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Abstract. The influence of the incompressible strips on the integer quantized
Hall effect (IQHE) is investigated, considering a cleaved-edge overgrown (CEO)
sample as an experimentally realizable sharp edge system. We propose a set of
experiments to clarify the distinction between the large-sample limit when bulk
disorder defines the IQHE plateau width and the small-sample limit smaller than
the disorder correlation length, when self-consistent edge electrostatics define
the IQHE plateau width. The large-sample or bulk quantized Hall (QH) regime
is described by the usual localization picture, whereas the small-sample or
edge regime is discussed within the compressible/incompressible strips picture,
known as the screening theory of QH edges. Utilizing the unusually sharp edge
profiles of the CEO samples, a Hall bar design is proposed to manipulate the
edge potential profile from smooth to extremely sharp. By making use of a side-
gate perpendicular to the two-dimensional electron system, it is shown that the
plateau widths can be changed or even eliminated altogether. Hence, the visibility
of IQHE is strongly influenced when adjusting the edge potential profile and/or
changing the dc current direction under high currents in the nonlinear transport
regime. As a second investigation, we consider two different types of ohmic
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contacts, namely highly transmitting (ideal) and highly reflecting (non-ideal)
contacts. We show that if the injection contacts are non-ideal, but still ohmic,
it is possible to measure directly the non-quantized transport taking place at the
bulk of the CEO samples. The results of the experiments we propose will clarify
the influence of the edge potential profile and the quality of the contacts, under
QH conditions.
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The integer quantized Hall effect (IQHE) is observed in a two-dimensional electron gas (2DEG)
subjected to a strong perpendicular magnetic field B, with signatures in the longitudinal RL

and transverse RH resistances [1]. At certain magnetic field intervals, RL vanishes and RH is
quantized. Surprisingly, the theories that elucidate the IQHE are still under discussion, even
today [2]. Two main schools have emerged in explaining the IQHE, namely the bulk [3, 4] and
the edge [5–7] pictures. They are believed to contrast with each other in describing the current
distribution. The former assumes that the transport is at the bulk and quantization is determined
by localization effects, whereas the latter neglects the effects of disorder and assumes 1D
ballistic channels at the edge, carrying the quantized current. Although early arguments took
a contrasting view [7], it is currently widely accepted that edge currents flow losslessly within
the incompressible strips [8, 9].

The compressible/incompressible strips result electrostatically from a quantizing magnetic
field in combination with self-consistent direct Coulomb interactions under the constraint of
electrostatic boundary conditions. The magnetic field quantizes the density of states (DOS) into
highly degenerate Landau levels separated from each other by cyclotron or Zeeman energy
gaps. If the Fermi energy is pinned to one of these Landau levels for a finite width parallel
to the edge of the sample, the strip is called compressible, due to the high degeneracy at the
DOS. If the Fermi energy resides between Landau levels, the strip is called incompressible,
since there are no available states at the Fermi energy for the entire width of this strip. It is
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standard to define a dimensionless parameter called the filling factor ν, which gives the ratio
of the electron density nel to the density of magnetic flux quanta n8. One can express the
filling factor as ν = nel/n8 = 2π`2

Bnel, where `B =
√

h̄/eB is the magnetic length. The local
version of the filling factor is defined by ν(x, y) = 2π`2nel(x, y), where nel(x, y) is the electron
number density, locally. An integer ν (and also ν(x, y) locally) implies that all the Landau
levels below the Fermi energy are fully occupied; hence, the system is in an incompressible
state. Otherwise the Landau level is pinned to the Fermi energy and is partially occupied;
therefore the system is compressible. The properties of these strips have been investigated
intensively in the literature, both theoretically [7, 10–16] and experimentally [17–25]. The
theoretical investigations, known as the screening theory, aim to clarify the effects of the
boundary electrostatics [7, 10–12], temperature [13, 14] and current [15, 16] on the formation of
incompressible strips. More recently, the behavior of the incompressible strips near the contacts
was investigated experimentally [22] and theoretically [26]. These investigations helped to
resolve the long-standing question of what characteristics define an ideal contact. However, the
effect of electrostatic boundary conditions on the formation of incompressible strips far from
contacts remains unresolved.

The objective of this work is twofold. Firstly, we explore the existence of incompressible
strips in the presence of infinitely sharp confinement walls. Our discussion is based on the
existing experimental literature [19, 20, 22, 25] and semi-classical calculations [9, 16]. We show
that these strips vanish at sharp edges due to overlap of the quantum mechanical wavefunctions
across the incompressible strip remnant. Exploiting the findings of the interaction theory of the
IQHE [9] and local probe experiments [19], we claim that the longitudinal resistance evolves
differently on sharp and smooth edges when transitioning between quantized Hall effect (QHE)
plateaux. Secondly, we show that the Hall resistance is non-quantized even at the plateau regime
due to the evanescent bulk current. This behavior depends on the contact quality. This paper is
organized as follows. In the following section, we briefly introduce the material and geometrical
properties of the sample proposed here. The first part of section 2 is spared for the formulation of
the screening theory, where we also present the results of self-consistent numerical calculations.
The second part highlights the essentials of local probe and CEO experiments, followed by a
brief discussion of the transport model (section 2.3). The effect of ideal/non-ideal contacts on
transport, considering a varying magnetic field, is investigated in section 3. There we show
that, in the case of ideal contacts, one expects to observe differences between generic and CEO
samples when measuring either the local electrochemical or the longitudinal resistances. For the
non-ideal contacts we predict that some of the current is scattered to bulk due to the absence
of an incompressible strip at the CEO. Hence, the Hall resistance is not quantized even at the
plateau regime. We discuss the effects of the sweeping direction and the orientation of magnetic
field on transport, which induces a hysteresis in section 4.

1. The wafer and the sample geometry

In standard molecular beam epitaxy (MBE), the crystal is grown in the z-direction layer by
layer. However, well-established experimental techniques are able to grow materials in different
crystal directions in sequential steps. As a first step a usual MBE growth process is performed;
then the crystal is removed from the chamber, thinned, scribed, returned to the chamber mounted
at a 90◦ angle and then cleaved in situ and regrown. This process is known as the cleaved edge
overgrowth (CEO) technique [27]. The CEO samples are used to investigate the edge properties
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Figure 1. The side-view (a) and top-view (b) projections of the sample design.
The Hall bar is defined by etching on the left-hand side (lhs), generating a
relatively smooth potential profile, whereas on the right-hand side (rhs) the CEO
edge serves as a steep potential. The steepness is manipulated by the side gate
(gray region), by applying a negative potential. The illustration is not to scale.

of the quantum Hall systems via momentum-resolved tunneling experiments, utilizing the
second 2DEG residing perpendicular to the Hall system [20, 21]. These tunneling experiments
show that the CEO edge provides an extreme sharp potential approximating an infinite wall.
The sample structure proposed here does not involve tunneling, but rather probes the sharpness
of the QHE edges via transport alone.

