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Abstract

In this article, a simulation study is performed to reveal the devia-
tions of the semiparametric binary response model from its parametric
counterpart, based on various scenarios including different sample sizes,
different bandwidth parameters containing the optimal ones, different
forms of the linear index function and two and higher dimensional cases
of the explanatory variables when the true model is logistic regression.
The method of the Density Weighted Average Derivative Estimator
(DWADE) is used in the semi-parametric estimation. A real data set
on liquefaction is used to demonstrate the effectiveness of the simula-
tion results with the results in practice. Additionally, new commands
written for the estimation of both models in the Windows based 4.8
version of the XploRe package are introduced. This study may be seen
as an updated form of the article by Proença and Werwatz (1994) which
used XploRe commands written for both estimators in an old MS Dos
format.
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†Corresponding Author.
‡Department of Statistics, Hacettepe University, 06800 Beytepe, Ankara, Turkey.

E-mail: tatlidil@hacettepe.edu.tr
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1. Introduction

Most research fields of Applied Econometrics and Statistics focus on the estimation
of the conditional expectation function E(Y/X = x) presented in Equation (1). If the
dependent variable Y is binary, the conditional expectation function gives the probability
of an observation having a positive response coded as Y = 1.

(1) E(Y/X = x) = P (Y = 1/X = x).

Here X denotes the vector of explanatory variables. Possible approaches for the estima-
tion of the model parameters are: the fully parametric approach, the fully nonparametric
approach and the semi-parametric approach [3,8].

The fully parametric approach is given as,

(2) E(Y/X = x) = P (Y = 1/X = x) = G[υ(x)],

where G is a known distribution function related to the error term, and β is the vector
of parameters. In the standard parametric models, the linear functional form of the
explanatory variables defined as,

(3) υ(x) = β0 + xT β,

are used. Because of the linear index assumption XT β and a known G, this approach
is called the fully parametric approach. The binary logit model is a well known example
for this kind of model. The logistic regression model given below is obtained when the
logistic distribution is assumed for G [1,9,10,14]:

(4) E(Y/X = x) = P (Y = 1/X = x) =
exp[υ(x)]

1 + exp[υ(x)]
=

exp[β0 + xT β]

1 + exp[β0 + xT β]

If G is correctly specified, this approach achieves the property of the statistical efficiency
of the parameters, and allows for the extrapolation of x values that are out of the support
of x. However, it is a well known fact that G is rarely known in most applications and
that when it is misspecified, the results will be highly misleading.

The fully nonparametric approach is given as follows.

(5) E(Y/X = x) ≡ G(x).

In the approach, G is an unknown function that can be estimated using the nonpara-
metric regression of Y on X. This approach minimizes the specification errors because
no assumptions are required for the model. However, the main disadvantage of this ap-
proach is that the estimation and interpretation become gradually more difficult when
the dimension of the vector X of explanatory variables increases [3,8,9].

The semiparametric approach, defined as,

(6) E(Y/X = x) = P (Y = 1/X = x) = g{υ(x)}

contains both an unknown finite-dimensional parameter (υ(x)) and an unknown function
(g( · )). More assumptions are required for this model compared with the fully nonpara-
metric, approach whereas less assumptions are needed than for the fully parametric one.
The estimation procedure is composed of two steps.

In the first step, the parameter vector β is estimated using one of the semi-parametric
estimation techniques appropriate for the data structure. In the second step, linear index

values are computed using β̂, which is the estimator of β. Then, an unknown distribution
function “g” is estimated by applying one of the non-parametric regression methods of

Y on xT β̂ [3,8].
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It is also worthwhile to note that the fully parametric and semiparametric models are
generally called “Single Index Models” due to the fact that all explanatory variables are
summed under only one linear index function of the form υ(x) = xT β.

In this study, the parametric and the semiparametric approaches are focused. The
principal aim of this study is to reveal deviations of the semiparametric binary response
model from its parametric counterpart based on various scenarios mentioned in Section 3,
when the true model is the parametric logistic regression. In addition, new XploRe com-
mands generated in the Windows based version for the estimation of the semiparametric
DWADE and the parametric logistic regression are introduced.

The comprehensive methodology for the estimation techniques of binary response data
is given in Section 2. Particularly, the theory of the Maximum Likelihood Estimation
(MLE) of the parametric logistic regression and the DWADE of the semiparametric
estimation method are introduced here. Sections 3 and 4 contain the scenarios, and
the design and some remarkable results of the study, respectively. Evidence for these is
investigated in Section 5 using real data. New XploRe commands of the DWADE and
logistic regression model are presented in Appendix 1 and 2, respectively, together with
explanations.

