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Abstract

Nonparametric kernel estimators are widely used in many research ar-
eas of statistics. An important nonparametric kernel estimator of a
regression function is the Nadaraya-Watson kernel regression estima-
tor which is often obtained by using a fixed bandwidth. However, the
adaptive kernel estimators with varying bandwidths are specially used
to estimate density of the long-tailed and multi-mod distributions. In
this paper, we consider the adaptive Nadaraya-Watson kernel regression
estimators. The results of the simulation study show that the adaptive
Nadaraya-Watson kernel estimators have better performance than the
kernel estimations with fixed bandwidth.

Keywords: Nonparametric regression, Nadaraya-Watson kernel estimator, Adaptive
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1. Introduction

For given data points {(Xi, Yi)}n
i=1 ∈ R, let us assume that the regression model is

Yi = m(Xi) + εi, i = 1, . . . , n,

with observation errors εi and unknown regression function m. Assume that the response
variable Y depends on an independent random variable X. Also that ε is a random
variable with mean 0 and variance σ2. As is well known, m(x) is a conditional mean
curve

m(x) = E(y/x) =

∫
yf(x, y)

f(x)
dy,
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where f(x, y) is the joint density function of (X, Y ) and f(x) is the marginal density
function of f(x). An estimation of this regression function can be taken as

(1.1) m̂(x) =

∫
yf̂(x, y)

f̂(x)
dy.

If f̂(x) = 0 then m̂(x) is defined to be 0. In (1.1), f̂(x, y) is an estimation of f(x, y),

and f̂(x) is an estimation of f(x). Using kernel estimations instead of estimations of
the density functions in the numerator and denominator of (1.1), a nonparametric kernel
estimation of the regression function can be obtained.

A kernel estimation

f̂(x) =
1

nh1

n∑

i=1

K

(
x − Xi

h1

)

can be used instead of the density function estimation f̂(x) which occurs in the denomi-
nator of (1.1). Here h1 is a fixed smoothing parameter for the kernel density estimation

f̂(x), and K is a symmetric probability density function [4, 8]. This is known as a “kernel
function”, and satisfies the following general assumptions [7].

A1)
∫

K(u) du = 1,
A2)

∫
uK(u) du = 0,

A3)
∫

u2K(u) du = µ2(K) 6= 0.

Epanechnikov and Gaussian are the kernel functions which are used most often in practice
[7, 2]. The Epanechnikov kernel function is

K(u) = 3(1 − u2)/4, |u| ≤ 1,

and the Gaussian function is

K(u) = e(−u2/2)/
√

2π, −∞ < u < ∞.

In the numerator of (1.1) the multiplicative kernel estimation

(1.2) f̂(x, y) =
1

n

n∑

i=1

1

h1h2
K[2]

(x − Xi

h1
,

y − Yi

h2

)

in R×R can be used instead of the marginal density function estimation f̂(x, y) [3]. Here,

K[2] (in 2-dimensional space) is a bivariate kernel function, and h2 a fixed smoothing

parameter for the kernel density estimation f̂(y). Using a single smoothing parameter h,
instead of different parameters h1 and h2, and substituting the kernel estimators (1.2)
and (1.3) in (1.1), the Nadaraya-Watson kernel estimator of the regression function is
obtained as

(1.3) m̂NW (x) =

∑n
i=1 YiK

(
x−Xi

h

)
∑n

i=1 K
(

x−Xi

h

) .

The smoothing parameter h of the Nadaraya-Watson kernel estimator controls the smooth-
ing level of the estimation, and is called the “bandwidth”. The bandwidth h plays a very
important role in the performance of the kernel estimators. Various methods of choos-
ing h are available. The methods used mostly are cross-validation, penalized functions,
plug-in and bootstrap [5]. The question as to which is the best is controversial. The
cross-validation method is often preferred because it is easily computable and applicable
for any regression model. In the cross-validation method, the bandwidth which minimizes
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the cross-validation (CV ) function with a nonnegative weight function w(Xi) is obtained
as

(1.4) CV(h) = n−1
n∑

i=1

{Yi − m̂(Xi)}2 w(Xi),

see [2]. The CV function in (1.5) contains the leave-one-out kernel estimator

(1.5) m̂i(Xi) =

∑n
j 6=i YjK(

Xi−Xj

h
)

∑n
j 6=i K(

Xi−Xj

h
)

.