A schematic representation of the crystal is depicted in figure 1. The Hall bar lies in the xy-
plane, obtained by usual MBE growth, whereas on the rhs of the crystal an additional AlGaAs
layer is grown. This is the CEO edge and is capped by a metallic gate. The gate covers all the
surface and is kept at a fixed potential VG. To measure the global resistances and to drive an
external current I through the 2DEG, ohmic contacts are deposited on the top surface of the
system. The voltage probe contacts are labeled A1, A2, B1 and B2 to measure RH and RL,
whereas the current contacts S and D denote the source and the drain. In our discussion of the
visibility of the IQHE, we will describe transport in such a CEO sample. We consider a system
where at one edge (CEO edge) a side gate resides; meanwhile, the opposing edge is defined by
the standard etching process.

2. The formulation of the screening theory, relevant experiments and the complementary
transport model

This section aims to provide the necessary theoretical and experimental background to discuss
the transport properties of the proposed CEO samples. Our theory discussion consists of
two parts: first, we reintroduce the analytical formulation behind the self-consistent screening
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calculations and discuss the existence of incompressible strips. The second part presents the
numerical results. Next, we summarize the observations of two sets of experiments relevant
for our discussion. The distinction between the small-sample edge IQHE and the large-sample
bulk IQHE is clarified after we discuss the results of local probe experiments and corresponding
theory results. In the last part, we briefly recall the complementary transport calculations utilized
by the screening theory to elucidate IQHE.

2.1. The calculation scheme

Here, we briefly reintroduce the calculation scheme for obtaining electrostatic potential and
electron density distributions of a 2DEG. Let us assume that the electrons are confined at the
xy-plane due to an external potential Vconf(x, y), which results from remote donors and metallic
gates. At zero temperature and in the absence of a perpendicular magnetic field, this confinement
potential will be filled with electrons up to the Fermi energy EF continuously by virtue of
constant DOS D0 (= m/π h̄2), specific to 2D. Taking into account the mutual (direct) Coulomb
interaction within a mean-field approximation, one obtains the Hartree potential (energy) as

VHa(x, y) =
e2

κ

∫
A

nel(x, y)K (x, y; x ′, y′)dx dy, (1)

where κ is the dielectric constant of the material, A is the area where the 2DEG is confined and
K (x, y; x ′, y′) is the solution of the Poisson equation to be specified for the given boundary
conditions. The closed form of the kernel resembling the smooth boundary conditions was
discussed by Chklovskii et al [7] considering in-plane gates and translational invariance. In
addition, the form of the kernel in the presence of gates perpendicular to the 2DEG similar to a
both sides CEO system is also discussed in the literature [28]. The closed form of the kernel in
the case of perpendicular gates is given by

K⊥(x, x ′) = − ln

(
cos2 π

4d (x + x ′) + γ 2

sin2 π

4d (x − x ′) − γ 2

)
, (2)

where d is the sample width and γ = sinh(π z/4d) gives the z-dependence. However, a closed
form for the mixed boundary conditions, i.e. a realistic CEO sample, does not exist and requires
numerical calculations, as provided in the following discussion. Note that similar expressions
are available in the textbook of Morse and Feshbach considering two dimensions, but,
unfortunately, they are limited to periodic boundary conditions [29]. As a direct consequence,
the total electrostatic potential energy that an electron experiences is

VT(x, y) = Vconf(x, y) + VHa(x, y). (3)

In the next step, one should calculate the new electron distribution regarding this potential
by solving the single-particle Schrödinger equation. For the moment, let us assume a generic
Hamiltonian H and depict the energy eigen functions by φα(x, y) and eigen values by Eα.
The effect of temperature on electron occupation can be incorporated utilizing the Fermi–Dirac
function f (Eα, EF, T ); then the electron density distribution is described as

nel(x, y) =

∑
α

|φα(x, y)|2 f (Eα, EF, T ). (4)
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Let us specify H to be the single-particle Hamiltonian of a spinless electron subjected to a
perpendicular magnetic field, given by

H = HB =
1

2m

(
p −

e

c
A(x, y)

)2
+ VT(x, y), (5)

where p is the momentum and A(x, y) is the vector potential generating the magnetic field.
Here, we assume a translational invariance and the vector potential is expressed in the Landau
gauge. If we neglect the potential term for the moment, then the solution of the Schrödinger
equation gives the energy eigen values to be En,X = h̄ωc(n + 1/2), known as the Landau levels,
and the wavefunctions as φn,X(x, y) = N exp(iky) exp(−(x − X)2/2`2

B)Hn((x − X)/`B). Here,
n is the Landau level index, N is a normalization factor, k is the quasi-continuous momentum
in y, X (= −`2

Bk) specifies the orbit-center coordinate and ωc = eB/m is the cyclotron
frequency. Since the eigen energies and values are known, one can obtain the electron density
by equation (4). Note that, for smoothly varying potential, these eigen values and functions
remain unchanged with correction to the energy eigen values. This approach is known as the
Thomas–Fermi approximation.

Now one can calculate the new potential depending on the new electron distribution via
solving the Poisson equation. This procedure requires numerical self-consistency and is a
formidable task in general. Despite this difficulty, such a numerical algorithm is available, which
we also discuss in the following. However, we first reintroduce the non-self-consistent analytical
scheme to base our discussion on a simpler ground.

2.1.1. The non-self-consistent analytical approach. To surpass the complications due to
numerical self-consistency, Chklovskii et al [7] proposed an analytical calculation scheme to
obtain potential and electron density distributions based on electrostatic arguments. There, the
solution of the Poisson equation is obtained by the use of holomorphic functions considering
in-plane metallic gates at the sides. For this boundary condition the form of the kernel
K (x, y; x ′, y′) is well discussed in the literature and is given by

K (x, x ′) = ln

∣∣∣∣∣
√

(d2 − x2)(d2 + x2) + d2
− xx ′

(x − x ′)d

∣∣∣∣∣ , (6)

where a translational invariance is assumed in the y-direction. The details of the calculation
can be found in [7]. The commonly used Thomas–Fermi approximation is invoked, which is
adequate if the external potential varies smoothly within the magnetic length. In addition, the
wavefunctions are replaced by Dirac delta functions. It is assumed a priori that screening is
perfect at the compressible strips and poor at the incompressible strips. Hence, the external
potential is completely screened at the compressible strips and the total potential profile there is
flat. At the compressible strips the density profile resembles that without B field, given by

nel(x) = n0

(
x − ld

x + ld

)1/2

, (7)

via the solution of the Poisson equation. Here, n0 is the bulk electron density and ld is the
depletion length determined by the potential at the in-plane gate [7]. In contrast, at the dipolar
incompressible strips the potential varies by an amount of cyclotron energy h̄ωc, whereas the
density remains constant. Under these assumptions the width of the dipole incompressible strip
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is given by [7]

an =

√
2κ1E

π2e2 dn(x)/dx |x=xn

, (8)

where 1E is the single-particle energy gap (= h̄ωc, assuming spin degeneracy). In generic
samples, the electron density distribution varies smoothly starting from the depleted region at the
edge. Hence, the derivative of the electron density with respect to the spatial coordinate is small,
which in turn determines the width of the incompressible strip. For sufficiently weak confining
electric fields, these dipole strips are so wide that they effectively isolate the compressible strips
on either side, and these dipole strips earn the name incompressible strips, as they represent a
strip where no screening can take place.