2. Methodology of the estimation procedures

In the parametric approach, parameter estimates are obtained according to the MLE,
whereas β is estimated by the DWADE in the semiparametric approach provided that
all the explanatory variables are continuous.

2.1. The method of the maximum likelihood estimation of the parametric lo-
gistic regression. Under the assumption that the error term has a logistic distribution,
the probability of having a Y = 1 could be expressed by,

(7) E(Y/X = x) = P (Y = 1/X = x) =
exp(

∑
β̂kxik)

1 + exp(
∑

β̂kxik)
,

where k denotes the number of explanatory variables. The likelihood and the logarithmic
likelihood functions for the MLE of β are given by Equation (8) and (9), respectively.

L(Y/X, β̂) =

N∏

i=1

[
exp

( ∑
β̂kxik

)

1 + exp
( ∑

β̂kxik

)

]Yi
[

1

1 + exp
( ∑

β̂kxik

)

]1−Yi

,(8)

log L(Y/X, β̂) =
N∑

i=1

[

Yi log Pi + (1 − Yi) log(1 − Pi)

]

.(9)

If β̂ maximizes L(Y/X, β̂), it also maximizes log L(Y/X, β̂). Hence, the first order deriva-
tives are performed and equalized to “0” in order to have the parameter estimates max-
imizing the likelihood of observing the sample Y . Clearly, K equations are obtained for
the K parameters. The simultaneous solution of these equations gives the MLE estimates
of β. The general form of the likelihood equations is given as follows [1,10,14].

(10)
∂ log L

∂β̂
=

N∑

i=1

[

Yi −
exp

( ∑
β̂kxik

)

1 + exp
( ∑

β̂kxik

)

]

xij = 0; i = 1, 2, . . . , N ; k = 1, 2, . . . , K.
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2.2. The density weighted average derivative estimator. The DWADE estima-
tor has two important advantages in terms of the distributional assumption and of the
resulting estimator. That is, no distribution assumption is needed for the dependent
variable Y , and the resulting estimator is a “direct estimator” which is not iterative.
The main idea here is to estimate β using the average derivatives. A strict condition of
the DWADE is that it can be applied directly only to the models containing continuous
explanatory variables.

Assume that x is a continuously distributed random vector, and G is a differentiable
function needed for the identifiability of β. Under these assumptions,

(11)
∂E(Y/x)

∂x
= βG(xT β)

can be derived. Additionally, for any restricted and continuous function W , the following
expression is obtained.

(12) E

[

W (x)
∂E(Y/x)

∂x

]

= βE

[

W (x)G′(xT β)

]

.

The left side of Equation (12) is called the Average Derivative Estimator (ADE) of the
E(Y/x) with the weight function W . Equation (12) indicates that the weighted average
derivative of E(Y/x) is proportional to β for each value of x. Because of the requirement
of scale normalization, β is only defined according to the scale and any weighted average
derivative of E(Y/x) is equal to β [15, Page 1404]. Therefore, it should be noticed
that only estimating the left side of Equation (12) is adequate for the estimation of β.
Dividing each component on the left side of Equation (11) by the first component, the
scale normalization of β1 = 1 can be achieved.

The left side of Equation (11) can be estimated by replacing the kernel estimator of
∂E(Y/x)

∂x
and the sample mean for the expected value of the population E( · ) [15].

2.1. Theorem. Let p( · ) be the probability density function of x and W (x) = p(x). Then
the left side of Equation (12) can be written as follows.

(13) E

[

W (x)
∂E(Y/x)

∂x

]

= E

[

p(x)
∂E(Y/x)

∂x

]

=

∫
∂E(Y/x)

∂x
[p(x)]2 dx.

Assuming that p(x) = 0 when x is on the boundary of the support of x, integration by
parts gives:

(14)

E

[

W (x)
∂E(Y/x)

∂x

]

= −2

∫

E(Y/x)
∂p(x)

∂x
p(x) dx

= −2E

{

E(Y/x)
∂p(x)

∂x

}

= −2E

[

Y
∂p(x)

∂x

]

The proof of the theorem is given in Appendix 3.

3. The simulation study

As mentioned in Section 1, differences between the semiparametric binary response
model and parametric logistic regression are examined here with a simulation study for
the case when the latter is the true model. The simulation design is as follows.