The leave-one-out estimator m̂i(Xi) is obtained over the remaining n − 1 data after
leaving out Xi and Yi. The bandwidth that minimizes the cross-validation function
also minimizes the integrated mean square error, which is a performance criterion of the
estimator.

2. Adaptive kernel estimators of the density function

The kernel estimator of the probability density function with fixed bandwidth given
by (1.2) is not sufficient for long tail distributions, multi-mode distributions and the
multivariate case. Silverman [7] showed this is the case in a study using right-long tailed
data. Silverman’s procedures are based on a varying bandwidth. One estimator which is
used with varying bandwidth is the adaptive kernel (or sample point) estimator.

In the case of one variable, the adaptive kernel estimator which uses different band-
widths for the data point Xi is,

(2.1) f̂U (x) =
1

n

n∑

i=1

1

h(Xi)
K

{
x − Xi

h(Xi)

}
.

Here the varying bandwidth h(Xi) is an adaptive bandwidth which depends on Xi. For
any dimension, Abramson [1] proposed a method (the square-root rule) which uses a

value of h(Xi) proportional to f(Xi)
−1/2.

Silverman [7] gave an algorithm with three steps for the Abramson-type estimator.

At the first step, a prior kernel estimator f̃(Xi) with a fixed bandwidth is obtained. At
the second step, the local bandwidth factor λi is defined as

λi = {f̃(Xi)/g}−α,

where g (assuming g 6= 0) is the geometric mean of f̃(Xi), and α is called the sensitivity

parameter, which satisfies 0 ≤ α ≤ 1. At the last step, for one variable the kernel
estimator is obtained as

(2.2) f̂U (x) =
1

n

n∑

i=1

1

hλi
K

(x − Xi

hλi

)
.

As seen from (2.2), the adaptive bandwidth h is taken as h(Xi) = hλi. The adaptive
kernel estimation is equivalent to the kernel estimation with fixed bandwidth when the
sensitivity parameter α is equal to 0. When α = 1, then the adaptive kernel estimation
is equivalent to the nearest neighbor estimation.

Abramson [1] and Silverman [7] emphasized that taking α = 0.5 leads to good results.

Let (Xi, Yi) be a random sample from a population which has the density function
f(x, y), (i = 1, . . . , n). The kernel estimation of the bivariate joint density function is
given by Epanechnikov as follows:

f̂(x, y) =
1

n

n∑

i=1

1

hXhY
K[2]

(x − Xi

hX
,

y − Yi

hY

)
.
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A bivariate kernel function can be obtained as

K[2]

(
x − Xi

hX
,

y − Yi

hY

)
= K1

(
x − Xi

hX

)
K2

(
y − Yi

hY

)

by using multiplicative kernel functions [2]. Using the same kernel functions K1 = K2 =
K , the kernel estimator of the bivariate probability density function for X and Y is

f̂(x, y) =
1

n

n∑

i=1

1

hXhY
K

(
x − Xi

hX

)
K

(
y − Yi

hY

)
.

This estimator was used to obtain the Nadaraya-Watson kernel estimator with fixed
bandwidth in Equation (1.4).

Using varying bandwidths instead of fixed bandwidths, Sain [6] gives the adaptive
multiplicative kernel estimator (in a d-dimensional space) of the multivariate density
function as

f̂U (x1, . . . , xd) =
1

n

n∑

i=1

1

h1i · · ·hdi

[
d∏

j=1

K

{
xj − Xij

h(Xij)

}]

for variables x1, . . . , xd with n observations. Thus, the adaptive multiplicative kernel
estimator of the bivariate density function is obtained as

(2.3) f̂U (x, y) =
1

n

n∑

i=1

1

h(Xi)h(Yi)
K

{
x − Xi

h(Xi)

}
K

{
y − Yi

h(Yi)

}
.