As mentioned, the Thomas–Fermi approximation is viable only if the potential varies
slowly on the scale of magnetic length; therefore the TFA becomes questionable if the strip
width becomes comparable to `B . The full self-consistent quantum mechanical treatment of
the electron density within a mean field approximation shows that the dipole strips cease to be
incompressible for all magnetic field strengths [9, 30]. In fact, the collapse of the incompressible
strips can be readily seen considering the effect of (local) external electric fields within the
strip [31]. It is straightforward to show that the external electric field within the strip broadens
the Dirac delta-shaped Landau DOS and the resulting local DOS assumes the form

D(E, X (E)) =
1

2π`2
B

∑
n

1

eEx`B
|φn(X (E))|2, (9)

where Ex =
1
e

h̄ωc
an

is the field at the strip and X (E) is the normalized coordinate, which depends
on energy. Hence, if the electric field at the strip becomes large (i.e. if the strip becomes narrow
an ∼ `B , since the potential variation is fixed at h̄ωc), then the adjacent Landau levels overlap,
at the energy scales eEx`B ∼ h̄ωc. If this condition is satisfied the strip collapses, and disorder
can easily scatter charge from the compressible region on one side to that on the other. In other
words, the dipole strip has become too narrow and is able to screen electric fields within its
width.

Such a result contrasts with 1D edge channel theories [6], which predict that more than one
channel should always exist for ν > 4. The collapse of (narrow) incompressible strips described
here is due to the finite extent of the wavefunctions. The wavefunctions can tunnel across
the strip when the width of the incompressible strip becomes comparable with the quantum
mechanical length scales. These scales are set by the B field such as the magnetic length (width
of the wavefunction) and by the Fermi wavelength, defining the thermodynamic length scale.
Note that the mentioned length scales are of the same order in typical measurements with
electron densities similar to nel ≈ 3.0 × 1011 cm−2 (corresponding to λF ≈ 25–35 nm) and at
intermediate B fields (B ≈ 5T, `B ≈ 20 nm).

The above vanishing of the incompressible strips applies also to the CEO sample; however,
one should take care of boundary conditions imposed by the sharp edge. Here, one can use
the semi-classical quantization of the skipping orbits for an initial estimation of the collapse
of incompressible strips [32, 33]. It is possible to show analytically that the gapped regions
between the levels are confined to an interval in the physical space, which is smaller than
the magnetic length. Hence, electrostatically it is not possible to have incompressible strips at
sharp edges. In addition to these arguments, the numerical investigations show that there are no
incompressible strips at all if an infinite wall is considered at the edges of the sample [34].
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We will show this situation in the following, where we also perform quantum mechanical
calculations using computational techniques.

It is important to mention that the spin generalized calculation schemes are available
in the literature. In the early analytical calculations of Dempsey et al [35], the effect of
electron–electron interactions on spin polarization was investigated, whereas Zozoulenko and
co-workers utilized the density functional approach to tackle a similar problem [36]. One
can extend our above scheme to study the spin-dependent behavior using these approaches.
However, the important concepts of this paper do not require consideration of the spin degree
of freedom, so the simpler spinless case will be addressed here.

2.1.2. The self-consistent numerical calculations. This section is devoted to investigating the
effects of boundary conditions on the electronic distribution, considering the CEO sample. We
solve the 3D Poisson equation self-consistently, in the classical domain, where finite widths
of the wavefunctions are not taken into account. The boundary conditions are defined purely
by electrostatics and the 2DEGs are included to the calculations as 2D charged planes. Here,
we first assume vanishing temperature and zero B field to obtain initial conditions. The inset
of figure 2(a) shows a typical sample profile. We consider a crystal that is grown first in the
z direction (i.e. [100]), then cleaved at x = 340 nm and the new material is grown in the
x-direction, [010]. Note that the side gate resides at x = 0. The corresponding charge
distribution and electrostatic potential profiles are shown in figure 2, where different potentials
are applied to the side gate. The top surface of the crystal is assumed to be pinned to the mid gap
of GaAs. As depicted in the schematic drawing, the system is delta doped by two silicon layers,
which provide electrons for the quantum wells. The 3D Poisson equation is solved by the fourth-
order grid technique, where successive over-relaxation is used for the iteration process [12, 37].
The potential and charge distributions of the parallel electron layer present the expected sharp
variation at the cleaved edge, for small positive (solid line) and negative (broken line) side-
gate potentials. At a larger negative voltage, the sharp features at the CEO edge is washed out
(dash-dotted line) and the smooth edge is recovered. To compare the self-consistent density
profiles with Chklovskii distribution (i.e. equation (4)), we also plot the non-self-consistent
density profile in figure 2(a) (thin solid line). One can clearly see that the Chklovskii model
fails to describe the calculated edge profile even under depletion [11, 25].

Once the density and potential profiles are known, it is somewhat easier to calculate
the profiles at finite magnetic field. Since the density distribution is modified only at the
incompressible regions and remains almost unchanged at compressible regions. Indeed, one
can estimate the widths and the spatial positions of the incompressible strips simply from
equation (4) using the electrostatic stability argument. Nevertheless, for numerical calculations
one starts with T = 0, B = 0 profiles, increases the temperature, then adds the quantizing
magnetic field via DOS and decreases the temperature step by step till the numerical accuracy is
obtained. Further details of the self-consistent calculation scheme can be found in the literature,
which is applied successfully to systems that assume translational invariance in the y-direction,
considering single layers [9, 15, 28, 38, 39], double layers [40–42] and actual 2D systems [12,
26, 43]. This approach is known as the screening theory and its predictions are confirmed
experimentally [24, 25, 44–48].

The paramount outcome of the self-consistent calculations is that the 2DEG separates
into compressible strips separated by dipole strips and that only in weak confining electric
fields the dipole strips are wide enough to constitute incompressible strips. The existence of
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Figure 2. The results of 3D calculations depicting (a) the electron density
distribution of the parallel layer (2DEG 1) and (b) the total potential profile as
a function of lateral coordinate. Inset in (a) shows the schematic presentation of
the CEO crystal. In the first growth donors are placed 96 nm above the 2DEG,
whereas in the second growth donors are place 48 nm above the second 2DEG.
Both the top and side surfaces are covered by metallic gates to manipulate the
electron densities, in particular the side gate allows us to change the CEO edge
from sharp to smooth. The peaks at the electron density reflect the positions of
the charges at the side gate (SG) and perpendicular 2DEG (2DEG 2). The inset
in (b) focuses on potential distribution at the sharp edge.

incompressible strips at low-temperature, strong-magnetic field and high-mobility samples in
the small-sample limit strongly depends on the boundary conditions. Therefore, in what follows,
we assume that the incompressible strip does not exist at the CEO edge, as supported by the
above calculations and experiments that we discuss next. On the other hand, the properties of the
incompressible strips at the ‘soft’ edge and bulk are determined by disorder broadened Landau
levels together with temperature. In addition, our discussion on the effects of the CEO edge
is qualitatively independent of the properties of the soft edge, and self-consistent calculations
are not necessary since the model for each edge is known from the above arguments. Such
calculations would be helpful for comparison only after a specific experimental geometry for
the proposed CEO experiment has been realized.
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Next, we discuss the essential findings of relevant experiments and highlight their relation
to the theoretical results mentioned above.

