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In this work, the edge physics of an Aharonov–Bohm interferometer (ABI) defined on a two dimensional

electron gas, subject to strong perpendicular magnetic field B, is investigated. We solve the three

dimensional Poisson equation using numerical techniques starting from the crystal growth parameters

and surface image of the sample. The potential profiles of etched and gate defined geometries are

compared and it is found that the etching yields a steeper landscape. The spatial distribution of the

incompressible strips is investigated as a function of the gate voltage and applied magnetic field, where

the imposed current is confined to. AB interference is investigated due to scattering processes between

two incompressible ‘‘edge-states’’.

& 2009 Elsevier B.V. All rights reserved.
The recent increasing interest towards the quantum Hall based
interferometers relies on the popularity of the quantum informa-
tion processing. The realization of electron and quasi-particle
interference experiments became a paradigm [1,2]. The well
established experimental wisdom is that, to realize ‘‘clean’’
measurements are extremely difficult, which strongly depends
on the sample geometry, crystal growth, etc. In typical AB
interference experiments two propagating states are brought to
close vicinity, by the help of gates [1]. The edge states form a
closed (or almost closed) path, which enclosures certain amount
of magnetic flux. By changing the magnetic field or the area of the
closed path, one infers the phase of the particles. The conventional
edge picture is used to explain the observed AB oscillations [3],
however, the actual distribution of the edge-states is still not
known for realistic samples, although, several powerful techni-
ques are used [4]. At the recent experiments of Camino et al [2],
show that the conventional AB theories, which neglect electron–
electron interactions, are unable to explain the periodicity of the
oscillations. The recent model of Igor Zozoulenko [4] could provide
a reasonable explanation for the unexpected behavior, stating
‘‘standard transport models’’ fail to understand the underlying
physics. However, the model geometry considered in their work is
quite different from the actual experimental setup. Here, we
provide an explicit calculation scheme to obtain the density and
potential profiles of an AB interferometer in the absence of an
external magnetic field and also under quantized Hall conditions.
ll rights reserved.

icek).
Our calculation is based on solving the Poisson equation in 3D,
starting from the crystal growth parameters and the lithographi-
cally defined surface patterns. A fourth order nearest neighbor
approximation is used on a square grid with open boundary
conditions and 3D fast Fourier transformation method is used to
obtain the solution iteratively [5,6]. The outcome, i.e. the potential
and electron density distributions, of this calculation is used as an
initial condition for the magnetic field dependent calculations. The
distinguishing part of our calculation is that we do not assume
only gate defined structures but we can also handle etching
defined geometries, which essentially is the case for the experi-
ments. We show that, the etching defined samples present a
sharper potential profile [6], therefore, the formation of the edge-
states are strongly influenced. This, obviously, effects the edge
physics in determining the AB oscillations.

The simple description of an ABI, is such: let us assume a
closed path, a circle for simplicity, subject to a perpendicular
magnetic field with an area of pr2 where r is the radius. Since the
wave function travelling from one side should be the same as
the one travelling from the other side, the phase difference of the
wave functions can be only integer multiples of the magnetic flux
quanta F0 ¼ h=e encircled. In other words, for a given flux F every
spin resolved cyclotron orbit should satisfy the condition
F¼ BSm ¼mF0, where m is the quantum number of the orbit.
Therefore, an orbit with a radius of magnetic length l¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffi
‘ =eB

p
Þ

will have an area Sm ¼ 2pml2, resulting in Smþ1�Sm ¼ h=eB. It is
common to define the occupation of these orbits by n¼ nelh=eB,
where nel is the number of the electrons and this occupation is
called the filling factor. This picture also holds for non-interacting
electrons which are confined by an external potential VextðrÞ,
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which lifts the degeneracy. In the experiments considered
here, it was shown that the number of electrons is fixed
(nel ¼ 1700�2000, varying with the sample size) in the ‘‘island’’,
which means that it is energetically almost impossible to add or
subtract an electron from the quantum dot region. If one keeps
the electron density fixed and decreases the B field by a factor of
two, the filling factor increases by a factor of two, which implies
that they are enclosed by n¼ 1, is now half.