Data simulated according to the sample sizes 25, 100, 250 and 500 are used for the
model with two explanatory variables. The smallest sample size is determined as 50 for
the case of higher dimensional explanatory variables due to the fact that the number of
observations that are able to achieve consistency with the model decrease as the number
of the variables increases.
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The linear index function given in Equation (15) is determined by following the study
of Proença and Silva [17], so that the minimal condition of the identifiability of the model
parameters in the semiparametric estimation is satisfied by setting the first coefficient of
a continuous variable (here X1) to the value “1”.

(15) index(i1) = XT β = 1 + X1(i1) + X2(i1); i = 1, 2, . . . , n.

Here, n denotes the number of observations. X1 and X2 are assumed to follow a Standard
Normal and Uniform (0,1) distribution, respectively. In addition to the study of [16], we
also discuss the effect of a higher dimensional data structure on the results. To do this,
we determine two additional continuous explanatory variables X3 and X4 that are drawn
from the Exponential (2) and the Weibull (5,1) distributions, respectively.

It is a well known fact that the more variables a model has, the more observations
it needs to obtain better estimates of the model parameters. Additionally, in such a
case, the estimation gradually becomes hard, especially for the semiparametric approach.
Therefore, we performed the second step of the simulation study based on four variables.
The form of the true linear index function was taken as follows.

(16) index(i2) = XT β = 1 + X1(i2) + X2(i2) + X3(i2) − 2X4(i2); i = 1, 2, . . . , n.

The reason why we selected the true coefficients as given above arises from the fact that
the supports of the variables X2, X3 and X4 are strictly positive, and this leads to a
problem in the data derivation process. That is, if we assume all the true coefficients are
positive, the number of “1”’s in the dependent variable increases along with the increase
in the index values in Equation (16), and accordingly in Pi in Equation (17). Large
numbers of Pi give rise to the derivation of a larger number of the values “1” rather than
“0” in the dependent variable. Therefore, we set the coefficient of X4 to the negative
value (-2) to obtain balanced data sets including a sufficient number of “0” values for
the dependent variable. In this way, we also examined the effect of different functional
forms of the linear index functions on the results.

The probabilities with respect to the index values are computed by following the or-
dinary logistic regression function. This means that all the simulated data are consistent
with the parametric model. According to logistic regression, the probability of having
the positive level coded as “1” in the dependent variable Y is computed as follows.

(17) E(Yi = 1/Xi) = Pi =
exp(indexi)

1 + exp(indexi)
; i = 1, 2, . . . , n.

The dependent variable Yi is assumed to follow a Bernoulli distribution with probability
Pi. Algorithms for simulating the data were constructed by following the procedures in
[12]. The results are assessed in terms of the average estimates of the parameters β and
the Averaged Mean Square Error (AMSE) of the estimates, defined as

(18) AMSEβ̂ =

∑100
i=1(True coefficient − β̂i)

2

100
.

The optimal bandwidths are estimated by the method of Least Squares Cross Validation
(for details, see [3, 4] and [8]). Hardle [4] presents the theory of the method well and in
detail. The optimal bandwidth values of 0.5848, 0.4642, 0.3984 and 0.3550 were obtained
for the case of two explanatory variables, whereas the values of 0.5210, 0.4642, 0.3984
and 0.3550 were computed for higher dimensional data for each sample size, respectively.
That the estimated optimal bandwidth values are nearly the same for each sample size
is an expected result because the samples are drawn from the same distribution.

In order to reveal the deviations of the semiparametric estimates from the logistic
regression model as the bandwidth parameters change, five additional bandwidths were
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determined with 0.1 jumps in the support of the optimal ones. All these bandwidths are
presented in Tables in Section 4.

100 replications were performed for each simulation scenario. Estimates of β for the
parametric and the semiparametric models were carried using the programme XploRe
4.8. New XploRe commands for the estimation of β were generated and executed in the
Windows based version of the XploRe package. This part of our study extends the study
of Proença and Werwatz [16] in terms of the renewed and updated commands for two
types of model [5,6,7].

3.1. The application steps.

(1) In the first step, logistic regression analysis was applied to the data sets and
the unknown β parameter vector was estimated using the XploRe commands in
Appendix 2.

(2) Five bandwidth parameters were determined in support of the optimal ones
for each sample size and the DWADE estimates obtained using the XploRe
commands in Appendix 1.

(3) The coefficient of the first variable was normalized to “1” to satisfy the identifi-
ability conditions of the semiparametric DWADE.

(4) The coefficient normalized to “1” in (3) was also normalized to “1” in the logistic
regression estimates to compare the DWADE estimates with the parametric
alternatives.

(5) Bandwidth parameters having results very close to the true model (logit model)
were determined.