2.2. Relevant experiments

The results of the above-mentioned theoretical results are confirmed by numerous experiments;
however, we would like to highlight two of them in the following. An important set of
experiments is the local probe measurements of the electrochemical potential distribution
considering a narrow 2DEG [18, 19, 22]. Here, a scanning force microscope is utilized
to investigate the local potential distribution within the 2DEG. A schematic representation
resembling the experimental findings is shown in figure 3(a). It is reported that at the plateau-
to-plateau transitions the position-dependent electrochemical potential µ(x, y) varies linearly
(recovering the classical Hall effect) across the sample, named as type I.5 In this regime, the
current flows from the entire (compressible) system as if in a metal. No incompressible regions
or strips are observed. Once the bulk filling factor is in close proximity to an integer, it is
observed that µ(x, y) varies in a highly nonlinear manner, mimicking an inclined S. Here, the
system is in the IQHE regime (2.0. ν . 2.1). The corresponding electrochemical potential
distribution, simulating the experimental observations, is shown in figure 3(a)—type II. This
behavior suggests that the current is flowing in a single bulk incompressible region [15, 19].
We name this regime the bulk IQHE, and note that the bulk can be disorderless as shown in
the figure or it can have disorder fluctuations smaller than the gap energy. This description is
consistent with the disorder picture of the IQHE [4], but it is important to note that disorder is
not a prerequisite for observing a plateau in the quantum Hall effect. As a third type, a strong
potential variation is observed at the edges, where two incompressible strips reside. Meanwhile,
the potential is flat at the bulk. The observations suggest that the excess current is flowing from
these strips. The strips are found to be parallel to the edges, far from the contacts. We call this
regime the edge IQHE regime, where the properties of the strips are determined mainly by the
electrostatics of the edges. Interestingly, one observes either a transition regime from type III
to type I or a transition from type III to type IV and then again to type I. In the first case, the
potential varies approximately in a linear manner both at the bulk and at the edges with different
slopes (type IV); meanwhile, global resistances show that the system is just outside of the IQHE
regime. In the latter case, the potential variations at the edges of type IV regime correspond
to an incompressible strip, where it is called an evanescent incompressible strip [24]. At this
interval, the strip is wider than the magnetic length (`B . 20 nm), but, narrower than the Fermi
wavelength (λF ∼ 25–35 nm). The corresponding incompressible strip and current distributions
are shown in figures 3(b)–(e). The results of rigorous self-consistent calculations have been
published elsewhere [26, 49]; however, below we will provide a brief discussion that describes
how to obtain current distribution from local filling factors.

Regarding the infinite walls as the boundary, the most relevant experiments are the ones
that utilize CEO edges [20, 21]. At the CEO crystals, it is shown that no incompressible
strips reside at the CEO edge, by momentum-resolved tunneling measurements. Using the
perpendicular quantum well, one can tunnel into the edge of the quantum Hall bar and probe
the momentum matching conditions depending on the magnetic field and the energy of the
probing electrons belonging to the quantum well. It is explicitly shown that the Chklovskii
incompressible strip picture [7] breaks down at extremely sharp boundary conditions [21].

5 For a consistency check see figure 1 of [15], for the magnetic field interval ν < 1.96.
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Figure 3. (a) The electrochemical potential distribution at a generic sample.
The smooth potential is obtained by applying −V0 to the side gate. The
illustration resembles the experimental and theoretical calculations (see the
related text). The Roman numerals depict four different cases: case I, the
system is completely compressible; case II, the bulk is incompressible; case
III, the incompressible strips reside at the edges; and case IV, the ‘evanescent’
incompressible strips reside at the edges. Shaded areas mark the current
flowing regions (compressible (light-green) or incompressible (dark-pink)). The
corresponding density distributions, reproduced from numerical calculations,
while varying the B field from high to low are shown in (b–e). The color gradient
codes the electron density variation at compressible regions, whereas highlighted
(pink) regions are incompressible. Arrows indicate the direction of excess current
density. Self-consistent calculations can be found in [26].
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Figure 4. (a) The same as figure 3, but considering a CEO sample. The spatial
distribution of incompressible strips and current density for cases III and IV.

The corresponding electrochemical potential distribution is shown in figure 4(a) where no
incompressible strip resides at the CEO edge, together with the well-developed incompressible
strip on the smooth edge (figure 4(b)) and the evanescent strip (figure 4(c)).

It is appropriate to summarize our discussion so far.

• Dipole strips emerge as a consequence of quantizing magnetic field and direct Coulomb
interactions.

• Their widths and existences are determined by the electrostatic boundary conditions and
DOS broadening.

• If these dipole strips become narrower than a few `B , they cease to be incompressible
and charge can scatter across them in the presence of disorder. For relatively smooth
confinements, the narrow width is due to local equilibrium fields. For sharp confinements
(e.g. infinite wall at a boundary), the dipole strips are never incompressible at any field
range.

• If an incompressible region resides at the bulk of the sample and its properties are solely
determined by the disorder, this situation is called the bulk IQHE. The disorder is included
to our calculations via DOS broadening.
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• If the strip is at the edge and its properties are also affected by the boundary electrostatics,
this situation is called the edge IQHE.

2.3. Utilizing Ohm’s law via local conductivities

Next, we would like to highlight the essentials of the complementary transport calculations to
elucidate IQHE within the screening theory. For further details see the comprehensive review
by Gerhardts [50]. The self-consistent calculation of the electrostatic potential and the electron
density distributions together with a local version of Ohm’s law provides an explicit relation
between the formation of the incompressible strips and the QHE [9]. The theory elucidates
all the experimental findings reported at the local probe measurements. An important aspect
of the screening theory is to prescribe an explicit calculation scheme to obtain the global
resistances, starting from local conductivities. Here, we briefly mention the calculation scheme
for obtaining local conductivities. The complementary transport calculations of screening theory
assume Gaussian single-impurity potentials (i.e. disorder), as considered by Ando and co-
workers within the self-consistent Born approximation (SCBA) [51–53]. Since the derivation
of the DOS and conductivities has little relevance to our discussion and is a standard procedure,
we provide only the results of local longitudinal and Hall conductivities,

σH(x, y) =
e2

h
ν − 2

e2

h

π2

4
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∫
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[
−
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∫
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]
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where the pre-factor 2 accounts for the spin degeneracy, n is the Landau index, An(E) represents
the spectral function and 0xx

n , 0yx
n are determined by the impurity parameters. The spectral

function with a broadening 0n is given by

An(E) =
2

π0n

√
1 −

(
E − En

0n

)2

, (12)

which is centered around h̄ωc(n + 1/2) and assumes a semi-elliptic form. Note that each
conductivity element has contributions from all levels below the Fermi energy. The above
description of the conductivity tensor elements within the SCBA is guaranteed to preserve the
Onsager relations [53].

