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We study the effects of disorder on the integer quantized Hall effect within the screening theory,

systematically. The disorder potential is analyzed considering the range of the potential fluctuations.

The short-range potential fluctuations (t20 nm) stems from single impurities and defines the Landau

level broadening, whereas, the long-range potential fluctuations (\200 nm) are calculated from the

potential overlap of many-impurities, which in turn determines the widths of the plateaus. The short-

range part is taken into account via self-consistent Born approximation hence determining the

conductivities and a local version of Ohm’s law is utilized to define charge transport. We investigate

the long range potential fluctuations taking into account interaction effects and explore its effect on the

formation of quantum Hall plateaus depending on the number of impurities, the amplitude of the

impurity potential and the separation thickness by solving the 3D Poisson equation iteratively. We

discuss the long range part of the potential fluctuations by investigating the Coulomb interaction of the

two dimension electron gas numerically. We show that the widths of the quantized Hall plateaus

increase with increasing disorder, whereas the influence of level broadening is suppressed at narrow

Hall bars.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The integer quantized Hall effect (IQHE), observed at two
dimensional charge systems (2DCS) subject to strong perpendi-
cular magnetic fields B, is usually discussed within the single
particle picture, which relies on the fact that the system is highly
disordered [1,2]. These quantized (spinless) single particle energy
levels are called the Landau levels (LLs) and the discrete energy
values are given by EN ¼ _ocðnþ1=2Þ, where n is the Landau index
and oc ¼ eB=mnc is the cyclotron frequency of an electron with an
effective mass mn (� 0:067me, me being the bare electron mass at
rest) and c is the speed of light in vacuum. In single particle
models the disorder plays several roles, such as Landau level
broadening [3], leading to a finite longitudinal conductivity [4,5],
spatial localization [6], etc. Disorder can be created by inhomo-
geneous distribution of dopant ions which essentially generates
the confinement potential [7] for the electrons. In the absence of
disorder, the density of states are Dirac delta-functions
DðEÞ ¼ ð1=2pl2Þ

PN ¼ 0
1 dðE�ENÞ, where l¼

ffiffiffiffiffiffiffiffiffiffi
_=eB

p
is the magnetic

length, and the longitudinal conductivity (sl) vanishes. For a
homogeneous two dimensional electron system (2DES), by the
ll rights reserved.
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inclusion of disorder and due to collisions, LLs become broadened.
Therefore the longitudinal conductance becomes non-zero in a
finite energy (in fact magnetic field) interval. Long range potential
fluctuations generated by the disorder result in the so-called
classical localization [8], i.e. the guiding center of the cyclotron
orbit moves along closed equi-potentials [9]. In contrast to the
above mentioned bulk theories, the edge theories usually dis-
regard the effect of disorder to explain the (quantized) Hall
resistance RH and accompanying (zero) longitudinal resistance
RL. However, the non-interacting edge theories still require
disorder to provide a reasonable description of the transition
between the plateaus. The Landauer–Büttiker approach (known
as the edge channel picture) [10] and its direct Coulomb interac-
tion generalized version, i.e. the non-self-consistent Chklovskii
picture [11], also needs localization assumptions in order to
obtain quantized Hall (QH) plateaus of finite width.

In this paper, we distinguish between the effects of single-
impurity induced short-range potential fluctuations (SRPFs) and
the many-impurity defined long-range potential fluctuations
(LRPFs) on the quantized Hall plateaus. We argue that, the SRPF
defines the Landau level broadening (hence the widths of incom-
pressible strips) and conductivity tensor elements. The LRPF,
which results from the overlap of the long-range part of the
single-impurity potentials (i.e. many-impurity), determines the
widths of the quantized Hall plateaus. The report is organized as
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follows, first we introduce the single-impurity potential by
comparing a Coulomb impurity with an Gaussian impurity. Next,
the formalism to calculate the level broadening and conductiv-
ities, namely the self-consistent Born approximation, is revisited,
together with a brief introduction to local Ohm’s law and its
connection to Kubo formalism. Prior to the conclusion, we present
our numerical calculations, where the widths of the quantized
Hall plateaus are investigated in light of our findings.
Fig. 1. A single Coulomb (a) and a Gaussian impurity (b) located at the center of a