(6) 100 replications were performed and the parameter estimates of β obtained when
the true coefficients are assumed as given in Equation (15) and (16).

(7) In the last step, the average values of all the estimated parameters were calcu-
lated and the differences between the two models investigated by examining the
averaged estimates of the β and AMSE values.

Note that all these steps are replicated both for the cases of two and higher dimensional
explanatory variables.

4. Results and discussions

All the simulation results are summarized in Tables 1-4. Tables 1 and 3 present the

estimated vector of coefficients β̂, that is the average estimate of all results obtained from
both the logistic regression and DWADE, whereas the averaged prediction errors of the

normalized parameter estimates β̂ are given in Tables 2 and 4 for each sample size and
assumed linear index function.

4.1. The case of two explanatory variables. Before interpreting the results, it is
evident that the assumed linear index function given by Equation (15) is satisfied as the
sample size increases. Additionally, as emphasized above, it should be noted that the first
coefficient of a continuous explanatory variable (here, the coefficient of X1) is normalized
to the value “1”, and the estimation of the intercept term is not required to be able
to achieve the identifiability conditions of the model parameters in the semiparametric
approach (for details, see [11] and [13]).

Different normalizations are required in the estimation of the parametric and the
semiparametric models. Therefore, we also normalized the coefficient of X1 to the value
“1” so that we could compare the results of the parametric logistic regression and its
semiparametric alternative.
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Table 1. The averaged estimates of β obtained by DWADE and logistic
regression for the case of two explanatory variables

LOGIT
True Model

DWADE

n = 25

h1 = 0.3848 h2 = 0.4848 h3 = 0.5848 h4 = 0.6848 h5 = 0.7848

(optimal)

Intercept 1.22738 - - - - -
¯̂
β1 (fixed) 1 1 1 1 1 1
¯̂
β2 2.74084 -12.35920 9.72429 0.17758 0.89666 0.44658

n = 100

h1 = 0.2642 h2 = 0.3642 h3 = 0.4642 h4 = 0.5642 h5 = 0.6642

(optimal)

Intercept 1.13577 - - - - -
¯̂
β1 (fixed) 1 1 1 1 1 1
¯̂
β2 0.88059 3.16893 4.65912 1.03031 1.11832 1.02002

n = 250

h1 = 0.1984 h2 = 0.2984 h3 = 0.3984 h4 = 0.4984 h5 = 0.5984

(optimal)

Intercept 1.07989 - - - - -
¯̂
β1 (fixed) 1 1 1 1 1 1
¯̂
β2 0.99135 1.07161 1.11725 1.06907 1.05005 1.04229

n = 500

h1 = 0.1550 h2 = 0.2550 h3 = 0.3550 h4 = 0.4550 h5 = 0.5550

(optimal)

Intercept 1.00605 - - - - -
¯̂
β1 (fixed) 1 1 1 1 1 1
¯̂
β2 1.09475 0.82830 1.02378 1.02057 1.03566 1.05449

We see from Table 1 that the averaged DWADE estimates of the coefficient β are about:
0.17758, 1.03031, 1.06907 and 1.02057 for sample sizes of 25, 100, 250 and 500, respec-
tively. The corresponding averaged true estimates obtained from the parametric logistic
regression model are about: 2.74084, 0.88059, 0.99135 and 1.09475.

In the light of all these findings, the most important points to be emphasized related
to the estimates of β are summarized below.

(1) The semiparametric DWADE estimates that are very close to the optimal h
approximate the true coefficients as the sample size increases. This is evident
especially for the sample sizes of 250 and 500. That is, the true coefficient for
n = 250 is is 0.99135, whereas the DWADE estimate related to the optimal
h is 1.06907. Similarly, the true coefficient is 1.09475 and the corresponding
DWADE estimate is 1.02057 for n = 500.

(2) All the DWADE estimates are closely related to the optimal bandwidth pa-
rameter h. This result indicates that the optimal bandwidth values should be
carefully determined.

(3) We could say that if we suspect whether the true model is a parametric model
or not, one of the best solutions to the problem is to use its semiparametric
alternative by conditioning that the optimal bandwidths are correctly specified.
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Table 2 gives the prediction errors (AMSE values) with respect to the estimated param-

eters β̂ for each model.

