft set
(FA, E) is defined with F∗ : A∗ ⊂ U → E , where U is
the universe set and E is the parameter set of (FA, E) and
denoted by (F∗

A, E∗).

The p-th chain group Cp((FA, E), G̃) of (FA, E) with
coefficients in G̃ is a vector space over the real field R

with basis Bp((FA, E), G̃). Besides, the p-th co-chain group
C p((FA, E), G̃) is defined as the dual of the p-th chain
group.
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Definition 3 For the co-chain groups, the geometric soft set
boundarymaps δp : C p((FA, E), G̃) → C p+1((FA, E), G̃),
p ≥ −1, are defined by

(δp f )
[
(e0, P(A, 1)), . . . , (ep, P(A, p + 1))

]

=
p+1∑

j=0

(−1) j f
[
(e0, P(A, 1)),

. . . , (e j , P(A, j + 1)), . . . , (ep, P(A, p + 1))
]

(2)

for f ∈ C p((FA, E), G̃), where (e j , P(A, j + 1)) means
that the soft element

(e j , P(A, j + 1))

is removed.

Definition 4 An inner product on the space C p((FA, E), G̃)

is defined by

< f , g >C p=
∑

F∈Sp((FA,E))

ω(F) f (F)g(F) (3)

for f , g ∈ C p((FA, E), G̃). ω : ⋃p=0 Sp((FA, E)) → R
+

is called the weight function of the inner product.

Definition 5 The adjoint operator δ∗
p : C p((FA, E), G̃) →

C p+1((FA, E), G̃) of δp is defined by

< δp f , g >C p+1=< f , δ∗
pg >C p , (4)

where f ∈ C p((FA, E), G̃) and g ∈ C p+1((FA, E), G̃).

Definition 6 The p-dimensional soft set Laplacian �p :
(FA, Ep) → (FA, Ep) is defined by

�p = δ∗
pδp + δp−1δ

∗
p−1. (5)

2.2 Forman-Ricci curvature for soft sets

Such Laplacian defined in Definition 6 regarding to adjoint
operator leads us to define Forman-type Ricci curvature for
soft sets. In combinatorial approach, the canonical decompo-
sition of Eq. 5 yields us the curvature function. Before giving
further information about the computation of Forman-Ricci
curvature for soft sets, we need to present a definition for the
soft sets statistics.

Definition 7 The function ω : FA → R
+ defined of the

parameter set of the soft set (FA, E) is called the weight
function. A weighted soft set then represented by the triple
(FA, E, ω).

A weight defined on the parameter can be considered as
the measure of how strongly the elements of the set A are
parameterized. The idea of giving such definition is actually
based on the definition of Forman-Ricci curvature on soft
sets, because the definition of Fp does not depend on the
weights and makes the Forman-Ricci curvature extremely
versatile.

Now, let us denote (ep−1, P({a1, . . . , ap}, p)) ∈ (FA, E,

ω)with F(ep). Then, we are able to define the Forman-Ricci
curvature for F(ep) with

Fp = F(F(ep)) = ω(F(ep))

⎡

⎣

⎛

⎝
∑

F(ep)⊂F(a p+1)

ω(F(ep))

ω(F(a p+1))

+
∑

F(bp−1)⊂F(ep)

ω(F(bp−1))

ω(F(a p))

⎞

⎠

−
∑

F(cp)�
F(ep)

∣
∣
∣
∣
∣
∣

∑

F(cp)⊂F(a p+1)

√
ω(F(ep))ω(F(cp))

ω(F(a p+1))

−
∑

F(bp−1)⊂F(cp)

√
ω(F(bp−1))

ω(F(ep))ω(F(cp))

∣
∣
∣
∣
∣
∣

⎤

⎦ , (6)

where ⊂ is crisp set inclusion operator, and the relation
F(ep) �
 F(cp) is defined as there exists p + 1 dimen-
sional (e, F(e)) such that F(ep) and F(cp) are both subsets
of (e, F(e)) or p − 1 dimensional (e, F(e)) such that F(ep)
and F(cp) are both includes (e, F(e)).We call the �
 relation
as soft paralleling relation.

