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a b s t r a c t

We report on our theoretical investigation considering the widths of quantized Hall plateaus (QHPs)

depending on the density asymmetry induced by the large current within the out-of-linear response

regime. We solve the Schrödinger equation within the Hartree type mean field approximation using

Thomas–Fermi–Poisson nonlinear screening theory. We observe that the two-dimensional electron

system splits into compressible and incompressible regions for certain magnetic field intervals, where

the Hall resistance is quantized and the longitudinal resistance vanishes, if an external current is

imposed. We found that the strong current imposed induces an asymmetry on the widths of the

incompressible strips (ISs) depending linearly on the current intensity and can be balanced by an

inhomogeneous donor distribution.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The integer quantized Hall effect (IQHE) [1] continuous to hold
interest, where edge-states become an important ingredient at
narrow devices such as particle interferometers [2,3] and gate
defined Hall bars [4,5]. The early attempts to explain the IQHE, like
the bulk [6] or the edge [7,8] pictures, considers electron–electron
interactions to be irrelevant and attributes the effect either to
disorder or to the bending of the confinement potentials,
respectively. These theories dictate that the widths of the
quantized Hall plateaus (QHPs) depend on the electron density,
mobility, temperature and the amplitude of the applied current.
However, the direction of the applied current is not considered to
be influencing the QHP widths. The inclusion of the (direct)
Coulomb interaction numerically [9,10] or analytically [11]
enriches the physics. The utilization of the local Ohm’s law [12]
together with the self-consistent numerical calculations allowed
Gerhardts and his co-workers to calculate the QHPs and also the
transition between the plateaus [10], within the linear response
regime. A further investigation considering the out-of-linear
response regime showed that the widths of current carrying
edge-states linearly depend on the current intensity based on the
electron–electron interactions [12,13]. Here, we obtain the widths
of the ISs from a model which is purely based on the electron–
electron interactions, supported by the local Ohm’s law [10]. We
ll rights reserved.

.

solve the Schrödinger and the Poisson equations self-consistently
within the Thomas–Fermi approximation [14], which implicitly
assumes that the potential landscape varies slowly on the quantum
mechanical length scales. We start from a homogeneous donor
distribution (in Fig. 1a depicted with light (red) line) to calculate
the confinement potential (Fig. 1b), which we use as an initial
condition for our iterative numerical technique. We then consider
an inhomogeneous distribution of the donors to obtain different
potential slopes at the two edges of the sample (in Fig. 1a depicted
with thick (black) line). Background potentials gene-
rated by the donor distributions are shown in Fig. 1b with the
same line (color) code. As shown later, by doing so we directly
change the widths of the incompressible strips (ISs) resulting from
the screening. The self-consistent model, predicts that the widths
of the ISs will also be modified by the imposed current, namely by
the amplitude [16]. If a DC current is passed in the þy direction,
due to the tilting of the Landau levels, the IS at the right hand side
(RHS) enlarges, whereas, the IS on the left hand side (LHS) shrinks.
Fig. 2a depicts such a situation under current bias. Now if we start
with a narrow IS on the LHS, it is possible to achieve equi-width ISs
on both sides, by applying a certain imposed current, Fig. 2b. As a
result, one concludes that the widths of the QHPs also should
depend on the applied current direction [16]. To summarize, by our
self-consistent calculations we show that, the widths of the QHPs
also depend on the current direction, which is in strong contrast to
the conventional approaches.

The calculation scheme starts by determining the boundary
conditions to describe the electronic system at hand: First,
we assume a translation invariance in the current direction,
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Fig. 1. (a) The cross section of the donor layer as a function of lateral (normalized)

coordinate u¼ x=d, where 2d is the sample width, for two values of steepness

parameters c1 on the left side and c2 on the right side (see definition below). The

red line represents a constant donor distribution. (b) The corresponding

confinement potentials. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Fig. 2. The electron density as a function of lateral coordinate normalized with the

sample width (a), for three selected current amplitudes (UH). Insets depict the

regions, where incompressible strips reside. It is clearly seen that the IS at LHS

becomes narrower by increasing UH, and opposite for the RHS. The widths of the

ISs as a function of UH, when applying a positive current one can obtain equi-

width ISs on both edges, regardless of the donor in homogeneity (b).
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i.e. y�, hence the electrostatic potential (therefore the y

component of the electric field is also constant, E0
y), second we

consider a lateral confinement in x direction generated by a donor
distribution n0ðxÞ limited by top-side gates, which imposes the
boundary conditions Vð�dÞ ¼ VðdÞ ¼ 0, where 2d is the sample
width. The analytical solution to the Poisson equation considering
the above boundary conditions reads to the kernel

Kðx; x0Þ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2�x2Þðd2�x02Þ

p
þd2�x0x

ðx�x0Þd
j:

����� ð1Þ

The confinement potential is obtained by the following
integration for a given n0ðxÞ:

