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ABSTRACT 
 
The purpose of this study is to present a method for solving high order linear Fredholm-Volterra integro-
differential equations in terms of Chebyshev polynomials under the mixed conditions. The method is based on 
the approximation by the truncated Chebyshev series. The higher order linear Fredholm-Volterra integro-
differential equations and the conditions are transformed into the matrix equations, which corresponds to a 
system of linear algebraic equations with the unknown Chebyshev coefficients. Combining these matrix 
equations and then solving the system yields the Chebyshev coefficients of the solution function. Finally, the 
effectiveness of the method is illustrated in several numerical experiments and error analysis is performed. 
  
Keywords: Chebyshev polynomials, Fredholm-Volterra integral equations, Polynomial approximations 

 
1. INTRODUCTION 
 
Many mathematical formulations of physical 
phenomena contain Fredholm and Volterra integro-
differential equations (FVIDE). These equations arise in 
fluid dynamics, biological models, chemical kinetics 
and etc. Finding the exact solution of FVIDE is 
generally difficult, even impossible. Therefore, it is 
needed to obtain the approximate solutions. Several 
numerical methods have been used such as the 
successive approximation method for FVIDE [1-17]. 

On the other hand, in recent years, the matrix method 
has been developed for solving the linear Fredholm-
Volterra integral equations. For example, the method is 
used for solving a system of differential equations [18] 
and differential-algebraic equations [19]. Also, the 
method is applied to one-dimensional Volterra integral 
and integro-differential equations [20-22]. 

The aim of the presented paper is to apply the 
Chebyshev method for solving high order linear 
Fredholm-Volterra integral equations. The method is 
referred to as the Chebyshev collocation method. 
Chebyshev polynomials are well known family of 

orthogonal polynomials on the interval [ 1,1]− . These 
polynomials present, among others, very good 
properties in the approximation of functions. Therefore, 
Chebyshev polynomials appear frequently in several 
fields of mathematics, physics and engineering [23,24]. 

2. Definition of the problem 

 Let us consider the high order linear Fredholm-Volterra 
integral equations as follows, 
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where ( )y x  is an unknown function, ( )g x , ( )kP x  

and ( , )K x t  are defined on an interval  

1 , 1x t− ≤ ≤ , also ,k
ij jc c  are constants.  

We will find the approximate solution of (1) by means 
of the Chebyshev polynomials such that 
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where , 0,1, 2,...,na n N=  are the Chebyshev 
coefficients to be determined and N is chosen any 
positive integer such that  N m≥ .   

We choose the collocation points as the extremes of the 
Chebyshev polynomials ( )rT x   
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N sx s N
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2.1. The fundamental relations 

Let us write Eq. (1) in the form 
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We convert these parts and the mixed conditions (2) to 
the matrix forms in the following sections.  

2.2. Matrix relation for the differential part 

We first consider the approximate solution ( )y x  of 
Eq. (1) defined by the truncated Chebyshev series (3). 
Then we can put expression (3) in the matrix form 

( ) ( )y x x= T A                                                          (9) 

where  

0 1[ ( ) ( ) ... ( )]nT x T x T x=T( )x  

and 

0 1[1/ 2 ... ]A T
Na a a= . 

On the other hand, there is a relation between the matrix 

( )T x  and its derivative (1) ( )T x  is 

( ) ( )x x=(1) TT T J  

where  

The second derivative of ( )xT  as follows, 

(2) (1)( ) ( ) ( )x x x= =T T 2T T J T (J )  

Hence, we obtain the following formula for k th  

derivatives of ( )xT : 

( ) ( 1)( ) ( ) ( )k k kx x x−= =T TT T (J ) T (J )             (10)   

The matrix form of the kth derivatives of function 
( )y x  is obtained as follows 

( ) ( ) ( )ky x x= T kT (J ) A                                        (11) 

By substituting the equation (11) into equation (6), we 
obtained the matrix representation of the differential 
such that 

k

0
( )

m
T

k
k

x x x
=

= ∑P ( )T( )(J ) AD                             (12) 