The Forman-Ricci curvature defined in Equation 6 is pre-
sented on a geometric soft set. However, in the real-world
application, such restriction on the geometry of a soft set
may not be applicable. Hence, by considering the volumes
of the parameters as their cardinality, we may extend such
definition to general soft sets.

Definition 8 Let (FA, E) be a soft set. The neighborhood
of ai ∈ A on (FA, E) is the set N (ai ) = ⋃

j N j , where
N j = {ak : ai ∈ F(e j ) and ak ∈ F(e j )}.
Definition 9 Let (FA, E) be a soft set. For ai ∈ A, the num-
ber of parameters assigned to ai is called the soft degree of
ai and denoted by d̄ai . Similarly, for e j ∈ E , the cardinality
of F(e j ) is called the soft degree of e j and denoted by d̄e j .

If d̄e j = 2 for all j = 1, . . . ,m, that is F(e j ) = {a j
1 , a

j
2 },

then the Equation 6 reduces to be on 2-regular weighted geo-
metric soft set with

F(F(e)) = 2 − ω(F(e))
∑

ai∈N (a j
1 )

1
√

ω(F(e))ω(F(e j ))

−ω(F(e))
∑

ai∈N (a j
2 )

1
√

ω(F(e))ω(F(e j ))
(7)
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Furthermore, if we separate the contributions of the ele-
ment of A and assume (FA, E, ω) does not have to be regular
soft set, then it is possible to extend the Equation 7 to the gen-
eral soft sets with

F(F(e)) = ω(F(e))

⎛

⎝
∑

ai∈F(e)

(
1

ω(F(e))

−
∑

ai∈F(e j )

1
√

ω(F(e))ω(F(e j ))

⎞

⎠

⎞

⎠ . (8)

For unweighted case of soft set (FA, E), Equation 8 simpli-
fies to

F(F(e)) =
∑

ai∈F(e)

(
2 − d̄ai

) = 2d̄ei −
∑

ai∈F(e)

d̄ai , (9)

which is bounded below by d̄ei (2 − |E | when d̄ai =
|E | for every ai ∈ F(e), and bounded above by 1 when
∑

ai∈F(e) d̄ai = d̄ei . In other words, the minimum curvature
occurs when every element in F(e) belongs to each param-
eters, the maximum is attained for an empty parameter.

2.3 Ollivier-Ricci curvature for soft sets

In this subsection, we introduce Ollivier-type Ricci curva-
ture discretization for soft sets. In this sense, we first define

probability measures on parameters and initial universe, and
then Ollivier-Ricci curvature is defined as the optimal trans-
portation problem.

In order to present Ollivier type of Ricci curvature dis-
cretization on geometric soft sets, first consider following
definitions on the topological structure of geometric soft sets.
For any two parameters F(e) and F(e′) with d̄e = d̄e′ = p.
F(e) and F(e′) are said to be connected if ∂F(e)∩∂F(e′) �=
∅ and denoted by F(e) ∼ F(e′). ∂F(e) denotes the bound-
ary of a parameter mapping F(e). A soft path from one
F(e) to other F(e′) is a sequence of connected param-
eters

{
F(e j ) ∼ F(e j+1)

} j=n
j=0, where F(e0) = F(e) and

F(en) = F(e′). A geometric soft set is said to be connected
if any two soft elements (ep, (A, p+1)) and (e′

p, (A, p+1))
can be connected by a soft path.

In order to defineRicci curvature,wedefine theWasserstein-
1 distance between probability measures on geometric soft
sets.

