
Physica E 44 (2012) 1425–1428
Contents lists available at SciVerse ScienceDirect
Physica E
1386-94

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/physe
Screening theory based modeling of the quantum Hall based quasi-particle
interferometers defined at quantum dots
A. Salman a,n, E. Koymen a, M.B. Yucel a, H. Atci b, U. Erkarslan b, A. Siddiki c,d

a Akdeniz University, Faculty of Sciences, Physics Department, Antalya 07058, Turkey
b Mugla University, Faculty of Sciences, Physics Department, Kotekli 48170, Mugla, Turkey
c Istanbul University, Faculty of Sciences, Physics Department, Vezneciler-Istanbul 34134, Turkey
d Harvard University, Physics Department, Cambridge, MA 02138, USA
a r t i c l e i n f o

Article history:

Received 13 October 2011

Accepted 5 March 2012
Available online 13 March 2012
77/$ - see front matter & 2012 Elsevier B.V. A

016/j.physe.2012.03.005

esponding author. Tel.: þ90 2423102288; fa

ail address: aysevil@akdeniz.edu.tr (A. Salman
a b s t r a c t

In this work, we investigate the spatial distributions and the widths of the incompressible strips, i.e. the

edge-states. The incompressible strips that correspond to n¼ 1;2 and 1/3 filling factors are examined in

the presence of a strong perpendicular magnetic field. We present a microscopic picture of the

fractional quantum Hall effect based interferometers, within a phenomenological model. We adopt

Laughlin quasi-particle properties in our calculation scheme. In the fractional regime, the partially

occupied lowest Landau level is assumed to form an energy gap due to strong correlations. Essentially

by including this energy gap to our energy spectrum, we obtain the properties of the incompressible

strips at n¼ 1=3. The interference conditions are investigated as a function of the gate voltage and

steepness of the confinement potential, together with the strength of the applied magnetic field.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The quantum behavior of particles has attracted many concern;
one of these concern is the quantum Hall based interferometers
which are realized in the two dimensional electron systems (2DESs).
The discovery of the integer [1] and fractional [2] quantum Hall
effects paved the path to investigate the importance of interactions,
in particular, by intensive efforts related with the transport phe-
nomena in the 2DES. At low temperatures and at certain magnetic
field intervals, it is observed that the Hall conductance sxy assumes
quantized values in units of e2=h, whereas the longitudinal con-
ductance sxx vanishes. The experimental realization of the integer
quantum Hall effect (IQHE) shows that the constant Hall conduc-
tance occurs if the electron number density nel is an integer (i)
multiple of the magnetic flux density nF0

. This ratio is named as the
filling factor, n¼ nelh=eB and it describes the Landau level filling at a
given magnetic field. In the integer regime, i.e. if n¼ i, it means that
the Fermi energy falls between the two adjacent Landau levels and
the electrostatic potential cannot be screened, the electron density
remains constant. This state is called incompressible. If Fermi energy
equals to a Landau level, the screening ability is good and this state
is called compressible. In the fractional quantum Hall effect (FQHE)
regime, the Landau level is partially occupied, hence, n¼ f . At
certain fractional filling factors, it has been shown that this partially
ll rights reserved.
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occupied highly degenerate Landau level splits into degenerate
sub levels, and energy gaps are formed. These gaps lead also an
incompressible state.

In 1982, Wilczek introduced a new kind of statistical particles
named anyons [3,4], which is described by fractional statistics in
two dimensions. The quantum mechanics of anyons is formulated
by including a statistical interaction potential to the Lagrangian or
Hamiltonian of ordinary particles [5]. According to the quantum
field theory of anyons, the electromagnetic potential is replaced by
the Chern–Simons field. The Chern–Simons field is defined by the
composite-particle (fermion or boson) field that represents anyons.
In the case of a two dimensional electron gas subject to strong
perpendicular magnetic field, these anyonic particles are called
Laughlin quasi-particles (LQPs) which obey fractional statistics and
have an effective fractional electric charge en ¼ e=ð2iþ1Þ. Laughlin
describes the Landau level filling for FQH states as f ¼ 1=ð2iþ1Þ
where i is an integer [6] and LQPs are described by elementary
charged excitations of FQH condensate [7].