2.3. Matrix relation for the Fredholm integral part 

Let us assume that the kernel function ( , )K x t  can be 
expanded to univariate Chebyshev series with respect to 
t  as follows 
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0 1( ) [ ( ) ( ) ... ( )]T nx T x T x T x=  

0 1( ) [ ( ) ( ) ... ( )]T nt T t T t T t=  

Substituting the Eq. (9) and Eq. (14) in the Fredholm 
integral part (7), we obtain fundamental matrix 
equations as follows 
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or shortly 
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In here, 
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where   

 

2.4. Matrix relation for the Volterra integral part 

Similarly, let us assume that the kernel functions 
( , )vK x t  can be expanded to univariate Chebyshev 

series with respect to t . Then the matrix form is 
obtained 
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Substituting the Eq. (9) and Eq. (16) in the Volterra 
integral part (8), we have 
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2.5. The fundemantal matrix equations 

Now, substituting the collocation points (4) into (12), 
we obtain the fundamental matrix equations for the 
differential part as follows 
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Similarly, substituting the collocation points (4) into 
(15) as follows  

) ( )s s f fx x= T K Q AfI (                      

The fundamental matrix equation is obtained for 
Fredholm integral part such that, 

f f= TK Q AfI                                             (19) 
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Finally, substituting the collocation points (4) into (17) 
as follows 

( ) ( ) ( )s s sx x x= v vI T K Q Av  

The fundamental matrix equation is obtained for 
Volterra integral part such that, 

v v vI = TK Q A                                                     (20)                                                          
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2.6. Matrix representation for the conditions 

 The corresponding matrix form for the conditions (2) is 
obtained, by means of the Eq. (11) as follows 

1

0 0
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−
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∑∑ T kT( )(J ) A]=[                        (21) 

where  1,...,1,0 −= mi . 

3. METHOD OF THE SOLUTION 

To obtain the approximate solution of high-order linear 
Fredholm-Volterra integro differential equation (1) with 
the mixed conditions (2) using the present method, we 
construct the fundamental matrix equations 
corresponding to Eq. (1) and Eq.(2). For this purpose, 
substituting the matrix relations (18), (19) and (20) into 
Eq.(1), we obtain the fundamental matrix equation as 
follows 
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Denoting the expression in parenthesis of Eq. (22) by 
W, the fundamental matrix equation for Eq. (1) is 
reduced to 

WA=G                                                                  (23) 

which corresponds to a system of ( 1)N +  linear 
algebraic equations with unknown Chebyshev 
coefficients  0 1, ,..., Na a a . Similarly, the 
fundamental matrix equation for the mixed conditions 
(21) is reduced to 

[ ] [ ]0 1 1 ( 1)
;i i N i m N

u u u µ
× +

= LiU; μ   

,    0,1,..., 1i m= −  

Finally, to obtain the approximate solution of Eq. (1) 
under the mixed conditions (2), we replace the m rows 

of the augmented matrix [ ]W;G  with the rows of the 

augmented matrix [ ]iU; μ . In this way, the 

Chebyshev coefficients are determined by solving the 
new linear algebraic system. 

4. ACCURACY OF THE SOLUTION 

 We can easily check the accuracy of the method. Since 
the truncated Chebyshev series in (3) is an approximate 
solution of Eq. (1), it must be approximately satisfied 

this equation. Then, for each  [ ],ix x a b= ∈ , 

0,1,2,...i =  

0)()()()()( 21 ≅−−−= iivifii xgxIxIxDxE λλ

If max(10 ) 10ik k−=  (k is any positive integer) is 
prescribed, then the truncation limit N is increased until 
the difference ( )iE x  at each of the points ix  

becomes smaller than the prescribed 10 k− . 

 

5. NUMERICAL EXAMPLES 

 In this section we apply the present method to the 
following problems. To show the efficiency of the 
present method, the approximate solutions are 
compared with the exact solutions and the other 
approximate solutions that are given in literature. 

Example 1: Let us consider the following problem 
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To find the approximate solution of the problem with 
the present method, we choose the collocation points for 

3N =  as follows 

π
N

iNxi
)(cos −

=   ,   0,1, 2,3i =   ,   

0 1 2 3
1 11, , , 1
2 2

x x x x= − = − = = . 