Definition 10 The Wasserstein-1 distance between any two
probability measures μ1 and μ2 on A of (FA, E) is given by

W1(μ1, μ2) = inf
π

∑

a1,a2∈A

π(a1, a2)d(a1, a2), (10)

where the coupling π : A × A → [0, 1] runs over all maps
satisfying

∑

a1∈A

π(a1, a2) = μ1(a1),
∑

a2∈A

π(a1, a2) = μ2(a2), (11)

and d(a1, a2) is the minimum of the lengths of the soft paths
from F(ea1) to F(ea2) such that ai ∈ F(eai ) for i = 1, 2.

In the transportation distance between topological balls
approach, we may follow up two different probability mea-
sures on soft sets. First measure is defined between parame-
ters, and the second measure is defined on a parameter itself.

Now, let us define the first probability measure on
Sp((FA, E)).

Definition 11 For any ε ∈ [0, 1],

P
ε
F(e)(F(e′)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − ε + ε

p + 1

∑

F(e)∈∂F(e)

ω(F(e))

d̄e
, F(e) = F(e′),

ε
ω(F(e′))
(p + 1)d̄e

, ∂F(e) ∩ ∂F(e′) = F(e),

0, otherwise

(12)

is a probability measure on Sp((FA, E)).

By using the Wasserstein distance defined in Equation
10, we may define discrete Ricci curvature regarding to the
probability measure given in Definition 11.

Definition 12 For any ε ∈ [0, 1] and for any two distinct
F(e) and F(e′), the ε-Ricci curvature of F(e) and F(e′) is
defined by

Oε(F(e), F(e′)) = 1 − W (Pε
F(e),P

ε
F(e′))

dH (F(e), F(e′))
, (13)
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where dH is the crisp Hausdorff distance.

Definition 13 For any two distinct F(e) and F(e′), the
Ollivier-Ricci curvature is defined by

O(F(e), F(e′)) = lim
ε→0

Oε(F(e), F(e′))
ε

. (14)

SuchdiscretizationofRicci curvature regarding toWasser-
stein distance depends on two distinct parameters. However,
our goal is to capture geometry on each parameters. There-
fore, we present another discretization regarding to multi-
marginal optimal transport problem.

Definition 14 Let (FA, E) be a geometric soft set. The
sequence

σk = a1, F(e1), a2, F(e2), . . . , F(ek−1), ak (15)

is called a soft connection sequence between the elements
a1, ak ∈ A. Besides, if interior elements of σk are chosen ran-
domly, then σk is called a random soft connection sequence.

Definition 15 The uniform random soft sequence initialized
at ai ∈ A has a probability measure Pσi with

P
σi (a j ) =

∑

ai ,a j∈F(e)

1

d̄ai

1

d̄e − 1
. (16)

Definition 16 For a geometric soft set (FA, E), the Ricci cur-
vature of a parameter F(e) is defined as

OF (F(e)) = 1 − W (F(e))

|A| − 1
, (17)

where W (F(e)) is the minimum of the multi-marginal opti-
mal transport problem

W1(F(e)) = min
π∈Π(Pσ1 ,...,Pσn )

∑

an∈An

c(an)π(an) (18)

withan = (a1, . . . , an) and c(a1, . . . , an) = min
b∈A

n∑

i=1

d(ai , b).

The solution of such multi-marginal optimal transport
problem is a linear program. However, its computational
complexity grows exponentially. Therefore, we need to
employ the barycenters to solve such problem efficiently. In
order to determine barycenters of soft sets, we first need to
remember the Definition 2. One may concludes by the def-
inition that the duals of two isomorphic geometric soft sets
are also isomorphic to each other. By introducing (F∗

A, E∗),
we are able to determine Wasserstein barycenters with

bc(F(e)) = inf
π∈Π(Pσ1 ,...,Pσn )

n∑

i=1

W1(πi , π). (19)

Hence, the Ricci curvature of a parametrization F(e) can be
computed by

OF (F(e)) = 1 − bc(F(e))

|A| − 1
. (20)

We need to remark that such barycenter definition is based
on Wasserstein distance that is OF (F(e)) can be computed
on any soft set. If we restrict our idea to A to be embedded in
R
n , the barycenters can be computed regarding to Euclidean

distance.