1:5 mm� 1:5 mm unit cell, approximately 30 nm above the electron gas

(z¼ z0 ¼ 0). The short range behaviors are similar, whereas long range parts are

strongly different. Potential profiles projected through the center (x, y¼ 0:75 mm),

for the Coulomb (solid (black) line) and Gaussian impurity (broken (red) line). (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
2. Model

2.1. Single-impurity

The disorder potential experienced by the 2DES resulting from
the impurities has quite complicated range dependencies. Since,
the potential generated by an impurity is damped by the dielectric
material in between the impurity and the plane where the 2DES
resides is screened by the homogeneous 2DES depending on the
density of states, which changes drastically with and without
magnetic field. Moreover, depending on the single impurity
potential the landscape of the total disorder potential profile
varies considerably. It is common to theoreticians to calculate the
conductivities from single impurity potentials, such as Gaussian
[12], Lorentzian [13] or any other analytical functions [14].
However, as it will be discussed, the landscape of potential
fluctuations is also important to define the actual mobility of
the sample.

Here we point to the effect of the spacer thickness on the
impurity potential experienced in the plane of 2DES. It is well
known from experimental and theoretical investigations that, if
the distance between the electrons and donors is large, the
mobility is relatively high and it is usually related with suppres-
sion of the short range fluctuations of the disorder potential.
These results agree with the experimental observations of high
mobility samples and are easy to understand from the z depen-
dence of the Fourier expansion of the Coulomb potential

V q
!
ðzÞ ¼

Z
d r
!

e�i q
!
� r
!XN

j

e2=kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð r
!
� rj
!
Þ
2
þz2

q ¼
2pe2

kq
e�9qz9NSð q

!
Þ,

ð1Þ

where Sð q
!
Þ (structural function) contains all the information

about the in-plane donor distribution and N is the total number
of the ionized donors. We observe that if the spacer thickness is
increased, the amplitude of the potential decreases rapidly. We
also see that the short range potential fluctuations, which corre-
spond to higher order Fourier components, are suppressed more
efficiently.

Consider a case where the q component approaches to zero,
then the external (damped) potential is well screened, hence the
long range part of the disorder potential. Whereas, the short range
part remains unaffected, i.e. high q Fourier components. Now we
turn our attention to the second type of impurities considered,
the Gaussian ones. As well known, the Fourier transform of a
Gaussian is also of the form of a Gaussian, therefore, similar
arguments also hold for this kind of impurity.

We should emphasize once more the clear distinction between
the effect of the spacer on the external potential and the screen-
ing by the 2DES, i.e. via EðqÞ (the dielectric constant). The former
depends on the Fourier transform of the Coulomb potential and
the important effect is the different decays of the different Fourier
components (see Eq. (1)), so that the short range part of the
disorder potential is well dampened, whereas the latter depends
on the relevant DOS of the 2DES and the screening is more
effective for the long range part.
In the following, we will first compare the range dependency
of a single-impurity by considering a Coulomb and a Gaussian
type potentials. We will show that, if one utilizes the Gaussian
potential to define the level broadening, the contribution to
transport properties from the long-range part of the single-
impurity potential is underestimated. Hence, should be taken
into account while calculating the global resistances.

2.2. Coulomb vs. Gaussian

The electrostatic potential at ðx0,y0,z0Þ, created by a single,
positively charged particle (ionized donor) placed at x,y,zD is
given by

Vðx0,y0,z0Þ ¼
e2=kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0�xÞ2þðy0�yÞ2þðz0�zDÞ
2

q , ð2Þ

where zD and z0 labels the z position of the donor layer and the
electron gas, respectively, and k is the average dielectric constant
(� 12:4 for GaAs). Throughout this paper we assume that the
2DES resides on z¼ z0 ¼ 0 plane and the donors are placed at a
finite distance (spacer thickness) zD40, hence, the divergencies
that may occur at the above equation are ruled out. In principle
Eq. (2) provides a correct description of the impurity potential
generated by an ionized donor, however, unfortunately such a
description is not useful to define conductivities analytically [12].
Instead, one usually considers a Gaussian impurity with an
potential amplitude V imp generating a potential at the ðx0,y0Þ