Hence, the fundamental matrix equation of the problem 
(24) is obtained as 
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The fundamental matrix equation for the initial 
condition (25) is obtained such that  
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It can be showed as matrix equation as follows, 

[ ]1UA = λ   or augmented matrix form  

[ ] [ ]1 0 1 0 ; 1= −1U;λ . 

Hence, the new augmented matrix based on the 
condition as follows 
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2 53 143 435 ; 325
1316 2916 457192 920 ; 3293640
1316 7148 457192 14 ; 899128
1 0 1 0 ; 1

− 
 − −  =   − −
 − 
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Solving this system, the Chebyshev coefficients matrix 
is obtained as  

[ ]5 2 15 4 3 2 1 4 T=A  

Thereby the solution of the given problem becomes 
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which is the exact solution. 

Example 2: Let us consider the problem 

( ) ( ) 2 ( ) cos( ) 3sin
(0) 0, (0) 1

y x xy x y x x x x
y y
′′ ′+ − = −

′= =
 

which has the exact solution ( ) siny x x= . The 
fundamental matrix equation of this problem becomes 

{ }T 2 T T 0
2 1 0P T(J ) + P TJ + P T(J ) A = G . 

The approximate solutions of this problem for 9=N   

8 8 2 3

7 4 5 7 6 7

7 8 5 9

( ) 0.1310000310 0.999999994 0.6197730410 0.166666637
0.19482610 0.00833329742 0.5403496310 0.000198338298

0.71349849610 0.26387182110

y x x x x
x x x x

x x

− −

− −

− −

= + + − −

+ + − −

+
 

 In Table1, we present the absolute errors obtained for 
different values of N. Also, the approximate solution 
and the exact solution are illustrated in Fig.1. 

 

Table1. Absolute errors for Example 2 

X 
Chebyshev 

Method    
N=4 

Chebyshev 
Method    

N=7 

Chebyshev Method    
N=9 

-1 1.3062E-3 1.7 E-8 1.0 E-9 

-0.8 1.1627E-3 3.8 E-8 1.0 E-9 

-0.6 8.2993E-4 9.0 E-9 1.0 E-9 

-0.4 3.8692E-4 1.2 E-8 2.0 E-9 

-0.2 7.1202E-5 1.2 E-8 2.0 E-9 

0 3.000E-10 9.9E-12 1.3 E-9 

0.2 1.323E-4 1.4 E-8 0.0000 

0.4 1.3725E-3 8.0 E-9 2.0 E-9 

0.6 5.8190E-3 9.0 E-9 3.0 E-9 

0.8 1.6930E-2 1.3E-6 1.0 E-9 

1 3.9802E-2 8.5E-6 5.9 E-8 
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Figure1. Comparison of numerical results of Example 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 GU J Sci, 25(2):393-401 (2012)/ Gamze Yüksel♠, Mustafa Gülsu, Mehmet Sezer 399 
 

 

Example 3. Now consider the following fifth-order 

 Fredholm integro differential equation 
( 5 ) 2 ( 3 )

1
2

1

( ) ( ) ( ) ( )

cos( ) sin( ) ( )

y x x y x y x xy x

x x x x y t dt
−

′− − − =

− + ∫
 

In Table 2, we present a comparison for the absolute 
errors between the approximate solutions obtained by 
the present method with the method given by Akyüz 
[25].  

It is clearly seen that, the present method has more 
accurate than the other method. In addition the error 
functions are illustrated in Fig.2. 

with the conditions 

( )(0) 0, (0) 1, (0) 0, (0) 1, (0) 0ivy y y y y′ ′′ ′′′= = = =− =

 
 

Table2. Absolute errors for Example 3 
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Error function N=5
Error function N=7
Error function N=9

 
Figure 2. Error Analysis for Example 3 

 

 

 

 

 

 

 

ix  
The other method [25] The Chebyshev Method (Present Method) 