3 Applications

In this section, we consider two examples of soft sets and
present the computational results on discreteRicci curvatures
of the parameters. In order to state such soft set statistics,
first example is chosen to be steady soft sets, and the second
example is chosen to be a time varying soft set.

3.1 Occupational accidents

The first one is the soft set representations of the occupa-
tional accidents data of Turkey that happened in the period
of 2013–2014. We need to denote that these soft sets are
not the geometric ones. 10000 of the data were selected and
18 of the sectors with the most occupational accidents were
taken into consideration. The NACE codes and their labels
are presented in Table 2 in Appendix I. We refer readers
(statbank.cso.ie/px/u/NACECoder/) for synonyms and more
details on the codes. According to the six NACE code of
the sectors examined, a total of 18 different soft sets are
obtained by taking the quartet NACE code of the sectors in
close relationwith each other, the universe ofwork accidents,
the parameters of information in the work accidents and the
parameters. Each soft set is shown as a quad NACE code
(FNACE, ANACE). The inputs of work accident information
are taken as Number ofWorking Days, Age, Gender, Marital
Status, Work Day Loss, Vocational Training, Occupational
Safety Education, Educational Status, Number of Persons in
the Accident. A set of parameters was taken in subsets to
select work accident information as the main title and then
34 parameters are obtained. The more details on data and the
parameters can be found in Balci and Tuna (2018). In Table,
1 we present the parameters.

Since (FNACE, ANACE) is un-weighted, it is possible to
determine the Forman-Ricci curvatures of the parameter sets
by using Equation 9 directly. Similarly, the Ollivier-Ricci
curvature OF (FNACE(e)) is computed by using Eq. 20 with
assuming each parameter has constant weight of 1.

The distributions of both discrete Ricci curvatures for
(FNACE, ANACE) are presented in Figs. 2 and 3.
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Table 1 The parameters list for constructing (FNACE, ANACE) Balci and Tuna (2018)

Number of working days (t ≡ days)

0 ≤ t < 400 400 ≤ t < 1000 1000 ≤ t < 2000 2000 ≤ t < 3000 3000 ≤ t < 4000 t ≥ 400

Age (t ≡ years)

18 ≤ t < 25 25 ≤ t < 30 30 ≤ t < 35 35 ≤ t < 40 40 ≤ t < 45 t ≥ 45

Working days loss (t ≡ days)

0 ≤ t ≤ 1 1 < t ≤ 3 3 ≤ t < 5 5 ≤ t < 8 8 ≤ t < 10 t ≥ 10

Number of personsin the accident

1 1-3 >3

Educational status

Elementary School Secondary School High School University/Graduate

Gender

Male Female

Martial status

Married Bachelor/Bachelorette Other

Vocational training

Yes No

Occupational safety education

Yes No

Fig. 2 Histograms of Forman-type discretization of Ricci curvature for
(FNACE, ANACE)

From Figs. 2 and 3, it can be directly seen that the
F(FNACE(e)) and OF (FNACE(e)) curvatures have similar
distributions which are the variations of the mixture distribu-
tion of uniform and normal distributions. However, such sim-
ilarity is not sufficient to demonstrate the effectiveness and
usefulness of the presented method. Therefore, we compare

Fig. 3 Histograms of Ollivier-type discretization of Ricci curvature for
(FNACE, ANACE)

the pairwise Wasserstein-1 distances between the empirical
distributions of the F(FNACE(e)) and OF (FNACE(e)) values
on (FNACE, ANACE). We shall note that, this Wasserstein-1
distance is defined on empirical distribution that is different
than the one we present in Equation 10. The resulting values
are presented in Fig. 4.
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3.2 Stockmarket crisis

Different restrictions on the parameter map of a geometric
soft set let us obtain the soft analogues of some crisp com-
putational complexes. As the second example, we consider
the daily closure price data of the US stock markets NAS-
DAQ and S&P 500 from mid of 2006 to end of 2012 due to
their large size and importance among world capital markets.
The stocks with missing data are removed and 77 stocks are
selected for NASDAQ and 425 stocks are selected for S&P
500. The companies operating in each stockmarket are listed
in Tables 3 and 4 in Appendix II.