To simplify our discussion, we assume the limit of short-range scatterers; then the
coefficients assume the forms (0n/0)2

= 1, (0xx
n /0)2

= n + 1/2 and (0yx
n /0)4

= n + 1/2,
where 0 = 4nIV 2

0 /(2π`2
B) is determined by the strength of the disorder via the impurity

density nI and the single-impurity potential amplitude V0. By a straightforward substitution,
the local conductivities can be prescribed in terms of the local filling factor, together with
impurity parameters. Here, one can utilize the definition of the filling factor ν(x, y) =

2
∑

∞

n=0

∫
dE An(E) f (E − µ(x, y)), where µ(x, y) is the position-dependent electrochemical

potential. Note that the co-existence of the compressible and incompressible strips leads to a
highly nonlinear system due to their different screening properties. To be explicit, if an external
current is imposed a Hall potential will develop, and within the compressible strips it can be
well screened, whereas in the incompressible strips it cannot be screened (see the discussion
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in section 2.2). Therefore, within the (QH) regime there is no linear response, in the sense
that the electrochemical potential, as observed in the scanning probe microscopy experiments
[18, 19, 22], is position dependent considering the ballistic small-sample limit.

Recall that the screening theory provides local electrostatic potential and filling factors,
self-consistently. Therefore, one can obtain the local conductivities within the SCBA for given
system parameters. However, such a relation can also be obtained from different approaches
[15, 54, 55]. We use the definition of the conductivity tensor given as

σ̂ (x, y) =

(
σL(x, y) σH(x, y)

−σH(x, y) σL(x, y)

)
. (13)

Since we are mainly interested in the transport properties of the incompressible strips, we
confine our discussion to a situation where the Fermi energy (or the electrochemical potential
at finite temperatures and in the presence of an external current) is in the single-particle gap.
Then one can easily show that σL(ν(x, y) = integer) = 0 and σH(ν(x, y) = integer) =

e2

h ν(x, y).
This behavior can be understood by the following line of argumentation: due to the absence
of available states at the Fermi energy, there is no scattering within the incompressible
regions; hence, the longitudinal conductivity vanishes. Meanwhile, the Hall conductivity is
just proportional to the local electron density and quantum mechanical corrections vanish at
integer filling factors (the second term in equation (10)); therefore it assumes a quantized value
given by ν(x, y). At the compressible regions, the system behaves like a metal, i.e. σL is finite
and σH varies approximately linearly with the applied B field. Note that the actual values of
the conductivities at the compressible regions depend on the properties of the impurity and the
approximation utilized. Based on the above brief discussion, we describe the local conductivities
as

σL(x, y)

{
= 0, ν(x, y) = integer
6= 0, ν(x, y) = non-integer

}
and

σH(x, y) =
e2

h
ν(x, y).

Before proceeding with the calculation of global quantities, we would like to clarify our
above approach and discuss its validity regimes. First of all, replacing the local conductivities
by the global ones (which are obtained for an unbounded system) is only valid if the length
scale of the single-impurity potential is smaller than the density–density correlation length.
In other words, the system should be ballistic, i.e. the sample length should be smaller than
the mean free path. This condition also implies that utilizing the above-mentioned SCBA is
only reasonable in the short-range impurity regime. As we consider. However, the analytical
calculation schemes for obtaining local conductivities provided in the literature considering
vortex states explicitly show that, as a first order approximation, replacing local conductivities
by global ones is viable [56]. The second important issue is related to the SCBA itself; it is
well known that this approximation is questionable to describe localization effects in the large-
sample limit where the properties of the IQHE are determined by the bulk. In this work, we
confine ourselves to a system where the samples are ballistic and are in the small-sample limit.
This allows us to use the SCBA, keeping in mind that localization effects are not dominant.
The above limitations and the details of local Ohm’s law are discussed comprehensively in the
original works of Gerhardts and co-workers [9, 15, 50].
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Given the electron density, one can obtain the global resistances using the local Ohm’s
law, j(x, y) = σ̂ (x, y)E(x, y), for an imposed external current I . It is also important to note
that, throughout this work, we only deal with the excess current I injected from the contacts;
however, the (chiral) equilibrium current Ieq is not considered. We assume that the injected
current is much larger than the equilibrium current. The effect of Ieq will be discussed elsewhere.
Since the longitudinal conductivity σL vanishes once the electronic system has a percolating
incompressible strip somewhere in the sample, simultaneously the longitudinal resistivity and
the electric field along the strip also vanish [15]. Therefore the excess current is confined to
these incompressible regions if it exists.

In the following section, we discuss the influence of highly asymmetric lateral confinement
on the current distribution. By highly asymmetric lateral confinement we mean that one side is
CEO defined and the opposing edge is etch or gate defined. We also investigate the effects
emanating from the injection contacts. We first assume that all the contacts are ‘perfectly’ ideal,
i.e. the edge states are in equilibrium with the source and drain contacts. This picture changes
if the contacts are non-ideal with finite reflection and transmission coefficients, and then one
should reconsider the spatial distribution of the incompressible strips in front of the contacts
[22, 26]. Therefore, one should include scattering events and/or the effect of the electric fields
near the contacts and between the boundaries of compressible and incompressible regions.

3. Two edge regimes at four characteristic B fields, with ideal/non-ideal contacts

We begin by defining ideal and non-ideal contacts before proceeding with the discussion of
their influence on the current distribution at CEO samples. An ideal contact fully equilibrates
all incoming incompressible strip currents with the contact such that all outgoing incompressible
strips have their outermost chemical potential set by the contact chemical potential.
A non-ideal contact partially reflects some of the incoming chemical potential from one
or more incompressible strips to the outgoing incompressible strips. In the language of the
Landauer–Búttiker formalism [6], the incompressible strips are referred to as ‘edge states’,
and the contacts are assigned reflection and transmission coefficients for each incompressible
strip. These contacts thus become the defining components of the single-particle non-local
conductance, where dissipation takes place due to equilibration. The next definition is that of
a good ohmic contact whose resistance is much smaller than the other measured resistances in
the problem. Explicitly, a non-ideal contact can still be ohmic if the contact resistance remains
below other resistance scales. Once the contact resistance becomes dominant, it is called a bad
or non-ohmic contact. A detailed discussion of ideal/non-ideal and ohmic/non-ohmic contacts
can be found in [22].