3. Adaptive Nadaraya-Watson kernel estimators

Here, we use the estimators f̂U (x) and f̂U (x, y) of the density function to estimate the

regression function in Equation (1.1). Plugging f̂U (x) and f̂U (x, y) into the numerator
and denominator of Equation (1.1), we obtain the adaptive Nadaraya-Watson (NWU)
kernel estimator with varying bandwidths as follows (for the proof see the appendix):

(3.1)

m̂NWU (x) =

∫
yf̂U (x, y)

f̂U (x)
dy

=

∑n
i=1

Yi

λi
K

(
x−Xi

λih

)

∑n
i=1

1
λi

K
(

x−Xi

λih

) .

The local bandwidth factors λi in Equation (3.1) can be determined by using the same
three-stage algorithm given by Silverman to obtain the adaptive estimation of the density
function. In practice, Abramson [1] and Silverman [7] propose that taking α equal to 0.5
leads to good results.

In addition, we want to see how using arithmetic mean instead of the geometric
mean when computing the local bandwidths λi affects the performance of the adap-
tive Nadaraya-Watson kernel estimations. This is only for intuitive reasons. Thus, the
modified local bandwidth factor λ∗

i is obtained as

(3.2) λ∗
i =

{
f̃(Xi)/a

}−α

,

where a =
∑

i=1 f̃(Xi)/n. Using the λ∗
i in Equation (3.2), the modified adaptive

Nadaraya-Watson (NWUA) kernel estimator can be written as

m̂NWUA(x) =

∑n
i=1

Yi

λ∗
i
K

(
x−Xi

λ∗
i

h

)

∑n
i=1

1
λ∗

i

K
(

x−Xi

λ∗
i

h

) .
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For comparing the performances of the Nadaraya-Watson and adaptive Nadaraya-Watson
estimators, firstly we have tried to find the theoretical mean square errors of the esti-
mators. But we could not obtain these due to mathematical difficulties. Therefore we
focused on a simulation study. The results of the simulation study, whose aim is to
compare the adaptive kernel Nadaraya-Watson NWU and the modified adaptive kernel
Nadaraya-Watson NWUA will be given in next section.

4. Simulation results

A simulation study was conducted to compare the performances of the estimators with
the classical Nadaraya-Watson estimators. For the simulation, we used the regression
function given by Hardle [2] as

(4.1) Yi = 1 − Xi + e{−200(Xi−0.5)2} + εi,

where the Xi were drawn from a uniform distribution based on the interval [0, 1]. The
εi have a normal distribution with 0 mean and 0.1 variance. In this way, we generated
samples of size 25, 100, 250 and 500. The fixed bandwidth h was computed using the
cross-validation method with w(Xi) = 1. The NW, NWU and NWUA kernel estimations
were computed using the Epanechnikov and Gaussian kernel functions. The number of
simulation repetitions for each estimation was 1000. The graphs of the real regression
function and the estimations of the regression functions computed over a sample of 100
are illustrated in Figure 1 and Figure 2.

Figure 1. The regression curves of the kernel estimations using the

Epanechnikov kernel for h = 0.171
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Figure 2. The regression curves of the kernel estimations using the

Gaussian kernel for h = 0.084
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For each sample, we computed the values of the mean square errors (MSE) related to the
kernel estimations NW, NWU and NWUA. Finally we obtained an integrated MSE over
the 1000 sample. The IMSE values of the kernel estimators which are obtained using the
Epanechnikov and Gaussian kernel functions are given in Table 1.

Table 1. IMSE values of the estimations for the Epanechnikov kernel

n NW NWU NWUA

25 179.16 175.60 173.39∗
100 76.14 74.57 74.12∗
250 39.98 39.29 39.19∗
500 21.20 20.92 20.88∗

∗Minimum IMSE in each row.

Table 2. IMSE values of the estimations for the Gaussian kernel

n NW NWU NWUA

25 187.59 186.02 184.00∗
100 74.91 73.54 73.10∗
250 38.30 37.64 37.57∗
500 20.87 20.61 20.58∗

∗Minimum IMSE in each row.
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As seen from Table 1 and Table 2, for all sample sizes, the kernel estimators NWU
and NWUA using varying bandwidths for the Epanechnikov and Gaussian kernels have
smaller IMSE values than the NW kernel estimator with fixed bandwidth. In each case,
it is seen that NWUA has the best performance.