 N=7 N=9 N=5 N=7 N=9 

-1 0.000957 1.3591E-5 7.542009E-3 1.16866E-4 9.0E-8 

-0.8 0.000283 3.1940E-6 2.494244E-3 4.3276E-5 3.9E-8 

-0.6 0.000061 5.3450E-7 5.96156E-4 1.1723 E-5 1.4E-8 

-0.4 0.000007 4.8962E-8 7.8910E-5 1.775E-6 4.0E-9 

-0.2 2.004E-7 1.0561E-9 2.473E-6 6.4E-8 1.0E-9 

0 0.00000 0.00000 0.000000 0.0000 0.0000 

0.2 1.601 E-7 5.1234E-10 2.473E-6 8.6E-8 1.0E-9 

0.4 0.000005 1.1835E-8 7.8910E-5 3.129E-6 1.6E-8 

0.6 0.000031 6.7471E-8 5.96156E-4 2.7151E-5 1.79E-7 

0.8 0.000118 2.2275E-7 2.494244E-3 1.229964E-4 1.156E-6 

1 0.000327 5.5371E-7 7.542009E-3 4.47558E-4 5.292E-6 
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Example 4. Finally, let us consider the Volterra 
integro-differential equations 

1

( ) ( ) ( ) ( 1)sin sin( ) ( )
x

x ty x xy x xy x e x x x e y t dt−

−

′′ ′+ − = − + + ∫  

with the conditions (0) 1, (0) 1y y′= = . The exact 

solution is ( ) xy x e= . 

In Table 4, the absolute errors are compared for  
3, 5N N= =  and 8N = . Also, the approximate 

solutions and the exact solution are illustrated in Fig.3. 
In addition the error functions are plotted in Fig.4. 

 

Table 3. Absolute errors for Example 4 

ix  Chebyshev Method (Present Method) 

 N=3 N=5 N=8 

-1.0 1.520425E-2 2.0150391E-2 2.0697374 E-2 

-0.8 9.861561E-3 1.1021858E-2 1.1470384 E-2 

-0.6 4.86759E-3 4.115008E-3 4.420981E-3 

-0.4 1.486077E-3 7.59856E-4 9.73181E-4 

-0.2 9.6835E-5 3.543E-5 5.9298E-5 

0.0 7.0E-9 1.0E-8 1.0E-8 

0.2 8.2305E-4 5.906E-5 8.849E-5 

0.4 6.00158E-3 1.15428E-3 1.21776E-3 

0.6 2.113222E-2 8.72279E-3 5.26806E-3 

0.8 5.421446E-2 3.278970E-2 1.334832E-2 

1.0 1.1618267E-1 8.980697E-2 2.336246E-2 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1
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2

2.5

3

 

 
N=3
N=5
N=8
Exact Solution

 
Figure 3. Comparison of the numerical results for 
Example 4 
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Error function N=5
Error function N=7
Error function N=9

 
 Figure 4. Error Analysis for Example 4 

CONCLUSION 

In this study, we present a new Chebyshev collocation 
scheme for the high order linear Fredholm-Volterra 
integro-differential equations. The method finds the 
truncated Chebyshev series solution satisfying (1) with 
the conditions (2) on the Chebyshev collocation nodes. 
The effectiveness of the method is illustrated in several 
numerical experiments. The method is very effective 
and simple. It doesn’t need to run high computer 
algorithms. There are more advantages of this method 

1. This method is a direct method avoiding any iterative 
procedure.  

2. It is observed that when the exact solution can be 
expanded to Chebyshev series, to get more accurate 
approximation, it should be taken more terms for 
Chebyshev approximate solutions. If N is chosen too 
large, more work than necessary will have been done. 
Also, there may be big computational errors. On the 
other hand, since collocation methods are not stable, the 
solution may not converge to the exact solution 
whenever N → ∞ . For this reasons, the truncation 
limit N should be chosen sufficiently large. 

3. N th order approximation gives the exact solution 
when the solution is a polynomial and its degree equal 
to or less than N. If the solution is not a polynomial, it 
may get better result for sufficiently large N. 

4. Since all finite ranges can be transformed to the 
interval [-1,1], this method can be applied to  all finite 
ranges. 
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