Early scanning probe experiments [19] and very recent comprehensive investigations
[22, 57] using various experimental methods show that there is a depleted electron density just in
front of the metallic contacts. This density gradient induces finite scattering between the current
channel(s) and the contacts, yielding a non-ideal contact. Despite the low electron density
region, it is shown that state of the art contacts are perfectly ohmic [22]. It is only recently
that the self-consistent calculations by Eksi et al [26] could provide a quantitative description
of the electron-poor region in front of the contacts. This calculation scheme also presents the
formation of compressible/incompressible strips in front of the contact. These non-ideal contact
ideas are further supported by other recent theoretical investigations considering contacts
[58, 59].
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Here we phenomenologically investigate the edge-to-bulk transition of the IQHE
considering a sample defined on a CEO crystal, considering both ideal and non-ideal ohmic
contacts. Following the discussion in section 2.2, we repeat the simplified definition: if the
properties of the incompressible strips are defined by the edge profile, this situation is called
the edge IQHE or small-sample limit, whereas if the incompressible strip or region resides at
the bulk with conductance properties solely described by disorder, we call this situation the bulk
IQHE or large-sample limit. For convenience we neglect the spin degree of freedom, since the
effects we describe are universal, i.e. independent of whether Landau or Zeeman energies create
the single-particle gap and the subsequent incompressible strip. Therefore, we only deal with
even-integer filling factors, i.e. ν = 2k (k = 1, 2, 3, . . .) .

3.1. Ideal contacts

Once the sample geometry is given, conductance properties will be determined by the electron
distribution within the sample and near the contacts. In the case of ideal contacts, it is
assumed that there is no density gradient in the close vicinity of the contacts. Therefore the
incompressible strips are formed only due to the lateral confinement and are equilibrated with
the contacts, without reflections. Hence, scattering between the current contacts (S, D) and
the incompressible strips is completely suppressed. As a first step we consider such ideal
contacts at the ends of our sample. We depict the positions and the existence of incompressible
strips considering four characteristic B fields in descending order in figures 3(b)–(d). Here
we consider a generic sample, i.e. both edges are relatively smooth. At sufficiently high
magnetic fields and neglecting correlation effects, the lowest Landau level is partially occupied
(figure 3(b)). Hence, the electronic system is completely compressible (shown by color graded
regions). Consequently, the global resistances RL, RH are both finite, and excess current is
distributed all over the sample, case I. The conductivities can be described by the Drude
model [60]. The small deviations of the arrow directions from the electric field direction are
to demonstrate the scattering processes. Once the field is lowered (figure 3(c), case II), a large
bulk incompressible region is formed and the excess current is confined to this region, where no
(back)scattering is present. Hence, all arrows are directed along the applied current direction.
The longitudinal resistances measured on both edges vanish and the Hall resistance is quantized.
Lowering the B field results in the formation of two edge incompressible strips (case III) and
once more the imposed current is confined to these strips (figure 3(d)). At the lowest B field
considered here, the current is essentially confined to the evanescent of the incompressible
strips, as depicted in figure 3(e). However, some of the current is also distributed to the bulk
of the sample. The ratio of current flowing from the evanescent incompressible strips and bulk
decreases while lowering the B field and case I is recovered before the next filling factor plateau
sets in.

Next, we consider the current distribution at a CEO sample considering the sharp edge
on the right-hand side in figures 4(b) and (c). Cases I and II remain unaffected by the sharp
edge and are therefore not shown. In contrast to the smooth edge, the current distribution is
strongly altered once the edge IQHE regime sets in, cases III and IV. The excess current is
essentially confined to the left edge. Direct measurement of such a distinction between CEO and
generic samples is possible via the scanning probe experiments. Unfortunately, an experimental
investigation of the electrochemical potential distribution at CEO samples is not available in the
literature. Despite this fact, one can trace the signature of such an asymmetry at the potential
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l

Figure 5. The predicted global resistances as a function of magnetic field
when the measurements are carried out at sufficiently low temperatures. The
longitudinal resistances predicted at the smooth edge R(l)

L (broken line), at the
sharp edge in the linear transport regime R(r)

L (black solid) and at the nonlinear
regime R(r)

L (N L) (blue solid line). In order to suppress the effect of long-range
potential fluctuations high-mobility wafers should be considered. Similar results
obtained by self-consistent calculations at asymmetric gate-defined samples can
be found in [16].

distributions, where one edge is etched and the opposing edge is gate defined [19, 61]. One
can see that the potential distribution is symmetric if both the edges are etched, whereas if a
contact resides on one edge, the potential distribution is smoother on this side. Although there
is evidence that the boundary conditions influence the electrochemical potential distribution,
performing local probe experiments at CEO samples would clarify our discussion. This is our
first experimental proposal.

Alternatively, one can also measure the global resistances at the CEO sample, and indirectly
measure the differences between the generic sample and the CEO sample. We expect (almost)
no differences between the global resistances when comparing the generic and the CEO sample
at the highest B fields, cases I and II. For case I, the system is in a complete compressible
state; hence, the external potential is almost perfectly screened and transport is determined by
the metallic bulk. As a result, there is no apparent difference between the CEO and generic
samples when measuring the resistances. A similar argumentation also holds for case II; in
contrast to the previous case, in this situation the transport properties are imposed by the bulk
incompressible region, which is not affected by the boundary conditions, i.e. the longitudinal
resistance vanishes for both systems R(g)

L = R(CEO)
L = 0. The above arguments only hold for

very-high-mobility samples, where no long-range potential fluctuations exist due to disorder.
The situation remains unchanged for case III, since the incompressible strip on the left side of
the CEO sample still decouples opposing (probe) contacts. Consider case IV, where the edge
incompressible strips at both samples become evanescent. In this case, the current distributions
are affected by the edge profile. Therefore the measured resistances differ at the lower edges
of the plateau. This distinction is obliterated once case I is recovered, i.e. when the evanescent
incompressible strips completely vanish. Figure 5 shows the expected RH (thick solid line), R(r)

L

(thin broken line) and R(l)
L (thin solid line) for the CEO sample. Note that R(l)

L corresponds to
the longitudinal resistance of a generic sample; meanwhile, R(r)

L measures the transport at the
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CEO edge. This is an indirect way to measure the effect of different boundary conditions on
transport. Again, unfortunately, it is very difficult to deposit working contacts exactly on the
top of the CEO edge, experimentally. Therefore, observing such a difference due to boundary
conditions is obscured. As we will show below, the solution to this difficulty is hidden in the
symmetry of the IQHE.