plane

Vðx0,y0,0Þ ¼�
e2V imp

k9zD9
exp �

ðx0�xÞ2þðy0�yÞ2

2z2
D

" #
: ð3Þ

These potentials are shown in Fig. 1 for a unit cell of a square
lattice with a relevant average dielectric constant k considering a
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single donor residing at the center. Since, the donor is at a finite
distance from the plane where the electrostatic potential is
calculated, no singularity is observed in the potential distribution.
We should note that the electrostatic potential created by the
donor is damped (we use the term damped, not to mix with
screened) by the dielectric material, which resides between the
donor layer and the plane where we calculate the potential. The
Coulomb potential presents long range part, which leads to long
range fluctuations due to overlapping if several donors are
considered within the unit cell, whereas, the Gaussian potential
decays exponentially on the length scale comparable with the
separation thickness.

The comparison of these two potential enables us to quantita-
tively distinguish between the short and long range parts of the
single-impurity potential. In addition, from this comparison we
can easily estimate the strength of the single impurity potential
Vimp. For instance, given the experimental parameter where the
donor layer resides (zD¼30 nm), one can calculate the amplitude
of a single-impurity potential to be 0.033 eV, which we will use
when calculating the conductivities and long-range potential
fluctuations.
Fig. 2. Sketch of the crystal, which we investigate numerically. The crystal is

spanned by a 3D matrix (128� 128� 60).
2.3. Level broadening and conductivities

The electron-impurity scattering at high magnetic fields and
low temperatures is a long discussed phenomena as mentioned in
the Introduction. However, in the case of non-overlapping Landau
levels and short-range impurities self-consistent Born approxima-
tion provides a reasonable framework to calculate the effect of
disorder on level broadening and on conductivities, which can be
summarized in the following. Assuming a Gaussian single-impur-
ity and calculating Green’s function of the Landau hamiltonian
one can obtain the spectral function as [4]

AnðEÞ ¼
2

pGn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

E�En

Gn

� �2
s

, ð4Þ

where Gn is the width of the Landau level and is obtained from
the Laguerre polynomials as

G2
n ¼ ðG

ð0Þ
n Þ

2
¼G2

Z 1
0

dx ½L0
nððRrmg=lÞ2xÞ�2 expð�½1þðRg=lÞ2�xÞ, ð5Þ

and Rg is the range of the single-impurity with a Gaussian profile.
Starting from the spectral function one can calculate the long-
itudinal conductivity

sl ¼ 2
X1
n ¼ 0

Z
dE �

@f

@E

� �
sðnÞxx ðEÞ, ð6Þ

and the Hall conductivity

sH ¼
e2

h
2pl2nel�DsH: ð7Þ

here sðnÞxx ðEÞ is the contribution from each Landau level as a
function of energy and DsH is the quantum mechanical correction
to the classical Hall conductivity. The explicit forms of the
conductivities can be found in the existing literature [4,5,12,17].
We will utilize the above conductivities to calculate global
resistances in the following.

Equipped with the information about the short-range potential
influencing the level broadening conductivities, next we investi-
gate the overall impact of disorder potential on the electronic
system. First, we will numerically investigate the potential land-
scape generated by many Coulombic impurities and then by
subtracting the Gaussian-like short-range part, we will explore
the effect of remaining long-range part on plateau widths.
2.4. Many-impurity and interactions

We continue our investigation by solving the 3D Poisson
equation iteratively for randomly distributed single impurities,
where three descriptive parameters (i.e. the number of impurities,
the amplitude of the impurity potential and the separation
thickness) are analyzed separately. The total potential is given by

Vðx,y,zÞ ¼ VDðx,y,zÞþVDðx,y,zÞ, ð8Þ

here we assume that the locations of the single impurities are
fixed and the donor potential is given by

VDðx,y,zÞ ¼
XNimp

i ¼ 1

V ðiÞimpðxi,yi,ziÞ, ð9Þ

we furthermore assume that all the single-impurities reside at the
same layer, i.e. zi¼zD. For the electronic potential one has to
calculate the Hartree potential given by

VDðx,y,zÞ ¼

Z
Vol

dx0 dy0 dz0 nelðx
0,y0,z0ÞKðx,y,z; x0,y0,z0Þ, ð10Þ

where Kðx,y,z; x0,y0,z0Þ is the solution of the Poisson equation for
the given boundary conditions and is calculated numerically
described below.