VbgðxÞ ¼
2e2

k

Z þd

�d
dx0n0ðx

0ÞKðx; x0Þ; ð2Þ

where e is the electronic charge, k an average dielectric constant
and yields to

VbgðxÞ ¼�E0
bg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx=dÞ2

q
; E0

bg ¼ 2pe2n0d=k ð3Þ

given that the donors are homogeneously distributed. However,
as will be discussed later, we also consider an inhomogeneous
donor distribution to create an asymmetric lateral confinement by
considering a donor distribution described as

n0ðxÞ ¼

�
ðuþc1Þ

2

ðc1�1Þ2
þ1; �1ruoc1

1; c1ruoc2

�
ðu�c1Þ

2

ðc1�1Þ2
þ1; c2ruo1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

with the normalized coordinate u¼ x=d. By doing so we can
controllably break the lateral confinement symmetry by setting c1

and c2 (almost) arbitrarily. Fig. 1a presents a situation considering
a homogeneous donor distribution (i.e. �c1 ¼ c2 ¼ 1) and also a
case where left side is more confining than the right side. Note
that the donor number density is kept constant, that is the area
below the donor distribution curves are equal. The resulting
confinement potentials are shown in Fig. 1b, one can readily see
that the asymmetric donor distribution leads a steeper bending
on the left hand side (black line). The corresponding electron
distribution in the absence of magnetic field B and vanishing
temperature T is obtained from

nelðxÞ ¼D0YðVbgðxÞ�EF Þ; ð4Þ

where D0 is a constant that corresponds to the two-dimensional
density of states (DOS) in the absence of an applied B field and
EF is the Fermi energy fixed by the charge neutrality of the
system. The next step is to calculate the interaction potential
(energy) from

VHðxÞ ¼
2e2

k

Z þd

�d
dx0nelðx

0ÞKðx; x0Þ: ð5Þ

At finite temperatures the electron density is calculated from

nelðxÞ ¼

Z
dE DðEÞf ðE;m; kT;VðxÞÞ; ð6Þ

where DðEÞ is the relevant DOS, f ðeÞ is the Fermi occupation
function and m is the electrochemical potential. Now by solving
the total potential and the electron distribution iteratively, one
can obtain the electrostatic quantities at equilibrium.

Once these quantities are known, it is required to have a
prescription which relates the electron density to the local
conductivities [10] considering a fixed imposed current I, in our
work we take this prescription from the self-consistent Born
approximation [17]. At a first approximation one can neglect the
effect of the imposed current on the electrostatic quantities
(namely, the linear response) and the current distribution can be
obtained simply by applying Ohm’s law locally [12]. Ohm’s law
states that the (local) potential drop is proportional to the local
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current times the local resistance (resistivity at 2D, with square
normalization), i.e. one searches for drops at the self-consistently
calculated potential. As an oversimplified picture, now we relate
the screening properties of the electron gas in the presence of B

field with the potential drop. Since the magnetic field Landau
quantizes the system, there are two possibilities when consider-
ing the pinning of the Fermi energy to the Landau levels: (1) the EF

is equal to one of the Landau level, the compressible state, hence
the DOS is high, and the system behaves like a metal. Therefore, as
in all metals, the potential is constant, drift velocity vanishes and
no current can flow with in these regions; (2) the EF is not equal
to the Landau energy the system is at the incompressible state

and the self-consistent potential varies, finite velocity, hence the
applied current flows from these regions. In Fig. 2a the calcula-
ted electron densities (in fact the filling factor, defined as
nðxÞ ¼ 2pl2nelðxÞ, with the magnetic length l¼

ffiffiffiffiffiffiffiffiffiffiffiffi
‘ =eB

p
) are shown

considering an asymmetric donor distribution by setting c1 ¼�1
and c2 ¼ 0:7. The ISs are formed at both sides where the potential
drops and density is constant when considering three character-
istic current biasses, UH , measured in units of cyclotron energy
ðOc). Within these ISs backscattering is suppressed, therefore
current is confined in these regions, hence any effect that
influences the widths of the ISs will effect the current and
potential distribution. It was shown that, if there exists an IS
somewhere in the sample the system is in a QHP [15]. The ISs are
highlighted at the insets, we see that at higher current densities
the left ISs starts to shrink, whereas the right ISs becomes wider.
The IS width dependency on the current amplitude is shown in
Fig. 2b. It is seen that the donor distribution asymmetry induced
large IS at the left side (red line) starts to shrink when increasing
the bias and its width becomes equal to the width of the right IS
(black line) at UH ¼ 0:43. The effect of large bias current (out-of-
linear response) implies that the formation of ISs strongly
depends on the current amplitude, hence the QHPs also depends
on the polarization of the current. This can be seen by considering
the slope of the Hall potential, say if the DC current is positive the
Hall potential has a positive slope or vice versa. Now consider a
potential drop at the IS which has a positive slope, the Hall
potential will enlarge the IS on the right hand side. In the opposite
situation the left IS is enhanced. Therefore depending on the
current polarization one of the ISs will become leaky at a lower B,
hence the quantized Hall effect is smeared [16]. A detailed
investigation of the current polarization on the quantized Hall
plateaus is discussed in Ref. [16].
2. Conclusion

For the high mobility, narrow and asymmetric samples we
predict that, the large current either enlarges or shrinks the QHPs
depending on whether the asymmetry induced by the current and
the asymmetry caused by the edge profile coincides or not. Based
on our findings, we proposed a sample structure where the effect
of the current induced asymmetry and thereby the rectification
of the QHPs can be controllably measured. As a final remark, at
the edge IQHE regime, due to the heating effects we expect an
enhanced rectification.
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