We will now discuss dc current polarity effects for distinguishing the CEO edge from the
generic case. Let us first consider a generic sample, and impose a positive dc current such that
the electrochemical potential looks as it is shown in figure 3(a). That is, the right side has a
higher potential energy. Once the current amplitude is increased, the left incompressible strip
becomes narrower, due to the fact that there are more electrons on the left-hand side to screen
the external potential compared to equilibrium. Another way to see this effect is to consider
the electric field within the strip; on the left side the total potential variation is |eVSD/2 + h̄ωc|

and on the opposing side the variation is |eVSD/2 − h̄ωc|, where we assumed that the current is
shared among the two incompressible strips equally. Here, h̄ωc emanates from the equilibrium
current. One can see from equation (9) that, at higher electric fields, the single-particle gap
becomes effectively smaller; hence, the gapped region is reduced. The transport consequence
is that the incompressible strip width shrinks. On the opposing edge, the incompressible strip
is enlarged to maintain electrostatic stability. Once the current amplitude is sufficiently large
the left incompressible strip collapses. A detailed calculation can be found in [31]. The effect
described is a natural result of self-consistency and is predicted by numerical calculations [15].
If we alter the current direction, the potential distribution will look the same; however, the
opposing edges will be swapped, i.e. the left side will be elevated. Thus, there is no measurable
dc polarity dependence on the global resistance in generic samples.6

Nonetheless, dc polarity has an important influence on asymmetric samples such as the
CEO samples. The explicit self-consistent calculations considering an asymmetric sample
predict that the width of the magnetic field intervals in which IQHE is observed can be tuned
by changing the current direction [16]. This prediction is tested successfully at gated samples;
however, tuning the visibility of the IQHE is limited to the nonlinear transport regime [25].
Since it is not possible to manipulate the edge steepness arbitrarily via gates. In contrast to
gate-defined Hall bars, at CEO samples one side serves as an infinite wall; hence, one can tune
the visibility of the IQHE in a wider experimental parameter window and more strikingly even
at the linear transport regime. From the experimental point of view, it is clear that performing
such experiments is highly challenging and requires expertise regarding the CEO samples. At
the moment, the experimental difficulty is surpassed and preliminary results agree well with the
theoretical predictions [62].

To sum up: in the case of ideal contacts we have seen that the bulk-to-edge transition can
be measured with local probe experiments investigating the electrochemical potential profiles.
However, one cannot resolve the difference between the edge (case III) and bulk (case II)
regimes of the QHE simply by measuring the global resistances. We expect to observe a
difference only at the lower edge of the plateau regime. In addition, we proposed measurements
of the global resistances at the CEO samples, imposing a dc current with opposite polarities
to observe the influence of the boundary conditions on transport. To observe the different
regimes of the QHE, one can also consider non-ideal contacts and carry out standard QHE
measurements. We discuss this case in the following subsection.

6 In fact, this effect is known to the experimentalists and named the hot-edge effect.
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Figure 6. Schematic drawing of incompressible strips and current densities
considering a generic sample (left panel) and a CEO sample, while contacts
are non-ideal. The location of the hot-spots depend on the field direction (see
related text). The scattered arrows shown in (d) indicate the bulk current, which
diminishes the visibility of the QH resistance.

3.2. Non-ideal contacts

The essential difference between an ideal and a non-ideal contact is the electron-poor region
in the close proximity of the contacts. As mentioned before, recent experimental findings show
that one cannot model a contact simply by placing a metallic gate representing an equipotential
on the surface. It was found that the contacts behave like fingers inserted into the 2DEG, where
fingers are metallic and the space between them is insulator-like [22, 57]. As a consequence, the
2DEG is partially depleted from the contacts and a density gradient is formed in front of them.
Such a density gradient leads to decoupling of the incompressible strips from the contacts.
We compare the spatial distribution of the incompressible strips and current distribution for
cases II and III in figure 6, also taking into account the density gradient near the contacts. The
left panel depicts a generic sample, whereas the right panel shows a CEO sample. Different
from the ideal contact situation, now the incompressible region (case II) or strip (case III) can
only come near the contact, whereas the region between the contact and incompressible region
is compressible. This implies that scattering is finite and the transmission probability from a
contact to the incompressible strip is no longer unity. Remarkably, for the non-ideal contact at
the CEO sample, some of the current can also be scattered to the bulk of the sample in case III.
The amount of bulk current is directly proportional to the quality of the contact. This scattered
bulk current is re-collected by the incompressible strip at the left side, once the electrochemical
equilibrium is restored. The longitudinal resistance at the left side is always zero due to the
well-developed incompressible strip. In contrast, one can still measure a finite RL on the right
side. Interestingly, the Hall resistance will deviate from its quantized value due to the small
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amount of bulk current, if measured between contacts A2 and B2, whereas if RH is measured
between A1 and B1 it is quantized, since at this location all the current is now confined to the
edge incompressible strip. Such a behavior is not observed at a generic sample due to lateral
symmetry. In addition, if the bulk is completely incompressible (case II), then the current is
directly collected by the bulk region, for both samples. This difference between case II and case
III manifests the distinction between the bulk IQHE and the edge IQHE. The former is only
determined by the bulk properties of the conductivity model, namely by disorder, and the latter
is determined by boundary conditions. If both edges of our sample are defined by CEO, then
one can only observe the bulk IQHE. By depositing metallic gates on both sides and varying the
steepness of the edge, one should be able to tune the width of the IQHE plateaux by softening
the sharp edges with negative gate biases. This is our third experimental proposal.

4. Other symmetries of the system

In this section, we consider only the non-ideal contact configuration, which is relevant for real
experimental systems, and assume a clean sample without any long-range potential fluctuations
in the small-sample limit. Recall that the effect of disorder is included in our model via
the conductivity model we employ. The equilibration processes are investigated based on the
formation of incompressible strips. Our arguments are supported by some experiments that
investigated the effects of incompressible strips on the equilibration and decoupling of the
system [63, 64]. The term ‘decoupling’ is used to express electrochemical and thermodynamical
non-equilibrium; that is, the electrons cannot be redistributed easily due to the strip and have
different electrochemical potentials on opposing edges.

Here, we mention two different ways of breaking the symmetry of the system, as set by the
external B field. This is different from the symmetry breaking effects due to current (electric
field), discussed before. First, we investigate the hysteresis effects that can arise. We compare
the decoupling properties of the edge incompressible strip with those of the bulk incompressible
strip, hence the bulk-to-edge IQHE transition. Next, using the findings of experimental and
theoretical investigations considering hot-spots, we alter the direction of the external magnetic
field and search for observable differences at transport.

4.1. Sweep direction-induced hysteresis

Let us conceive an experiment for the generic sample, in which one starts from low fields and
ends the measurement on an upsweep at a field such that the lowest Landau level is partially
occupied. In such a measurement the case sequence is IV–III–II–I. First the current is flowing
from both sides along the evanescent incompressible strips and the system is compressible. At
a higher field (case III) the system will develop edge incompressible strips, which decouple the
bulk from the edges. In this case, the bulk electrons have a different electrochemical potential
compared to edges. Bulk is not accessible for the edge electrons and edge is not accessible
for the bulk electrons. When increasing the B field, edge incompressible strips become wider to
keep the electrostatic stability, until the bulk becomes completely incompressible (case II). Here,
the edges are decoupled by the bulk incompressible region. Further increase of the field strength
results in the disappearance of the bulk incompressible region, hence case I. If one now sweeps
the field down, the opposite behavior will be observed. The change in the sweep direction
obviously has no influence on resistance measurements for the generic samples. Instead, one
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can measure the equilibration process at generic samples by means of a single-electron transistor
(SET) residing at the top surface [63]. It is shown that thermodynamic equilibration is hindered
by the incompressible regions and the magnetic field sweep direction induces a strong hysteresis
on the local electrochemical potential distribution. At temperatures below 0.1 K, the relaxation
time is reported to be as long as hours. Similar observations of a strong hysteresis at the
resistances of the passive layer are reported for the bilayer systems [40, 64] and is elucidated by
self-consistent screening calculations [41].