In addition, comparing Table 1 and Table 2, in the case of a small sample size (n =
25), we see that the kernel estimations NW, NWU and NWUA computed using the
Epanechnikov kernel function show a better performance than the estimations computed
using the Gaussian kernel function.

5. A real data example

We apply the classical and adaptive Nadaraya-Watson kernel regression estimators de-
scribed above to economics data coming from the Central Bank of the Republic of Turkey
(http://tcmbf40.tcmb.gov.tr/cbt.html). We have 215 observation pairs (the monthly
data between January 1989 and November 2006). The independent variable X is the
effective exchange rate index (real; 1995 = 100). The dependent variable Y is total
exports ($ Millions; Foreign Trade International Standard Industry Categorization-ISIC
REVISE 3).

Figure 3 and Figure 4 show the regression curves of the computed Nadaraya-Watson
kernel estimations with the Epanechnikov and Gaussian kernel functions respectively.

Figure 3. The regression curves of the kernel estimations with the

Epanechnikov kernel function for the real dataset and h = 2.82
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Figure 4. The regression curves of the kernel estimations with the Gaussian

kernel function for the real dataset and h = 1.47
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As seen from Figure 3 and Figure 4, the adaptive kernel estimations differ from the
kernel estimations with fixed bandwidths especially in regions where the data points are
sparsely located.

6. Conclusion

In this paper, we have studied the adaptive Nadaraya-Watson kernel estimators when
used to estimate a regression function.

The results of the simulation study, which was performed to evaluate the performances
of the kernel estimators considered, showed that the adaptive Nadaraya-Watson kernel re-
gression estimators with varying bandwidths provide better estimates than the Nadaraya-
Watson estimator with fixed bandwidth. In particular, the adaptive Nadaraya-Watson
kernel regression estimator in which the bandwidths are obtained using the arithmetic
mean instead of the geometric mean, leads to a better performance. Finally, the adaptive
Nadaraya-Watson kernel regression estimators are preferable for estimating a regression
function non-parametrically.

7. Appendix

The formula for the adaptive Nadaraya-Watson kernel regression estimator is obtained
as follows:
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m̂NWU (x) =

∫
yf̂U (x, y)

f̂U (x)
dy

=
1

f̂U (x)

∫
y f̂U (x, y) dy

=
1

f̂U (x)

∫
y

1

n

n∑

i=1

1

h(Xi)h(Yi)
K

(
x − Xi

h(Xi)

)
K

(
y − Yi

h(Yi)

)
dy

=
1

f̂U (x)

n∑

i=1

1

nh(Xi)
K

(
x − Xi

h(Xi)

) ∫
y

h(Yi)
K

(
y − Yi

h(Yi)

)
dy.

Using the variable transformation
(
y − Yi)/h(Yi

)
= t, we get

m̂NWU (x) =
1

f̂U (x)

n∑

i=1

1

nh(Xi)
K

(
x − Xi

h(Xi)

) ∫ [
h(Yi) t + Yi

]
K(t) dt

=
1

f̂U (x)

n∑

i=1

1

nh(Xi)
K

(
x − Xi

h(Xi)

) [
h(Yi)

∫
t K(t) dt + Yi

∫
K(t) dt

]
.

Using Equation (2.1) and Assumptions A1, A2, we get the next formula as

m̂NWU (x) =

∑n
i=1

Yi

nh(Xi)
K

(
x−Xi

h(Xi)

)

f̂U (x)

=

∑n
i=1

Yi

nh(Xi)
K

(
x−Xi

h(Xi)

)

1
n

∑n
i=1

1
h(Xi)

K
(

x−Xi

h(Xi)

)

Taking h(Xi) = λih, we obtain the adaptive Nadaraya-Watson kernel regression estima-
tor as

m̂NWU (x) =

∑n
i=1

Yi

λi
K

(
x−Xi

λih

)

∑n
i=1

1
λi

K
(

x−Xi

λih

) .
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