In the first example, we consider one big soft set with dif-
ferent element sizes. In this second example, we first form
a 4-regular soft set for each stock markets, then study the
changes of the values of discrete Ricci curvatures defined
on them. The time scale of our analysis is obtained by sub-
dividing the whole time span into 12 equal length of 151
sub-time interval as they cover pre- and post-periods of the
global economic crisis of 2008.

For the preprocessing of the closure price data, we first
compute the logarithmic returns of the daily closure prices
as Cli = log(ri (t + 1) − log(ri (t)), where ri (t) is the clo-
sure price of the stock i at t . Then, we compute the Pearson
correlation coefficient between the stock i and j with

ρi j = < CliCl j > − < Cli >< Cl j >
√

< Cl2i − < Cli >2>< Cl2j− < Cl j >2>
. (21)

In order to determine the which stocks are correlated most,
we use the correlation distance between each stocks by

dC (i, j) =
√

2(1 − ρi j ). (22)

The correlation distance matrices for NASDAQ and S&P500
stock markets are presented in Figs. 6 and 7 in Appendix
II. Our analysis uses a moving time window in order to
capture structural changes on parameters. But in aforemen-
tioned figures, we present the data matrices for complete
time scale. In those figures, it can be seen that companies
in stock markets tend to form clusters. Hence, we determine
the parameter map assigning heuristic to dependent on the
correlation distance-based clustering. In the parameter map
assigningheuristic,wefirst determine the quadruple of stocks
which has the lowest total dC value and assign the first param-
eter with weight of the mean value of dC among them. Then,
we add other stock to triple in the first parameter by deter-
mining the score is the minimum of the total dC value in
order to obtain the second parameter. At the end of the pro-
cess, we obtain a weighted soft set at each time step t whose
parameters are assigned to 4-elements. Then, the Forman-
Ricci curvatures can be computed by using Equation 8 and

Ollivier-Ricci curvatures can be computed by using theEqua-
tion 20. For the computation of Ollivier-Ricci curvatures, we
use the total dC values as the weight of a parameter.

The computational results of the mean values ofF andOF

on soft sets emerging from NASDAQ and S&P500 data sets
denotedby (FN ASDAQ, EN ASDAQ) and (FS&P500, ES&P500),
respectively, are presented in Fig. 5.

In this section, we form these representations of NAS-
DAQ and S&P500 stock markets, which are leading markets
in global scale, and analyzed the discrete Ricci curvatures
of parameters through out an economic crisis. These stock
market examples are weighted soft sets by their definition.

4 Results and discussions

Real-world systems are often modeled with agents in non-
linear relationships. The strengths and transients of these
relationships require newmethods to be used in themodeling
process. Especially inmodeling social systems, uncertainties
between relationships and fault tolerance should be taken into
account in the analysis of the system. In recent years, the use
of soft sets in the analysis of systems has often come across
as a soft computing technique. In general, we can consider
soft sets as the set system formed by parameterizing an ini-
tial universe. The biggest criticism in soft set calculations
is that these set systems can be examined with a set-valued
mapping. However, since the set system formed by soft sets
includes the relationship between the parameters, a topolog-
ical and geometrical analysis on the parameters reveals the
effectiveness of this method. In this study, we extend the For-
man andOllivier- property relaxed, thenwepresent statistical
analyses.