Table 2. Prediction errors of the normalized β̂ for the case of two
explanatory variables

LOGIT
True Model

DWADE

n = 25

h1 = 0.3848 h2 = 0.4848 h3 = 0.5848 h4 = 0.6848 h5 = 0.7848

(optimal)

Intercept 14.11394 - - - - -
¯̂
β1 (fixed) 0 0 0 0 0 0
¯̂
β2 139.23772 7146.55026 8251.83774 547.20053 27.23247 49.06606

n = 100

h1 = 0.2642 h2 = 0.3642 h3 = 0.4642 h4 = 0.5642 h5 = 0.6642

(optimal)

Intercept 0.40984 - - - - -
¯̂
β1 (fixed) 0 0 0 0 0 0
¯̂
β2 1.09134 221.56722 507.69305 5.57699 2.45342 1.76881

n = 250

h1 = 0.1984 h2 = 0.2984 h3 = 0.3984 h4 = 0.4984 h5 = 0.5984

(optimal)

Intercept 0.17439 - - - - -
¯̂
β1 (fixed) 0 0 0 0 0 0
¯̂
β2 0.56702 18.58513 1.57858 0.98616 0.81485 0.75076

n = 500

h1 = 0.1550 h2 = 0.2550 h3 = 0.3550 h4 = 0.4550 h5 = 0.5550

(optimal)

Intercept 0.06042 - - - - -
¯̂
β1 (fixed) 0 0 0 0 0 0
¯̂
β2 0.20687 13.51334 0.57463 0.30976 0.25344 0.23922

The assumed true coefficients are: β0 = 1 (constant term), β1 = 1 and β2 = 1. As
mentioned above, the constant term is not predictable in the semiparametric approach.
Therefore, no comparison could be made related to this term. Additionally, another
important point to be stressed is that the prediction error is equal to “0” for the fixed

parameters (β̂′
1s) due to the coincidence of the true (1) and the fixed (1) parameter

values. The following findings are derived from Table 2 and are worth mentioning.

(1) The AMSE values for each model strictly decrease in conjunction with the in-
crease in the sample size. This is an expected result because the estimated linear
index function gradually approximates to the assumed linear index function as
the sample size increases. Similarly, the estimated coefficients get closer to the
true coefficients.

(2) The closest prediction errors of the logit model and its semiparametric alterna-
tive arise in the support of the optimal bandwidth values.

(3) Although the errors are not precisely overlapped in the optimal h, the mag-
nitudes of deviations between two methods in this level could not be assessed
extremely significant. That is, it is a well known fact that the semiparametric
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approach is more flexible than the parametric counterpart in that it does not
require restrictive assumptions related to the error term. In other words, mini-
mal deviations from the true values could be ignored at the expense of obtaining
better results without testing the parametric model assumptions.

4.2. The case of more than two explanatory variables. We see from Table 3 that
the assumed linear index function given by Equation (16) is also satisfied here as the
sample size increases, especially for the sample sizes of 100, 250 and 500, similar to the
case of two explanatory variables.

Table 3. The averaged estimates of β obtained by DWADE and logistic
regression analysis for the case of high dimensional explanatory variables

LOGIT
True Model

DWADE

n = 50

h1 = 0.3210 h2 = 0.4210 h3 = 0.5210 h4 = 0.6210 h5 = 0.7210

(optimal)

Intercept -0.40961 - - - - -
¯̂
β1 (fixed) 1 1 1 1 1 1
¯̂
β2 0.59176 4.15083 0.64357 0.74963 1.68570 1.60373
¯̂
β3 1.03166 0.42493 0.71214 0.98518 0.89218 0.66020
¯̂
β4 -1.5586 10.10531 -1.62747 2.78875 -1.30269 -0.33948

n = 100

h1 = 0.2642 h2 = 0.3642 h3 = 0.4642 h4 = 0.5642 h5 = 0.6642

(optimal)

Intercept -0.07196 - - - - -
¯̂
β1 (fixed) 1 1 1 1 1 1
¯̂
β2 0.97056 -0.27443 3.43967 1.76146 3.26923 1.03277
¯̂
β3 1.01266 0.98159 0.57208 1.02931 -0.42772 0.85534
¯̂
β4 -1.92629 -17.87740 -3.15632 -2.04997 -1.59315 -1.95999

n = 250

h1 = 0.1984 h2 = 0.2984 h3 = 0.3984 h4 = 0.4984 h5 = 0.5984

(optimal)

Intercept -0.06173 - - - - -
¯̂
β1 (fixed) 1 1 1 1 1 1
¯̂
β2 1.01639 0.57392 -0.19480 1.10901 0.99633 0.99667
¯̂
β3 1.07099 0.51764 1.32687 1.00623 0.88124 0.82745
¯̂
β4 -2.06540 -0.23570 -6.59050 -2.44444 -2.13307 -2.0447

n = 500

h1 = 0.1550 h2 = 0.2550 h3 = 0.3550 h4 = 0.4550 h5 = 0.5550

(optimal)