The ‘‘quantum Hall’’ based interferometers have revealed a
novel technique to exploit the properties of the quasi-particles,
which utilizes the so-called edge states (ESs) in the extreme
quantum limit. The ESs are considered as monochromatic
(-energetic) beams that carry quasi-particles without scattering.
Therefore, the overall interference pattern also strongly depends
on the spatial distribution of these states. To understand the
properties of Laughlin quasi-particles, a number of experiments
have been performed by Camino et al. [7–9]. A key element of
these experiments is the quantum point contacts (QPCs) and the
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electrostatic potential profile near these QPCs together with the
quantum dot. Electrostatics plays an important role on the
formation and the spatial rearrangement of the electrostatic
potential. Moreover, the interaction of the electrons or quasi-
particles was proposed to be a possible origin of the dephasing
and a better understanding requires a self-consistent (SC) calcu-
lation of the electrostatic potential [10]. Here we present an
implementation of the SC Thomas–Fermi–Poisson approach to
investigate the effects induced by direct Coulomb interactions
considering an homogeneous 2DES, where the interferometer is
defined by a quantum dot.
2. The model

The electrostatic treatment of the ESs is handled analytically by
Chklovskii, Shklovskii and Glazman (CSG) [11]. In their pioneering
work, they developed an electrostatic model considering the gate
defined samples and studied the formation of edge states. Using the
stability condition of the electrostatic potential, they obtained the
positions and the widths of the incompressible states, which
resemble the edge states. They argued that their results can be
employed to the etched structures using appropriate gate voltages
that simulating etched edges [11]. Subsequently, Gelfand and
Halperin (GH) studied the edge electrostatics and investigated the
distribution of electron density considering an etching defined
sample [12]. Both of the theories are accepted to be viable also for
FQHE [11,12]. In a recent work, the positions and the widths of
incompressible states are studied by Salman et al. for both cases
investigating a regular Hall bar, utilizing a self-consistent numerical
approach [13]. There, it is shown that the predictions of the charge
density profile within the analytical approximations deviate con-
siderably from the self-consistent calculations.

In this work, we employ the commonly used self-consistent
Thomas–Fermi–Poisson approach (SCTFPA) to obtain the electro-
static potential and the electron distribution in the structures. The
total potential energy that electron experiences, within a mean-
field approximation, is

Vðx,y,zÞ ¼ Vdðx,y,zÞþVgðx,y,zÞþVsurf ðx,y,zÞþV intðx,y,zÞ, ð1Þ

here Vdðx,y,zÞ is generated by the ionized donors, Vgðx,y,zÞ is due
to metallic gates deposited on the surfaces, and Vsurf ðx,y,zÞ
represents the surface potential and the last term stands for the
electron–electron interactions, which is determined by the elec-
tron density distribution nelðx,y,zÞ. The surface and gate potentials
are fixed by the sample properties, e.g. the surface potential is
determined by the mid-gap energy of the heterostructure. The
potential generated by the charges are calculated via solving the
Poisson’s equation for given boundary conditions numerically.

In our self-consistent calculation scheme, we fix the homo-
geneous immobile charge distribution, i.e. the donors; then the
electron density profile is calculated by the electrostatic potential
emanating from the donors, surface and gates. Next, the electro-
static potential is determined by the electron density profile in a
self-consistent loop, at zero magnetic field and temperature. To
start the self-consistent calculation we focus on the lithographi-
cally defined sample, resembling the experimental structures
[7–9]. By considering the crystal growth parameters together
with the surface image of the quantum dot pattern, we calculate
the charge distribution at the 2DES. The details of the self-
consistent process are given in Refs. [14–16].

The next step is to determine the spatial positions of the edge
states, which is a straightforward procedure when the electron
density distribution is known. Our self-consistent scheme provides
this information, and integer or fractional filling factors (the edge
states) can be found simply by nðx,yÞ ¼ 2p‘2nelðx,y,z¼ 2DESÞ; here
‘¼
ffiffiffiffiffiffiffiffiffiffi
_=eB

p
is the magnetic length. In a further step, one can calculate

also the widths of the incompressible edge states, by following the
pioneering work of Chklovskii et al. [11] given as

ai,f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EDEi,f

p2e2 dn=dx9x ¼ xi,f

vuut , ð2Þ

where DEi,f is the energy gap, assuming the Zeeman split Landau
gap for the integer case and the many-body effects induced gap for
the fractional case.