Laplacian operator is defined on geometric soft sets to
extend the Forman-Ricci curvature to soft sets. This operator
is defined on the co-chain groups of soft p-faces param-
eterized by the incidence relationship. The Forman-Ricci
curvature is then extended to soft sets by the combina-
torial decomposition of the described Laplacian operator.
Weights of parameters play an important role in param-
eter modeling of real-world systems. For this reason, an
extension is made that includes the weights of the param-
eters. Forman-Ricci curvature in soft clusters is then defined
according to the weighted geodesic and volumetric growth
of the parameters. Extending of the Ollivier-Ricci curva-
ture to soft sets is considered as the transport problem of
topological balls formed by parameter sets. To define this
type of curvature, two probability measures defined in soft
sets are first defined. The first presented probability mea-
sure is defined on soft p-faces in the geometrization of soft
sets. With this probability measure, the Ollivier-Ricci cur-
vature is extended by the distance between the probability
distributions of parameters between. However, since this
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Fig. 4 Wasserstein-1 distances of the empirical distributions of the discrete Ricci curvatures

Fig. 5 Mean F and OF values
on (FN ASDAQ , EN ASDAQ) and
(FS&P500, ES&P500) through
out the economic crisis of 2008
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approach is defined according to two parameters, it does
not contribute much to the realization of the hypothesis
about the effectiveness of the method. The second mea-
surement of probability that we present is defined on the
topological structure established on the parameters.With this
probability measure, an Ollivier-Ricci curvature extension is
made, which turns to be multi-marginal optimal transport
problem. Since the solution of the multi-marginal optimal
transport problem is a linear program, the Ollivier-Ricci cur-
vatures are calculated by the barycenters of duals of soft
sets.

In this study, two real-world examples are discussed to
demonstrate the effectiveness of the novelmethodwe present
and to guide the modeling of multi-agent systems with soft
sets. The first of these examples is soft set models of occupa-
tional accidents occurred in Turkey during 2013–2014. In the
occupational accident example, soft sets according to each
sector are created by grading the parameters in the occu-
pational accident data. Each of the soft sets created for a
total of 18 sectors are unweighted soft sets that is we do not
involve any strength to the graded parameters. These soft
clusters can be weighted with quantitative data such as treat-
ment cost of work accident. In the example, each sector is
expressed with the NACE code. Forman and Ollivier-type
Ricci curvatures presented on the soft sets of each sector are
calculated. Discrete Ricci curvatures histograms are given
in Figs. 2 and 3. As can be seen from these figures, the
discrete Ricci curvature of both types has mostly received
negative values. It is also observed from the figures that
these negative values are often quite small. Therefore, it
can be said that topological balls are far from the centers
in these soft set models presented geometrically. Moreover,
parameters with a larger negative Ollivier-Ricci curvature
value show more effective parameters in the soft set model.
It will be effective to handle such parameters in a possible
decision-making process, especially by policy makers. Sim-
ilarities of distributions of Forman and Ollivier-type Ricci
curvatures can be seen from histograms. However, such a
similarity is not sufficient for statistical analysis alone. For
this reason, in our study, the distributions of Forman and
Ollivier-type Ricci curvatures in soft set models of sec-
tors where occupational accidents occurred are compared.
This comparison is made according to the Wasserstein-1
distance of empirical distributions. As a result, the sectors
where the most similar work accidents occurred are found
as “Distribution of Electricity” and “Other retail sale in non-
specialized stores.” This result is consistent with the results
obtained in studies (Balci and Tuna 2018; Tuna and Kurt
2017).

In the soft set model of the second multi-agent system
discussed in this study, the elements of the initial universe
are taken as companies with intensive relationships traded
in stock markets. The relationships of the companies traded