Now let us consider the CEO sample, where only one incompressible strip resides at the left
edge. The compressible bulk is accessible for electrons to restore equilibrium, due to the absence
of right strip. Therefore, while sweeping up, equilibrium can be achieved easily; however, while
sweeping down, the bulk incompressible region hinders equilibration. To be explicit, during
down-sweep the bulk incompressible region freezes the potential landscape and equilibration is
suppressed. Turned around, once the bulk incompressible region is formed it stays for large B
intervals. At the opposite sweep direction one starts with a narrow incompressible strip at the
left edge, which cannot effectively decouple bulk; therefore the potential landscape is not frozen
for large B intervals. It is apparent that sweep direction has an influence on the equilibration
process. Consequently, down-sweep presents a larger IQHE (i.e. bulk and edge together),
whereas up-sweep only shows the edge IQHE. This induces different paths for the longitudinal
resistance when sweeping up or down, namely a hysteresis. In addition, the visibility of this
hysteresis strongly depends on the potential profile at the bulk; hence the role of long-range
fluctuations has to be taken into account. Such a potential freezing model is applied to the
bilayer system and the observed hysteresis is elucidated [40, 41]. There the effect of long-range
fluctuations is also examined in detail, showing that the visibility of hysteresis is enhanced if
the system has sufficiently strong long-range potential fluctuations. It is also discussed that if the
sample is large the edge effects are suppressed completely. As a simple test, one can erase the
memory of the system by warming up the sample during down-sweep, at the hysteresis interval.
The warming process will melt the bulk incompressible region and therefore the system comes
to the equilibrium state. Afterwards, one can measure the RL and check if it is still in the IQHE
regime. Such a test is done at the bilayer systems and it is observed that the hysteresis vanishes,
similarly to what we would expect for the CEO samples.

Note that for an ideal contact, one incompressible strip is sufficient to decouple opposing
edges, and sweep direction is not important. However, we propose that the visibility of the
hysteresis should also depend on the quality of the non-ideal contact. To be explicit, if the
contact approximates to an ideal contact the hysteresis should disappear.

4.2. The orientation of the B field

The other interesting symmetry breaking is due to the formation of hot-spots, known for a while
experimentally [18, 22, 65] and also calculated recently [26, 59]. The hot-spot is on either the
left or right bottom near the injection contact, depending on the field direction. At the drain
contact, it is located at the diagonal corner7. It is apparent that the formation of hot-spots has no
influence on the resistances measured far from the contacts at a generic sample. Remarkably,
at a CEO sample the location of hot-spots alters the equilibration process of the excess current.
Consider figure 6(d); if the B field is directed along the positive z-axis, the hot-spot is at the
right bottom corner of the sample. Hence, some of the excess current can be scattered to the

7 Cf figures 6 and 2(b) of [26] for actual calculations.
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bulk compressible region, resulting in deviations from the QH resistance, if it is measured using
contacts A2–B2. Correlatively, the RL is finite on the right side. This situation has already
been discussed in the previous section. Next we alter the B field orientation to the negative
z-direction; then the hot-spot will form on the left bottom corner of the sample. Consequently,
the excess current is directly confined to the left incompressible strip. Hence, R A2−B2

H is
quantized and RB1−B2

L vanishes. This behavior has implications on the hysteresis discussed
above, since the equilibration process is also affected. Our model predicts that if a hysteresis
is observed at the CEO sample, the different paths should alternate depending on the field
direction, since the location of the hot-spots will also be altered and current injection process
will be strongly affected.

5. Conclusion

In this work, we have investigated the effects of a sharp boundary on the transport properties
and the electrochemical potential distribution of a cleaved edge overgrown sample. First, we
reintroduced the calculation scheme for obtaining electron and potential distributions, starting
from analytical electrostatic formulation, and extended our discussion to the self-consistent
calculation scheme. The effects of boundaries, together with interactions, on the formation of
incompressible strips were discussed based on the literature and supported by self-consistent
calculations. We showed that the incompressible strip does not exist at the sharp edge, agreeing
with previous calculations and experiments. In the next step, we summarized the essential
findings of two sets of experiments relevant to our discussions on the electrochemical potential
distribution at narrow samples and regarding the cleaved edge overgrown samples. The basis
of the complementary transport calculations of the screening theory was briefly reintroduced in
section 2.3. Equipped with the theoretical and experimental findings, we investigated the current
distribution, comparing generic and cleaved edge overgrown samples. We considered ideal and
non-ideal contacts, together with the influence of current direction on the global resistances.
In section 4, the effects of sweep direction and B-field orientation were discussed. Several
experimental predictions emanated from our discussions due to the sharp edge; these can be
summarized as follows.

• At local probe experiments, one cannot observe an electrochemical potential drop at the
sharp edge.

• The visibility of the IQHE should be tuned by imposing dc currents in different directions,
under the same experimental conditions.

• If both sides of the Hall bar are defined by sharp edges, only the bulk IQHE can be
observed. In addition, we predict that by making the edge smoother plateaux should be
extended.

• We predict that, at the edge IQHE regime, equilibration processes are promoted due to
the absence of the incompressible strip at the sharp edge and are suppressed at the bulk
IQHE regime by virtue of the large incompressible region at the bulk. Hence, sweeping the
magnetic field direction should induce a hysteresis on global resistances, which is strongly
affected by the long-range fluctuations and contact quality.

• Altering the orientation of the B field also alters the spatial locations of the hot-spots; thus,
altering the field orientation should strongly affect the hysteresis.
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Once the sharp edge behaves like a hard-wall potential, the 1D edge channels proposed by
Halperin [5] and Búttiker [6] should form and the edge profile should not be important. This
seems to be the case for equilibrium, namely when there is no external current. However, the
screening theory states that if the width of the incompressible edge strip becomes narrower
than a few magnetic lengths, scattering is promoted. In the case of an external current the
incompressible strip collapses if one analytically calculates the effect of local electric fields
on the local DOS. If the incompressible strip vanishes, then the longitudinal resistance becomes
finite. Hence, the IQHE disappears.

As a final remark, similar asymmetries of the QH and the longitudinal resistances were
recently reported both experimentally [25, 44, 48, 62] and theoretically [16, 66], all attributed
to the direct Coulomb interaction. In [16], it is predicted that due to the nonlinear effects
induced by the imposed large current, the widths of the incompressible strips are enhanced
(or reduced), which, we believe, can be exploited in magnifying the asymmetrical behaviors we
have discussed.
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