To obtain the potential landscape generated by many-impu-
rities also taking into account interaction effects, we solve the
Poisson equation in 3D starting from the material properties of
the wafer under investigation. The typical material we consider is
sketched in Fig. 2. In our calculation scheme, we use the growth
parameters and construct a 3D lattice where the potential and the
charge distributions are obtained iteratively assuming open
boundary conditions, i.e. Vðx-71,y-71,z-71Þ¼ 0. For
such boundary conditions, we chose a lattice size which is
considerably larger than the region that we are interested in.
We preserve the above conditions within a good numerical
accuracy (absolute error of 10�6). A forth order grid approach
[15] is used to reduce the computational time, which is success-
fully used to describe similar structures [16]. The calculation
scheme can be briefly summarized as follows: we first generate a
3D matrix, where the heterostructure is embedded in a dielectric
material (for this case air) so that the above boundary conditions
are satisfied. In the next step the donors are located randomly on
the grid together with the electron layer assuming a



S. Erden Gulebaglan et al. / Physica E 44 (2012) 1495–15021498
homogeneous distribution, the Poisson equation is solved for the
given boundary conditions. The resulting potential is used to
calculate the new distribution of electrons, hence the new
potential distribution. Once the potential and charge distributions
are not changed (within the numerical accuracy) at the last
iteration step. Fig. 2 presents the schematic drawing of the
heterostructure which we are interested in. The donor layer is
d-doped by a density of 3:3� 1016 m�2 (ionized) Silicon atoms,
� 30 nm above the 2DES, which provide electrons both for the
potential well at the interface and the surface. It is worthwhile to
note that most of the electrons (� 90%) escape to the surface to
pin the Fermi energy to the mid-gap of the GaAs. In any case, for
such wafer parameters there are sufficient number of electrons
(nel\3:0� 1015 m�2) at the quantum well to form a 2DES. To
investigate the effect of impurities we place positively charged
ions at the layer where donors reside. From Eq. (1) we estimate
the amplitude of the potential of a single impurity to be
ðe2=kÞðV imp=zDÞ ¼ 0:033 eV and assume that some percent of the
ionized donors are generating the disorder potential, that defines
the long range fluctuations. In our simulations we perform
calculations for a unit cell with lateral size of 1:5 mm� 1:5 mm
which contains 3:3� 1016 donors/m2, thus with a 10% disorder
Fig. 3. (a) Electron density fluctuation considering 3300 impurities at the sketch of th

maxima. The calculation is repeated for 50 random distributions, which lead to a simi

Fig. 4. Statistically estimated range of the density fluctuations as a function of number o

The calculations are done at zero temperature considering Coulomb impurities. The lo

considers less than 5% disorder.
we should have NI 3300 impurities. The calculations are repeated
considering many randomly distributed (up to 200 times,
depending on the number of impurities) impurity configurations
and the long-range parts are extracted from the average distances
between the extremum obtained from these different configura-
tions. In addition, to test the viability of the statistical averaging
different sets of randomly distributed configurations are also
tested.

Fig. 3a depicts the actual density distribution, when consider-
ing 3300 impurities, whereas Fig. 3b presents only the long range
part of the density fluctuation. The arrows show the average
distance between two maxima, which is calculated approximately
to be 550 nm. To estimate an average range of the disorder
potential, we repeated calculations for such randomly distributed
impurities, where number of repetitions scales with

ffiffiffiffiffi
NI

p
. Such a

statistical investigation sufficiently ensembles the system to
provide a reasonable estimation of the long range fluctuations.
We also tested for larger number of random distributions, how-
ever, the estimation deviated less than tens of nanometers. We
show our main result of this section in Fig. 4, where we plot the
estimated long range part of the disorder potential considering
various number of impurities NI and impurity potential amplitude
e crystal. (b) The long-range part, arrows are to guide the distance between two

lar long range.

f impurities, considering various impurity strengths (a) and spacer thicknesses (b).