in the stock markets are determined by the correlations of
the time series expressed in the logarithmic returns of the
daily closing prices. In our study, N ASDAQ and S&P500
data, which are the two leading stock markets of the USA
due to their dominant characters in the world economy, are
discussed. Structures determined by correlation distances in
stocks tend to cluster. For this reason, while determining the
parameters in the soft set modeling of the stock markets,
the clustering tendency of companies with the closest cor-
relation distances is selected. In this type of approach, the
cardinality of the subsets determines the size of the soft set
to be formed. High cardinal subsets will produce statistically
ineffective results as they will form very high-dimensional
soft sets. In our study, to keep dimensions of soft sets low, a
maximum of 4-element subsets which have geometric real-
ization in 3-dimensional Euclidean space are selected. In
stress situations such as the economic crisis, because there are
structural changes in financial multi-agent systems, Forman
and Ollivier-type Ricci curves are calculated and analyzed
in soft set models for the analysis and even control of this
change. Our data set is divided into 96 moving windows
to center the global economic crisis that occurred in 2008.
Forman and Ollivier-type Ricci curvatures of soft clusters
formed in each window are calculated. For both types of
discrete curvature, all values are negative. It can also be
seen in Fig. 5 that there is a strong correlation between
discrete Ricci curvatures for each sliding window. Consid-
ering the 2008 global economic crisis, the averages of both
types of discrete Ricci curves increase negatively. Hence, we
can say that discrete Ricci curvature values are important
indicators for these kind of soft set models of stock mar-
kets.

This novel method, which can be used especially in the
modeling of multi-agent systems, has certain limitations. In
the definition of both curvatures, duals of soft sets are consid-
ered. Calculation of Forman orOllivier-type Ricci curvatures
will yield statistically insufficient results, especially in soft
set models that are sparse in terms of parameter cardinal-
ity. In addition, the high computational complexity of the
Ollivier-Ricci curvature presents a serious disadvantage over
the Forman-Ricci curvature. Although we have presented a
barycentric computational method for the Ollivier-Ricci cur-
vature in our study, it takes a serious workload to calculate
these barycenters. To prevent this type of problem, ISOMAP
type size dimensional reduction algorithms of soft sets can
be produced.

5 Conclusions

The soft set theory is a mathematical tool dealing with
the uncertainty of real-world problems which usually con-
tain uncertain data, and depends on the adequacy of the
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parametrization. Hence, if the elements of the universe set
have a geometric realization, the geometric analysis of such
soft sets regarding to parameter mapping becomes an impor-
tant subject. In this study, we extend the idea of discrete
Ricci curvatures defined on cellular complexes to soft sets.
Moreover, in order to analyze real-world problems, we anal-
ogously define Forman and Ollivier-type Ricci curvatures
on general soft sets by considering the volumes of the
parameters as their cardinality and the distance between new
probability measures defined on soft sets.

On the basis of the contributions presented in this paper,
several promising lines are still open for further research
on different types of multi-agent system environments such
as biological systems, computer communication systems, or
further financial systems. Besides, more geometric analysis
on the flows of the discrete Ricci curvatures on soft sets is still
an open problem. Moreover, we point to the algebraic con-
cept called soft free Abelian groups dimensional reduction
and Euclidean embedding algorithms for researchers work-
ing on soft set theory and its use in soft computing. It is also
well known that the lower Ricci curvature bounds estimate
the tendency of geodesics to converge. Hence, for further
studies, determining the Forman or Ollivier-type Ricci cur-
vature lower boundaries on soft sets will be helpful to give
more characterization to different types of systems.
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Appendices

Appendix 1: NACE codes

See the Table 2.

Table 2 NACE codes and labels

NACE code Labels

3314 Repair of electrical equipment

3513 Distribution of electricity

3811 Collection of non-hazardous waste

4321 Electrical installation

4711 Retail sale in non-specialized stores

4719 Other retail sale in non-specialized stores

4759 Retail sale in specialized stores

4941 Freight transport by road

4942 Removal services

5110 Passenger air transport

5223 Service activities incidental to air transportation

5510 Hotels and similar accommodation

5610 Restaurants and mobile food service activities

5629 Other food service activities

8010 Private security activities

8121 General cleaning of buildings

8610 Hospital activities

9609 Other personal service activities n.e.c.

Appendix 2: Data for NASDAQ and S&P500

See the Tables 3, 4 and Figs. 6, 7.