Here, we only consider the ABI experiments conducted at the
integer quantize Hall regime, i.e. n¼ nel=nB ¼ k and k¼ 1;2;3; . . .
[1] and the results reported in Ref. [2] at the integer regime. The
first work concentrates the AB oscillations observed only at the
n¼ 1 plateau. In the above mentioned experiments, the magnetic
field B and the front gate VFG dependency of the AB period is
investigated and the results are discussed in terms of the Gelfand
and Halperin (GH) [7] and Chklovskii, Shklovskii and Glazman
(CSG) [3] edge models. A hybrid formula is then used to describe
the actual electron density distribution non-self-consistently.
Procedure is as follows: The GH model describes (almost)
properly the etched edge density profile and CSG model provides
a VFG dependency. Therefore, the density distribution without
gates is taken from the GH model and its evolution depending on
the front gate bias is described by the CSG model. It is argued that,
this hybrid model is in agreement with the experiments with a
difference of 13% when comparing the surface area change DSm of
a single edge-channel at the gap m as a function of VFG. Such a
relatively small difference, at a first glance, looks impressive.
However, in the second report [2], where the results at n¼ 2 is
also shown, it was stated that if the radius of the outer ring
remains unchanged the AB oscillations can be explained.

Our investigation is based on the calculation of the electron
density and screened potential self-consistently within the
Thomas–Fermi approximation (TFA) [6]. We consider spinless
electrons in the high B regime, consequently the effective
Hamiltonian reads,

Heff ¼H0þVextðx; yÞþVintðx; yÞ: ð1Þ
Fig. 1. (a) and (c) considers only the gated sample, whereas (b) and (d) is for both etc

sample and the corresponding electron densities are shown in (c) and (d). We set the

pinning) for both situations. Potential distribution of the gated sample presents smooth

sharp. Hence the electron density at the island center is higher in (d) compared to (c), i

field.
Here H0 is the kinetic part, Vextðx; yÞ and Vintðx; yÞ are the external
and interaction potentials, respectively. The external potential is
obtained by the above mentioned 3D calculations considering the
real experimental structure, whereas the interaction potential
(Hartree potential) is calculated for a given density, boundary
conditions and gate pattern by solving the Poisson equation

Vintðx; yÞ ¼
2e2

k

Z
Kðx; y; x0; y0Þnelðx

0; y0Þdx0 dy0; ð2Þ

where k is the dielectric constant (¼ 12:4 for GaAs). The Kernel
Kðx; y; x0; y0Þ is the solution of the Poisson equation preserving the
periodic boundary conditions. Spatial distribution of the electron
density is obtained within the TFA via,

nelðx; yÞ ¼

Z
dEDðEÞf ðEþVðx; yÞ�m�Þ; ð3Þ

where DðEÞ is the relevant (collision broadened) density of states,
f ðE;m�; TÞ determines the particle statistics (Fermi function) and
m� is the electrochemical potential. The total potential
Vðx; yÞ ¼ Vintðx; yÞþVextðx; yÞ and Eq. (3) are calculated self-consis-
tently to obtain the electron and potential distributions at finite B

and T. We compare the results of the gate and trench gate defined
samples. We show the potential profiles and electron distribu-
tions both of these samples in Fig. 1, the upper panels illustrate
the potential profiles and it is seen that the trench gate defined
sample has a sharper profile. Fig. 1 c and d represent the electron
densities with gray scale, calculated for two different definitions.
These results are obtained at B¼ 0 and T ¼ 0 as an initial condition
for our non-zero magnetic field calculation. The maxima of the
electron density at the center of the q-dot matches perfectly
(o%1) with the experimental value when considering the trench
gated numerical simulation. Next we calculate the potential and
electron density distribution at finite temperature and B field,
only considering the trench gated sample. The ‘‘incompressible’’
(IS) and ‘‘compressible’’ (CS) strips are defined as such: if the
Fermi energy (FE) lies between two consequent Landau Levels
(LLs), there are no available states at the FE and screening is poor,
hed and trench gated structure. (a) and (b) simulate the potential profiles of the

same gate voltage (�1:8 V, note that surface potential is �0:7 V due to mid-gap

characteristic, however, the potential profile of the trench gated structure is very

n the island center. All the figures are obtained at zero temperature and magnetic
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Fig. 2. Spatial distribution of the incompressible strips [(a) and (b)] and current

distribution [(c) and (d)] are shown at B¼ 7:8 T [(a) and (c)] and 8.6 T [(b) and (d)].