ng range potential fluctuations become larger than the size of the unit cell if one
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V imp. Our first observation is that the long range part of the total
potential becomes less when NI becomes large, not surprisingly.
However, the range increases nonlinearly while decreasing NI,
obeying almost an inverse square law and tends to saturate at
highly disordered system. When fixing the distributions and NI,
and changing the amplitude of the impurity potential we observe
that for large amplitudes the range can differ as large as 200 nm
at all impurity densities. We found that for an impurity concen-
tration less than 3%, the range of the potential is larger than the
unit cell we consider, i.e. R41:5 mm. In contrast to the long range
part, the short range part is almost unaffected by the impurity
concentration, however, is affected by the amplitude. Therefore,
while defining the conductivities we will focus our investigation
on V imp. Another important result is that the estimates of long
range fluctuations do not depend strongly on the spacer thick-
ness, if one keeps the amplitude of single impurity potential
amplitude fixed, Fig. 4b. All of the above numerical observations
coincide fairly good with our analytical investigations. We should
also note that, similar or even complicated numerical calculations
are present in the literature [6,7].

To summarize: we performed 3D numerical calculations to
estimate the effect of impurities on the potential landscape
experienced by the 2DES. We found that the range of the
fluctuations strongly depend on the number of impurities. If one
adds more than 20% of impurity, the range of the potential
fluctuations are less than 400–500 nm, however, this (short)
range is affected by the amplitude of single impurity potential.
Whereas, if only few percent of disorder is considered the range
becomes approximately more than 650 nm. In contrast to the
highly disordered case, the amplitude of single impurity potential
is less pronounced. The spacer thickness seems not to play an
important role in defining the range of the potential fluctuations,
while keeping V imp constant. In addition, performing 3D calcula-
tions also enables us to estimate the strength of the long-range
potential fluctuations. We observed that, once the number of
impurities increase, the variation of the potential also increases.
We calculated this variation by finding the difference between a
purely clean sample and the depth of the maximum (or mini-
mum) once impurities are taken into account. This is what one
would expect also from Eq. (2), our numerical results show that
the amplitude of the potential variations change between few
percents of the Fermi energy to at most 50%. We will use these
values to simulate the long-range potential fluctuations consider-
ing different mobilities.

Next section is devoted to investigate the widths of the
quantized Hall plateaus utilizing our findings. We consider
mainly two ‘‘mobility’’ regimes, where the long range fluctuations
is at the order of microns (high mobility) and is at the order of few
hundred nanometers, low mobility. However, the amplitude of
the total potential fluctuations will be estimated not only
depending on the number of impurities but also depending on
the spacer thickness, range and amplitude of single impurity
potential.
3. Quantized Hall plateaus

The main aim of this section is to provide a systematic
investigation of the quantized Hall plateau (QHP) widths within
the screening theory of the IQHE [17], therefore here we sum-
marize the essential findings of the mentioned theory. In calcu-
lating the QHPs one needs to know local conductivities, namely
the longitudinal slðx,yÞ and the transverse sHðx,yÞ. To determine
these quantities it is required to relate the electron density
distribution nelðx,yÞ to the local conductivities explicitly. Here
we utilize the SCBA [12]. However, the calculation of the electron
density and the potential distribution including direct Coulomb
interaction is not straightforward, one has to solve the Schrödin-
ger and the Poisson equations simultaneously. This is done within
the Thomas–Fermi approximation which provides the following
prescription to calculate the electron density:

nelðx,yÞ ¼

Z
dE DðEÞ

1

eðEF�Vðx,yÞÞ=kBTþ1
, ð11Þ

where D(E) is the appropriate density of states calculated within
the SCBA, where kB is the Boltzmann constant and T is the
temperature. The total potential is obtained from

Vðx,yÞ ¼
2e2

k

Z
dx dy Kðx,y,x0,y0Þnelðx,yÞ, ð12Þ

and the Kernel Kðx,y,x0,y0Þ is the solution of the Poisson equation
satisfying the boundary conditions to be discussed next.