Intercept -0.09479 - - - - -
¯̂
β1 (fixed) 1 1 1 1 1 1
¯̂
β2 0.98830 -1.12294 1.71249 1.16324 1.07162 1.04316
¯̂
β3 1.01627 -0.07824 1.26020 0.88526 0.81939 0.77778
¯̂
β4 -1.92381 8.00478 -1.53216 -2.00846 -1.98448 -1.95670
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Another remarkable point to be mentioned is the poor fitting between the true and the
semiparametric models for small sample size, even though the smallest sample size is
taken as 50, as opposed to 25 for the case of two variables. This is not surprising because
we know that additional observations are required in conjunction with the increasing
number of explanatory variables included in the model. Additionally, that the DWADE
estimates are closely related to the optimal h once again emphasizes the importance of
the determination of an accurate optimal bandwidth parameter h for obtaining more
realistic results.

Table 4. Prediction errors of the normalized parameter estimates β̂ for the
case of high dimensional explanatory variables

LOGIT
True Model

DWADE

n = 50

h1 = 0.3210 h2 = 0.4210 h3 = 0.5210 h4 = 0.6210 h5 = 0.7210

(optimal)

Intercept 10.88737 - - - - -

β̂1 (fixed) 0 0 0 0 0 0

β̂2 4.88908 2392.67232 123.65149 82.46214 74.84145 19.51970

β̂3 6.73068 21.00283 26.26624 49.05042 10.08207 4.82660

β̂4 10.48524 7861.05452 312.53586 1044.54455 1002.98701 276.66716

n = 100

h1 = 0.2642 h2 = 0.3642 h3 = 0.4642 h4 = 0.5642 h5 = 0.6642

(optimal)

Intercept 3.39374 - - - - -

β̂1 (fixed) 0 0 0 0 0 0

β̂2 1.25318 1692.86610 258.83485 13.82980 417.97227 4.191967

β̂3 0.17097 161.59666 46.16513 1.52196 163.51049 0.744236
¯̂
β4 1.88015 31306.44008 157.11766 27.39113 11.79027 3.61303

n = 250

h1 = 0.1984 h2 = 0.2984 h3 = 0.3984 h4 = 0.4984 h5 = 0.5984

(optimal)

Intercept 2.04739 - - - - -

β̂1 (fixed) 0 0 0 0 0 0

β̂2 0.36112 83.29981 278.32245 2.49383 0.91080 0.63160

β̂3 0.08002 7.22085 21.87966 0.57970 0.20723 0.14728

β̂4 0.98941 255.53889 328.66594 6.10585 2.87019 2.04672

n = 500

h1 = 0.1550 h2 = 0.2550 h3 = 0.3550 h4 = 0.4550 h5 = 0.5550

(optimal)

Intercept 1.58511 - - - - -

β̂1 (fixed) 0 0 0 0 0 0

β̂2 0.17467 486.83613 17.42593 0.81280 0.43399 0.36464

β̂3 0.02224 28.54659 4.92197 0.10593 0.07556 0.07902

β̂4 0.42384 2981.29233 41.01429 1.79859 1.16975 1.00468

The averaged deviations of the predicted parameter values given in Table 3 from the true
coefficients are summarized below. The assumed true coefficients are: β0 = 1 (constant
term), β1 = 1, β2 = 1, β3 = 1 and β4 = −2 for the variables X1, X2, X3, and X4



Performance of the Semiparametric Binary Response Model 593

respectively. As emphasized in Subsection 4.2, it should be noted that more observations
are needed as the number of variables increases in order to obtain the best model fit.
Therefore, high level prediction errors could be expected, especially for the sample size
of 50.

It may be easily concluded from Table 4 that the results support the findings obtained
in the case of two explanatory variables. That is, the prediction errors sharply decrease
in parallel with the increase in the sample sizes corresponding to the optimal bandwidth
parameters where the estimated coefficients approximate to the true coefficients assumed.

In accordance with all the results, we could say that all findings and interpretations
are valid both for models including two and higher dimensional explanatory variables
and different forms of the linear index function.

In all, since the prediction errors of the normalized parameter estimates β̂ for logit and
DWADE are close enough and the differences may be ignored, DWADE proves promising
and gives very much hope for h optimal.