Blue highlight the ISs (n¼ 2) and shaded areas indicate the depleted regions in (a)

and (b). Blue arrows indicate the current distribution in (c) and (d). Fixed external

current is driven in x-direction where the 1D current density is set to be

�1:06� 10�4 A=m. Here we only consider the trench gated structure (140 nm

etched and VFG ¼�1:8 V). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The (screened) potential and the shift of the LWs for different magnetic fields.

Slope of the potential is small at higher magnetic field (a) compared to low B value.
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i.e. potential distribution varies, hence, the electron density is
constant. Within these strips the filling factor takes an (even)
integer value and region is called ‘‘incompressible’’. On the
contrary if the FE equals one of the highly degenerate LLs, the
region is called ‘‘compressible’’. There are many available states
and the electron density varies, hence screening is nearly perfect
and the total potential is approximately flat. In Fig. 2 we show the
spatial distribution of the ISs at two different magnetic field
values. Shaded areas indicate that the electrons on the 2DEG are
depleted perfectly. The side-surface electrons which exists on
the side surface due to etching, yield larger shaded regions than
the only gated model. Since the potential is sharper at trench-
gated defined samples the widths of the incompressible strips are
narrower compared to gated samples. When considering the B

field regime 2ono4 there is only a narrow interval where two
incompressible strips are close to each other Fig. 2 a, however, do
NOT merge Fig. 2 b. Fig. 2 c and d presents the corresponding
calculated current distribution utilizing the local Ohm’s law
[8,9,6]. We clearly observe that, the imposed fixed current is
confined within the incompressible regions, where backscattering
is absent. It is known that the current flowing from the
incompressible strips is divergent free, thus it is not possible to
inject current directly to these strips. Hence, without scattering
between two ‘‘edge channels’’ one would not be able to observe
any interference pattern. The scattering mechanism comes
from the impurities or the electric field at the boundary
between the ISs and compressible region [10], which we
implicitly include to our calculations when calculating the local
conductivity tensor elements using the findings of self-consistent
Born approximation [9]. We aim to investigate a situation where,
the spin-degenerate ground state Landau wave functions (LWs)
overlap at a certain spatial region where scattering matrix
elements become finite, hence we can observe the Aharonov–
Bohm interference (ABI). Since the screening is merely poor within
the ISs, the total potential exhibits a variation where the electron
density is constant [11]. Therefore an electric field develops within
this regions if we have a slope on the potential profile, that can be
computed from Ex ¼ ð1=eÞ@VðxÞ=@x. Using this equation and
considering the calculated total potential profile on can obtain
the spatial shift, Xe, of the center coordinates X0 of the LWs from

Xe ¼ X0�
eEx

ðmw2
c Þ
; ð4Þ

note that the LWs remain unaffected (i.e a Gaussian centered at
X0) in the compressible regions, since the potential is (almost)
constant. Now, if the ISs are large and sufficiently far apart, no
scattering processes can take place hence no interference can be
observed. Such a case is shown in Fig. 3a. Whereas, if the two
incompressible edge states are close enough to each other and Ex

is large and LWs overlap, i.e. scattering takes place. This is shown
in Fig. 3 b. If we apply a high magnetic field ISs become broaden
contrarily Ex take small values so the shift of the center coordinate
is negligible and as a result no overlap occurs. Since the widths of
the incompressible strips are related to the pattern geometry and
crystal growth parameters, the observation of AB interference
patterns are extremely fragile. For such experiments, one should
design the sample geometry and choose the magnetic field
interval keeping in mind that the formation and the spatial
distribution of the incompressible strips are important. The
calculation of the actual scattering matrix elements for the real
structures considering self-consistently calculated wave functions
is beyond the scope of the present paper. However, we have
drawn the calculation scheme. To summarize: We have calculated
self-consistently the electron and potential distribution
considering the experimental sample geometry and material
properties. It is shown from the 3D calculations that, the trench
gated structure can be simulated in a fairly good agreement (with
%1 error). In the second part of our work we have also considered
the interference conditions depending on the magnetic field value
and observed that the scattering from one edge to the other is only
possible if the two incompressible strips are close enough, i.e. at
the order of magnetic length. If the two ‘‘edge states’’ merge no
partition takes place, hence interference pattern is smeared.
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