In the following we assume a translation in variance in y-
direction and implement the boundary conditions
Vð�dÞ ¼ VðdÞ ¼ 0 (2d being the sample width), proposed by
Chklovskii et al. [11], such a geometry allows us to calculate the
Kernel in a closed form. Hence, Eqs. (11) and (12) form the self-
consistency. For a given initial potential distribution, the electron
concentration can be calculated at finite temperature and mag-
netic field, where the density of states D(E) contains the informa-
tion about the quantizing magnetic field and the effect of short
range impurities. Here we implicitly assume that the electrons
reside in the interval �boxob, and is fixed by the Fermi energy,
i.e. the number of electrons, hence donors. As a direct conse-
quence of Landau quantization and the locally varying electro-
static potential, the electronic system is separated into two
distinct regions, when solving the above self-consistent equations
iteratively: (i) the Fermi energy equals to (spin degenerate)
Landau energy and due to DOS the system illustrates a metallic
behavior, the compressible region, (ii) the insulator like incom-
pressible region, where EF falls in between two consequent eigen-
energies and no states are available [11,18]. It is usual to define
the filling factor n, to express the electron density in terms of the
applied B field as, n¼ 2pl2nel. Since all the states below the Fermi
energy are occupied the filling factor of the incompressible
regions correspond to integer values (e.g. n¼ 2;4,6, . . .), whereas
the compressible regions have non-integer values, due to partially
occupied higher most Landau level. The spatial distribution and
widths of these regions are determined by the confinement
potential [11], magnetic field [19], temperature [20] and level
broadening [13,17]. For the purpose of the present work we fix
the confinement potential profile by confining ourselves to the
Chklovskii geometry and keeping the donor concentration (and
distribution) constant. Moreover we perform our calculations at a
default temperature given by kBT=E0

F ¼ 0:02, where E0
F is the Fermi

energy calculated for the electron concentration at the center of
the sample and is typically similar to 10 meV. In addition, the
Fermi energy is E0

F ¼ nelð0;B¼ 0,T ¼ 0Þ=D0 corresponding to the
electron density at the center and D0 ¼m=ðp_2

Þ the DOS of the
2DES at B¼0.

3.1. Transport within the local Ohm’s law

The next step is to calculate the global resistances, i.e. the
longitudinal RL and Hall RH resistances, starting from the local
conductivity tensor elements. Such a calculation is done within a
relaxed local model that relates the current densities jðx,yÞ to the
electric fields Eðx,yÞ, namely the local Ohm’s law

jðx,yÞ ¼ ŝðx,yÞEðx,yÞ: ð13Þ

The strict locality of the conductivity model is lifted by an spatial
averaging process [17] over the quantum mechanical length
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scales and an averaged conductivity tensor ŝ ðx,yÞ is used to
obtain the global resistances. It should be emphasized that, such
an averaging process also simulates the quantum mechanical
effects on the electrostatic quantities. To be explicit: if the widths
of the current carrying incompressible strips become narrower
than the extend of the wave functions, these strips become
‘‘leaky’’ which cannot decouple the two sides of the Hall bar
and back-scattering takes place. Therefore, to simulate the ‘‘leaki-
ness’’ of the incompressible strips we perform coarse-graining
over quantum mechanical length scales. Now let us relate the
local conductivities with the local filling factors. Since the
compressible regions behave like a metal within these regions
there is finite scattering leading to finite conductivity. In contrast,
within the incompressible regions the back-scattering is absent,
hence, the longitudinal conductivity (and simultaneously resis-
tivity) vanishes. Therefore, all the imposed current is confined to
these regions. The Hall conductivity meanwhile is just propor-
tional to the local electron density. The explicit forms of the
conductivity tensor elements are presented elsewhere [17]. Hav-
ing the electron density and local magneto-transport coefficients
at hand, we perform calculations to obtain the widths of the
quantized Hall plateaus utilizing the above described, microscopic
model assisted by the local Ohm’s law at a fixed external current I.

It is worth to comment on the connection between the above
described local Ohm’s law approach with the well known Kubo
formalism. The local Ohm’s law is a semi-classical approach to
describe electron transport at quantizing high magnetic fields, in
the sense that the electronic levels are quantized, however, the
center of mass (or the center coordinate) motion is treated
classically. This is justified once time scales related with the drift
velocity is much smaller than the time scales related with the
cyclotron motion. In other words, the local Ohm’s law is just the
well known Born–Oppenheimer approximation and is a limit of
the Kubo formalism for transport apart from the fact the later is
limited for the linear response regime, however, when applicable
local Ohm’s law geos beyond this limit under above mentioned
conditions.