5. Evidence from real data

In this section, a real data set taken from the registry of the General Directorate

of Highways in Turkey in 2009 on the potential liquefaction of ground in Ízmir, one of
the largest cities in Turkey, is used [2]. Findings from 314 well-bores are examined to
determine whether the simulation results given in the previous sections are supported by
the results of a real data set in practice.

Y is a binary variable coded as follows.

Yi =

{

0, if liquefaction exits in wellbore i, i = 1, 2, . . . , 314

1, otherwise.

Three important factors that may affect the liquefaction are determined. These are, the
Corrected Standard Penetration Test (CSPT) computed based on the correction factors
according to the energy rates, well-hole size and covering stress for the stroke number
obtained from the SPT experiments; the Cyclic Stress Ratio (CSR) that is a proportional
expression related to the active and the total stresses resulted from the earthquake and
the Factor of Safety (FS) that is a value obtaining by dividing the CSR values required
for liquefying the soil to the CSR values resulting from the earthquake. These continuous
variables are represented by X1, X2 and X3, respectively.

We do not intend to focus on the interpretations of the results of the liquefaction data
here. We only aim to give some remarkable results indicating the model quality and their
interpretations. Additionally, the general discussion on the simulation results and the
validity and the reliability of them in practice are discussed here.

5.1. The results of the liquefaction data. The variable CSPT is determined as a
fixed parameter. The optimal h is 0.38357. The logistic regression model is significant
at the α = 0.05 level. The chi-square value is 133.432 and the corresponding probability
is p = 0.00. The parameter estimates of the liquefaction data are given in Table 5.

It is evident from Table 5 that the parameter estimates of the logistic regression
gradually approximate to the semiparametric estimates, and the closest results arise in
the event that the optimal bandwidth value is used in the semiparametric approach. This
once again emphasizes the importance of the determination of the optimal h.

In summary, we conclude that the simulation results are largely consistent with the
results in practice. This indicates that the semiparametric approach could be directly
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applied to the data set if we are not certain about the validity of the parametric logistic
regression model on condition that the optimal bandwidths are correctly specified.

Table 5. Parameter estimates of the liquefaction data obtained by logistic
regression and DWADE

LOGIT
True Model

DWADE

n = 50

h1 = 0.18357 h2 = 0.28357 h3 = 0.38357 h4 = 0.48357 h5 = 0.58357

(optimal)

Intercept -3.7107 - - - - -

β̂1 (fixed) 1 1 1 1 1 1

β̂2 10.145 -9.0514 0.30208 9.0853 17.045 23.432

β̂3 -18.12 -15.743 -13.995 -13.596 -13.034 -12.303

Appendix 1. The XploRe commands for the DWADE method

and their descriptions

proc(b) = main1()

dat=read ("dwade1"); Reads the data set labeled “dwade1” written in ASCII format.

y=dat[,3]; Describes the column number of the dependent variable y in the data set

x=dat[,1:2]; Describes the column numbers of the continuous explanatory variable(s)
x in the data set.

x=x.-mean (x); Centralizes x values for eliminating the high correlation.

ozdeg=eigsm (cov (x)); Calculates the eigenvalues and eigenvectors of the covariance
matrix of x.

v=ozdeg.vectors; Expresses the eigenvectors by the matrix “v”.

w=ozdeg.values; Expresses the eigenvalues by the matrix “w”.

mah=v*(sqrt (1./w).*v’); Applies the Mahalanobis transformation to the values of the
explanatory variables for eliminating the possible high correlation among them.

x=x*mah; Weights raw data matrix x by the transformation matrix “mah”.

library ("smoother"); Calls the “smoother” library for the estimation of β.

library ("metrics"): Calls the “metrics” library for the mathematical computations.

h= 0.3848*matrix(cols(x)); Describes the optimal bandwidth values estimated by the
method of the least square cross-validation required for the estimation of β.

b=dwade (x,y,h); Gives the semiparametric estimation of β by the method DWADE .

b=mah*b: Computes the original values of the estimations.

b=b./(b [1,]); Normalizes all estimated b s’ by dividing them to the first estimated
coefficient. This normalization is required for the comparison of the estimated parameters
of the parametric logistic regression model and its semiparametric alternative.

indexdw=x*b; Gives the linear index estimation of observation i.

write(indexdw, "output1.xls"); Writes the linear index values obtained from the
method dwade to the file “output 1” in the xls format.

endp

main 1()
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Appendix 2. The XploRe commands for the logistic regression

model and their descriptions

proc(b)=main2()

dat=read ("logistic1"); Reads the data set “logistic” written in ASCII format.

y=dat[,3]; Describes the column number of the dependent variable y in the data set.