Aharonov–Bohm interferometers (ABI) are basically used to
measure the vector potential induced phase difference between
two paths of the (quasi-)particles. The single electron states at the
Landau level are quantized by the Aharonov–Bohm condition and
determines the phase, whereas for the LQPs the phase is determined
by the properties of the composite particle [8]. In the existence of a
perpendicular magnetic field, the closed paths define an area S¼ pr2

with radius r that encircles the magnetic flux F and is given by
F¼ BSm¼mF0. The encircled area of the orbital is given by Sm and
m represents the quantum numbers of the orbital, where F0 ¼ _=e is
the magnetic flux quantum [8]. The theoretical predictions by
Aharonov and Bohm [17] states that the interference between the
two paths depends on the phase difference, and the phase difference
is given by the integer multiples of the magnetic flux quanta F
encircled. Therefore, the area of an orbit is Sm ¼ 2pm‘2 where ‘ is
the radius of the orbit [18]. The region between the two adjacent
orbits is Smþ1�Sm ¼ _=eB, and this is related with the occupation of
these orbits which is given by the filling factor as described above,
i.e. n¼ 2p‘2nel. Therefore, it is essential to find the exact locations of
integer or fractional edge states to pin down the area enclosed by
the interference paths. In the following section, the spatial distribu-
tions of the edge states will be provided by considering real
experimental parameters.
3. Results and discussion

The physical area of the structure that we considered is
5:9 mm� 5:9 mm, and the 2DES is 280 nm below the surface in z

direction, similar to the experimental case [7–9]. The 2DES is
generated at the interface of the GaAs–AlGaAs heterostructure.
Hence, we set the Lande-g* factor to be �0.44, as default. We
obtain the electron densities self-consistently as mentioned
above. Typical electron density distributions are shown in Fig. 1,
(a) considering gate, (b) shallow etched, (c) deep etched and
(d) trench gate (i.e. first etched then gated) defined samples. The
gray scale depicts the electron occupied regions, whereas white
areas denote the electron depleted regions. Here, the physical
dimensions of the surface pattern are taken to be the same.

Since the electron free (white) regions are dominant in (b)–(d)
one can conclude from Fig. 1 that, etching is more effective in
depleting electrons when it is compared to solely gate defined
quantum dots. Note that, to manipulate the electron density
distribution, hence the area, one needs to impose metallic gates
biased by negative voltages. Therefore, we also show the trench
gated samples, resembling the experiments. This method is the most
powerful technique to investigate both the edge effects and inter-
ference phenomena. In our calculations, we follow the arguments of
Gerhardts [19], Fogler [20] and Chang [21] in describing the non-
equilibrium current. We assume that the current is carried by
incompressible regions, since scattering is completely suppressed
due to the lack of available states at the Fermi energy. However, our
calculations are also viable if one utilizes the Landauer–Büttiker
picture for transport and considers solely the capacitive effects
proposed by Halperin and his co-workers [22,23].



Fig. 1. Spatial distribution of electrons at zero magnetic field and zero tempera-

ture. (a) Gated sample where potential is fixed to Vg ¼�2:0 V. (b and c) Etched

structures, whose etching depths are 160 nm and 240 nm from the surface of the

sample, respectively. (d) Etched and also gated (trench gated) sample: etching

depth is 240 nm, gate voltage is �2.0 V.

Fig. 2. (a and b) The spatial distribution of ISs for gated samples at 2.6 T magnetic

field. Vg ¼�2:0 V in (a) and Vg ¼�5:0 V in (b). (c and d) The spatial distribution of

ISs for 160 nm etched and also �2.0 V potential is applied (trench gated) sample.

The magnetic field is 2.6 T in (c) and 5.1 T in (d).