3.2. Single impurity potentials: level broadening and conductivities

Since the very early days of the charge transport theory,
collisions played an important role. Such a scattering based
definition of conduction also applies for the system at hand, i.e.

a two-dimensional electron gas subject to perpendicular mag-
netic field. Among many other approaches [13,21] the SCBA
emerged as a reasonable model to describe the DOS assuming
Gaussian impurities, considering short range scattering, as dis-
cussed previously. A single impurity has two distinct parameters
that represents the properties of the resulting potential, the range
Rg (at the order of separation thickness) and impurity potential
amplitude (in relevant units), ~V imp. However, these two para-
meters are not enough to define the widths of the Landau levels
(G), another important parameter is the number of the impurities,
NI. In the previous section we have already investigated these
three parameters in scope of potential landscape, now we utilize
our findings to define the level widths and the conductivities. It is
more convenient to write the single impurity potential of the form

VgðrÞ ¼
~V imp

pR2
g

exp �
r2

R2
g

 !
: ð14Þ

Together with the impurity concentration, the relaxation time is

defined as t0 ¼ _3=NI
~V

2

impmn and in the limit of delta impurities

(i.e. Rg-0) the Landau level width G takes the form

G¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4NI

~V
2

imp=2pl2
q

. It is useful to define the impurity strength
parameter to investigate the effect of disorder by

g2
I ¼ ðG=_ocÞ

2
¼

2NI
~V

2

impm

p_3oc

, ð15Þ

given in units of cyclotron energy _oc ¼ _eB=m¼Oc and as a
normalization parameter we fix the cyclotron energy at 10 Tesla.
The details of the calculation scheme are described in detail
elsewhere [17].

3.3. Many impurities: potential fluctuations

We have investigated the effect of single impurity potentials
on the overall potential landscape. We have seen that, at high
impurity concentration the overall potential fluctuates over a
length scale of couple of hundred nanometers, whereas for low NI

concentration such length scale can be as large as micrometers.
Now we include the effect of this long range potential fluctuations
into our screening calculations via modulation potential defined
as VmodðxÞ ¼ V0 cosð2pxmp=2dÞ, where the inverse modulation
period mp is chosen such that the boundary conditions are
preserved. At the moment, we consider two modulation periods
regardless of the sample width and vary the amplitude of the
modulation potential.

Our investigation of the impurities leads us to conclude that
one has to define mobility at high magnetic fields also taking into
account screening effects in general and furthermore also the
geometric properties of the sample such as the width and
depletion length. The distinguishing parts can be summarized as
follows, in single-impurity approaches the mobility is only
defined by the scattering time (i.e. the momentum relaxation
time), which is calculated from the bare disorder potential. On the
other hand, once interactions and screening effects are taken into
account one should also consider the effects stemming from the
overlap of long-range part of the many-impurity potentials. We
have calculated the properties of these two parts of the disorder
potential and found that, if the single-impurity potentials are
assumed to have Gaussian forms one can calculate the (local)
level broadening (and hence local conductivities) accurately.
However, the difference between the real Coulomb impurities
and the assumed Gaussian impurities become important consid-
ering the long-range part of the disorder potential. Hence, based
on our numerical results we estimate that the mobility of the
sample should be defined depending on these different parts of
the disorder potential. Therefore, in the following we will inves-
tigate the effect of the disorder potential on the global resistances
by (i) accounting the short-range part within the level broadening
and (ii) the long-range part in our screening calculations.
4. Discussion

In this final section, we harvest our findings of the previous
sections to make quantitative estimations of the plateau widths,
considering narrow gate defined samples. Our aim is to show the
qualitative and quantitative differences between ‘‘high’’ and
‘‘low’’ mobility samples, by taking into account properties of the
single impurity potentials and the resulting disorder potential.
The experimental realizations of these samples are reported in the
literature [22,23]. We estimated that the range of the potential
fluctuations is less than 500 nm for low mobility (NI 43300) and
is greater than 1 mm at high mobility. Therefore, the modulation
period is chosen such that many oscillations correspond to low
mobility, and few oscillations correspond high mobility. As an
specific example let us consider a 10 mm sample, for the low
mobility we choose mp ¼ 19220 and for the high mobility mp is
taken as 9 or 10. The amplitude of the disorder potential is
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damped to 50% of the Fermi energy when considering the effect
of spacer thickness, however, including screening this amplitude
is further reduced to few percents. In light of this estimations the
low mobility will be presented by a modulation amplitude of
V0=E0

F ¼ 0:5, whereas high mobility corresponds to V0=E0
F ¼ 0:05.