x=dat[,1:2]; Describes the column numbers of the continuous explanatory variable(s)
x in the data set.

x = matrix (rows (x)) ∼ x[,1:2]; Adds column vector “1” to the left side of the
matrix x.

library ("glm"); Calls the “glm” library for the estimation of β.

g=glmest (‘‘bilo",x,y); Applies the logistic regression analysis to the data using the
option “binomial logit” abbreviated by “bilo” by calling the command “glmest” in the
library “glm”.

glmout (‘‘bilo",x,y,g.b,g.bv,g.stat); Describes the basic statistics in the output.

g.b=g.b/(g.b[2,]); Normalizes all estimated g.bs′ by dividing them to the first esti-
mated coefficient as in the case of the “dwade”. Here, line 2 represents the coefficient of
the first explanatory variable whereas line 1 denotes the constant term.

index=x*g.b; Computes the index values xb.

prob=exp (index) / (1+exp (index)); Computes the probabilities of belonging to the
category “1” coded in the dependent variable obtained from the logistic regression anal-
ysis.

write (prob, "output2.xls"); Writes the probabilities obtained from the logistic re-
gression analysis to the file “output 2” in the xls format.

endp

main2()

Appendix 3. Proof of Theorem 2.1

.
We obtain the following expressions by applying integration by parts.

u = [p(x)]2; dv =
∂E(Y/x)

∂x
; du = 2[p(x)]

∂p(x)

∂x
and

∫

dv =

∫
∂E(Y/x)

∂x

=⇒ v = E(Y/x) [p(x)]2E(Y/x)

∣
∣
∣
∣

︸ ︷︷ ︸

“0”

−

∫

E(Y/x)2p(x)
∂p(x)

∂x
(i)

Because we are assuming p(x) = 0 on the boundary areas of the support of x, the first
term in (i) is zero and the following expression is obtained.

E

[

W (x)
∂E(Y/x)

∂x

]

= −2

∫

E(Y/x)
∂p(x)

∂x
p(x) dx

= −2E

{

E(Y/x)
∂p(x)

∂x

}

= −2E

[

Y
∂p(x)

∂x

] (ii)

When δ is defined as δ = E

[

W (x) ∂E(Y/x)
∂x

]

, an efficient estimator of δ can be obtained

by replacing p with its nonparametric estimator and replacing the expectation operator
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E with the sample mean. The estimator of δ is given as,

δ → −
2

n

n∑

i=1

Yi
∂pni(xi)

∂x
a.s. if E

(∣
∣
∣
∣

∂p(x)

∂x

∣
∣
∣
∣

)

< ∞, (iii)

where {Yi, Xi; i = 1, . . . , n} represent the sample values of observation “i”, and pni(xi)
is the estimator of the joint probability density function p(xi). Since the joint probability
density function of X is used as a weight function, the resulting δn estimator is called
the “Density Weighted Average Derivative Estimator” (DWADE).

In order to complete the estimation process in Equation (iii), the estimator of p should
be defined. Kernel type estimators are widely used on account of their easier estimation
procedures. The following estimator of p(xi) is obtained by using the “leave-one-out”
kernel density estimation method.

pni(x) =
1

n − 1

∑

j=1,j 6=i

(
1

hn

)k

K

(
x − Xj

hn

)

. (iv)

Here, k denotes the dimension of X, K is a multivariate kernel function with k-dimensional
component, and {hn} the series of bandwidth parameters. The function pni(x) possesses
the standard properties of a kernel density estimator, such as being an efficient estimator

of p(x). Moreover,
∂p(x)

∂x
can be efficiently estimated by

∂pni(x)

∂x
. The formulation of

∂pni(x)

∂x
is given by

∂pni(x)

∂x
=

1

n − 1

n∑

j=1,j 6=i

(
1

hn

)k

K′

(
x − Xj

hn

)(
1

hn

)

=
1

n − 1

n∑

j=1,j 6=i

(
1

hn

)k+1

K′

(
x − Xj

hn

)

,

(v)

where K′ is the first order derivatives of K (gradient vector). The resulting DWADE
estimator δn is obtained by substituting Equation (v) in Equation (iii):

δn = −
2

n(n − 1)

n∑

i=1

n∑

j=1,j 6=i

(
1

hn

)k+1

K′

(
Xi − Xj

hn

)

Yi. (vi)

It should be noted that by taking W (x) = p(x), the right side of the denominator of
Equation (vi) does not contain a density estimator or a random variable. The absence
of randomness in the denominator constitutes the basis of the applicability and inter-
pretability of δn [15].
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