Fig. 3. Spatial distribution of the incompressible strips for n¼ 1=3 state at

different gate voltages. In (a) Vg ¼�3:0 V, (b) Vg ¼�4:0 V, (c) 160 nm etched

sample is considered at 14.4 T, (d) 160 nm etched and Vg ¼�4:0 V gated sample is

considered at 14.4 T.
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Fig. 2 shows the ESs considering the filling factors n¼ 1 and 2. To
find the spatial distribution of the incompressible strips, we imposed
magnetic field values 2.6 T and 5.1 T, that are consistent with the
experiments [8]. As it is seen from Fig. 2, there are two edge channels
(inner (light) and outer (dark)). The outer edge channel corresponds
to n¼ 2 and inner edge channel corresponds to n¼ 1. At relatively
low gate voltages, Fig. 2a, the both edge channels are transmitted
through the constrictions, whereas at higher negative gate voltages
(Fig. 2b) the outer edge state is back-reflected; meanwhile, the inner
edge states come closer to each other and start to overlap. Thus, the
interference is more possible for lower gate voltages, at least for the
inner channel. In Fig. 2b, we observe that the inner channels overlap,
whereas the outer channels are (back-)reflected, hence, at this
configuration tunneling becomes impossible for n¼ 2 state. Fig. 2c
and d depicts the results for trench gated samples (160 nm etched
and �2.0 V is applied to the gates). The outer edge channels are
decoupled, hence interference is suppressed. Also in Fig. 2d, the inner
edge channels disappear due to the steepness of the electron density
that is considered for trench gated samples. The incompressible strip
is very narrow compered to the magnetic length under these
conditions, and the inner edge channel is, therefore, suppressed. For
high magnetic fields none of the channels are transmitted, therefore,
interference is completely washed out.

We also investigate the n¼ 1=3 edge state in the presence of
strong magnetic fields. We showed that it is more possible to observe
the interference at n¼ 1=3, particularly at gated samples by imposing
low gate voltages, Fig. 3a. When the gate voltages are increased,
electrons are repelled more from the edges, therefore, the edge states
on the left and right starts to overlap. Etching also depletes the
electrons more sharply than gating as a result of steeper potential
gradient, hence, the quasi-particle edge states overlap. If the sample is
made by the trench gated as shown in Fig. 3d, it is observed that the
edge states are dispelled the most effectively.

In a further investigation, we studied the effect of magnetic field
on the path of the edge states, hence the enclosed area. The
distribution of n¼ 1=3 edge state is shown in Fig. 4. The calculated
areas of the enclosing loops in Fig. 4 are 1:04 mm2 for (a), 0:78 mm2

for (b) and 0:45 mm2 for (c). It is interesting to observe that, by
changing magnetic field monotonously, the actual area enclosed by
the n¼ 1=3 edge state changes approximately by a factor of 2.
Therefore, assuming an area independent charging model seems not
to be plausible. However, one should also keep in mind that in
actual experiments, the interference signal is not observed in a large
B interval. This is due to the fact that not only the area is changed,
but also the tunneling mechanisms are altered. To be explicit, while
the magnetic field varied, one also suppresses the scattering
between the edge states by pulling them apart. Hence, no partition-
ing can take place and interference signal disappears. Therefore, one
cannot measure the phase difference between two paths. This
observation, of course, does not hinder the fact that the area
enclosed is strongly affected by the change of magnetic field.
4. Conclusions

In this work, we numerically investigated the electrostatics of a
field effect induced quantum dot, and hence, the spatial distribution
of the edge states by considering the Aharonov–Bohm interference



Fig. 4. Spatial distribution of the incompressible strips for n¼ 1=3 state in 240 nm etched sample with different magnetic field values: (a) B¼12.0 T, (b) B¼13.2 T,

and (c) B¼14.4 T.
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experiments performed in the integer (n¼ 1;2) and fractional
(n¼ 1=3) quantized Hall regimes [8,7]. We observed that, defining
the interference device (i.e. the quantum dot) which is created by
trench gating provides a steeper edge potential profile, and there-
fore, this device is more effective for interferometric measurements.
In contrast, the gate defined devices enables higher visibility at
fractional states, due to the fact that these states become more
stable since the density gradients are smoother. Another observation
is related with the change of the area while sweeping the magnetic
field. At the integer regime, edge states are less affected by the
change in B, hence capacitive models that essentially neglect the
areal dependency may become more reliable. Our final remark for
the fractional case is, the area changes approximately a factor of
2 while changing the magnetic field about 2.5 T. Hence, an areal
independent model is more questionable.

The observations yield the following conclusion: to investigate
the importance of the areal dependency, therefore, the impor-
tance of Hartree type interactions, it is necessary to perform
experiments with the same sample geometry for the both gate
and trench gated samples. We expect to see that the gate defined
samples will show an enhanced areal dependency, due to the fact
that their edge potential profile are smoother.
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