Therefore, we have four different combinations of the disorder
potential parameters yielding four different mobilities consider-
ing two sample widths, as tabulated in Table 1. The second
important aspect of the disorder is the single impurity para-
meters, for low mobility set we choose Rg ¼ 20 nm and gI ¼ 0:3,
whereas for high mobility Rg ¼ 10 nm and gI ¼ 0:05 is set. Fig. 5
summarizes our results considering above discussed mobility
regimes for two different sample widths. In Fig. 5a, we show
the calculated Hall resistances for a sample of 10 mm with the
highest mobility (solid (black) line) and intermediate 1 mobility
(broken (red) line). The solid line is the highest mobility since the
range of the fluctuations are at the order of 1 mm and the
amplitude of the modulation potential is 5% of the Fermi energy.
The broken line presents the intermediate mobility considering a
modulation amplitude of 0:5E0

F . We observe that the lower
Table 1
A qualitative comparison of the mobility in the presence of magnetic field also

taking into account self-consistent screening. Mobility also depends on the size of

the sample when screening is also considered.

Mobility mp (d¼ 10 mm) mp (d¼ 2 mm) V0=E0
F

Low 19–20 5–6 0.5

Intermediate 1 9–10 2–3 0.5

Intermediate 2 19–20 5–6 0.05

High 9–10 2–3 0.05

Fig. 5. Line plots of the Hall resistance as a function of magnetic field considering tw

concentrations (� 3% (a) and (b), � 20% (c) and (d)). Here the single impurity param

interpretation of the references to color in this figure legend, the reader is referred to
mobility wafer presents a larger quantized Hall plateau, which
is now in complete agreement with the experimental results
[22,23]. Moreover, our calculation scheme is free of localization
assumptions in contrast to the known literature and we only
considered a very limited level broadening, i.e. gI ¼ 0:05. In fact
our results also hold for Dirac-delta Landau levels, however, for
the sake of consistency we choose the broadening parameters
according to the selected disorder parameters. In Fig. 5c, we show
two curves for even lower mobilities, the solid line corresponds to
the intermediate 2 case, whereas the broken line is the lowest
mobility considered here. The potential fluctuation range (i.e. the
modulation period) is chosen to present the low mobility wafer.
We again see that for the lowest mobility the quantized Hall
plateau is enlarged considerably from both edges of the plateau.
These results explicitly show that the quantized Hall plateaus
become broader if one strongly modulates the electronic system
by long range potential fluctuations, either by changing the range
or the amplitude of the modulation. Similar results are also
obtained for a relatively narrower sample 2d¼ 3 mm, Fig. 5b and
d, however, we see that decreasing the range of the potential
fluctuation is more efficient in enlarging the quantized Hall
plateaus when compared to the effect of the amplitude of the
modulation.
5. Conclusions

We performed 3D numerical calculations to estimate the effect
of impurities on the potential landscape experienced by the 2DES.
We found that the range of the fluctuations strongly depend on
the number of impurities. For highly disordered case, the
o sample widths (2d¼ 10 mm left panels, 2d¼ 3 mm right panels) and impurity

eters are calculated from Eq. (15), otherwise other parameters are the same. (For

the web version of this article.)
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amplitude of single impurity potential is less pronounced. The
spacer thickness seems not to play an important role in defining
the range of the potential fluctuations, while keeping V imp

constant.
In this work we tackled with the long standing and widely

discussed question of the effect of disorder on the quantized Hall
plateaus. The distinguishing aspect of our approach relies on the
separate treatment of the long range fluctuations of the disorder
potential. We show that assuming Gaussian impurities is not
sufficient to describe long range potential fluctuations, however,
is adequate to give a prescription in defining the density of states
broadening and conductivities. The discrepancy in handling the
long range potential fluctuations is cured by the inclusion of a
modulation potential to the self-consistent calculations. We
estimated the range of these fluctuations from our analytical
and numerical calculations considering the effect of dielectric
spacer and the screening of the 2DES and the direct Coulomb
interaction is dominant in screening the long range fluctuations.
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