Table 3 Tickers of the
companies operating in
NASDAQ

ATVI ADBE AKAM ALXN AMZN AMGN ADI

AAPL AMAT ADSK ADP BIIB BMRN CA

CELG CERN CHKP CTAS CSCO CTXS CTSH

CMCSA COST CSX CTRP XRAY DISH DLTR

EBAY EA ESRX FAST FISV GILD HAS

HSIC HOLX ILMN INCY INTC INTU ISRG

KLAC LRCX MAR MAT MXIM MCHP MU

MSFT MDLZ MNST MYL NTES NVDA ORLY

PCAR PAYX QCOM REGN ROST SBAC STX

SHPG SWKS SBUX SYMC TXN PCLN TSCO

FOXA FOX VRTX VOD WBA WDC XLNX
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Table 4 Tickers of the
companies operating in
S&PP500

AAP AAPL ABC ABT ACN ADBE ADI ADM ADP ADS

ADSK AEE AEP AES AET AFL AGN AIG AIV AJG

AKAM ALB ALK ALL ALXN AMAT AME AMG AMGN AMT

AMZN AN ANTM AON APA APC APD APH ARNC ATVI

AVB AVY AXP AYI AZO BA BAC BAX BBBY BBT

BBY BCR BDX BEN BHI BIIB BK BLK BLL BMY

BSX BWA BXP C CA CAG CAH CAT CB CCI

CCL CELG CERN CHD CHK CHRW CI CINF CL CLX

CMA CMCSA CME CMI CMS CNC CNP COF COG COH

COL COO COP COST CPB CSCO CSX CTAS CTL CTSH

CTXS CVS CVX D DD DE DGX DHI DHR DIS

DLTR DNB DOV DOW DRI DTE DUK DVA DVN EA

EBAY ECL ED EFX EIX EL EMN EMR EOG EQIX

EQR EQT ES ESRX ESS ETFC ETN ETR EW EXC

EXPD F FAST FCX FDX FE FFIV FIS FISV FITB

FL FLIR FLR FLS FMC FOX FOXA FRT FTI FTR

GD GE GGP GILD GIS GLW GPC GPN GPS GRMN

GS GT GWW HAL HAS HBAN HCN HCP HD HES

HIG HOG HOLX HON HP HPQ HRB HRL HRS HSIC

HST HSY HUM IBM IDXX IFF ILMN INCY INTC INTU

IP IPG IR IRM ISRG ITW IVZ JBHT JCI JEC

JNJ JNPR JPM JWN K KEY KIM KLAC KMB KMX

KO KR KSS KSU L LB LEG LEN LH LKQ

LLL LLY LMT LNC LNT LOW LRCX LUK LUV LVLT

M MAA MAC MAR MAS MAT MCD MCHP MCK MCO

MDLZ MDT MET MHK MKC MLM MMC MMM MNST MO

MON MOS MRK MRO MS MSFT MSI MTB MTD MU

MUR MYL NBL NDAQ NEE NEM NFLX NFX NI NKE

NOC NOV NRG NSC NTAP NTRS NUE NVDA NWL O

OKE OMC ORCL ORLY OXY PAYX PBCT PCAR PCG PCLN

PDCO PEG PEP PFE PFG PG PGR PH PHM PKI

PLD PNC PNR PNW PPG PPL PRGO PRU PSA PVH

PWR PX PXD QCOM R RAI RCL REG REGN RF

RHI RHT RIG RL ROK ROP ROST RRC RSG RTN

SBUX SCG SCHW SEE SHW SIG SJM SLB SLG SNA

SO SPG SPGI SPLS SRCL SRE STI STT STX STZ

SWK SWKS SWN SYK SYMC SYY T TAP TGNA TGT

TIF TJX TMK TMO TROW TRV TSCO TSN TSO TSS

TWX TXN TXT UDR UHS UNH UNM UNP UPS URBN

URI USB UTX VAR VFC VLO VMC VNO VRSN VRTX

VTR VZ WAT WBA WDC WEC WFC WFM WHR WLTW

WM WMB WMT WY WYNN XEC XEL XL XLNX XOM

XRAY XRX YUM ZBH ZION
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Fig. 6 Correlation distance matrix of NASDAQ

Fig. 7 Correlation distance matrix of S&PP500
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