
July 2009

EPL, 87 (2009) 17008 www.epljournal.org

doi: 10.1209/0295-5075/87/17008

Current-direction–induced rectification effect on (integer)
quantized Hall plateaus

A. Siddiki
(a)

Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience,
Ludwig-Maximilans-Universität - Theresienstrasse 37, 80333 Munich, Germany, EU and
Physics Department, Faculty of Arts and Sciences - 48170-Kötekli, Mug̃la, Turkey
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Abstract – Current distribution across narrow Hall bars in out of linear response regime is studied
within a self-consistent Hartree-type mean-field approximation for samples which are equally and
unequally depleted laterally. The existence of the current-carrying incompressible strips and their
influence on magneto-transport properties are investigated. We predict that, the extent and the
presence of the quantized Hall plateaus strongly depend on the current direction, in the out
of linear response regime, when considering unequally depleted samples. Our magneto-transport
results are in contrast to the ones of the conventional theories of the integer quantized Hall effect.
We propose certain experimental conditions to test our theoretical predictions at high-mobility,
narrow samples.
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Surprisingly, open questions remain even nowadays in
the theory of the IQHE almost three decades after its
discovery [1]. When a two-dimensional electron system
(2DES) is subject to a strong perpendicular magnetic
B-field, the energy spectrum is (Landau) quantized. Due
to the gapped density of states (DOS), the measured
longitudinal and Hall resistances, RL and RH , respec-
tively, present anomalies if the electron density (nel) is an
integer multiple of the quantized magnetic flux density
(nφ), such that RL = 0 and Hall resistance becomes quan-

tized, i.e. RH =
e2

νh
, where filling factor ν(= nel/nφ) is an

integer, e is the electron charge and h is Planck’s constant.
The IQHE is discussed usually within the bulk [2,3] and
the edge [4–6] pictures, which are complementary to each
other in describing different experimental results. The
bulk picture considers an infinite 2DES within a single-
particle approximation and utilizes localization, induced
by the disorder, to obtain the essential features of the
QHE. However, fails to explain the high reproducibility of
the quantized Hall plateaus and to provide computational
methods to calculate the magneto-resistance, under
experimental conditions. The edge picture relays on
the fact that the confining potential bends the Landau
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levels upwards near the edges of the sample and the
edge channels are formed at the Fermi level EF . The
single-particle noninteracting edge theory is known as
the Landauer-Büttiker formalism, where the channels are
1D and transport is ballistic, which utilizes the Landauer
formalism developed to describe electronic transport at
low dimensions without magnetic field and generalizes it
in the presence of a perpendicular B-field. The Chklovskii
picture is an extension of the Landauer-Büttiker theory
including interactions in an a priori manner, where the
edge channels are no longer 1D and QHE is explained due
to the absence of backscattering. Both edge approaches
also need localization assumptions to provide realistic
magneto-resistance results. The spatial distribution of
the externally imposed current, far from the contacts, is
discussed within the formation of compressible [4,6] or in
the incompressible [7–10] edge states, which are formed as
a direct consequence of Landau quantization and Coulomb
interaction. In short, if the Fermi level is pinned locally one
of the Landau levels (LLs), due to high DOS, the system
behaves like a metal and is called compressible. Otherwise,
Fermi level falls in between two consecutive LLs, the
system is incompressible pointing that screening is poor.
The local probe experiments provide a strong evi-

dence suggesting that the current is carried by the
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incompressible strips (ISs) [11,12]. In particular, experi-
ments performed at the von Klitzing’s group a scanning
force microscope was used to measure the spatial distrib-
ution of the Hall potential across the 2DES as a function
of the B-field [11]. The observed dependence of the Hall
potential profiles on ν already suggests the dominant
role of the e− e interactions and the existence of ISs in
a finite B interval. The measured potential profiles were
categorized mainly into three types: type I (1.6< ν < 2,
out of quantized Hall plateau (QHP)), the potential varies
linearly in position similar to classical Hall effect, type II
(ν ≈ 2, high-field edge of the QHP) non-linear spatial
variation, suggesting that the current is confined into the
bulk and, type III (2.05< ν < 2.3, lower-field side of the
QHP), where the potential strongly varies at the edges
presenting clear drops, whereas, is constant at the bulk.
This sequence of I-II-III is repeated also for higher filling
factors, which we show the corresponding results of our
calculations in fig. 3.
The main features of the experimental observations

were explained within the self-consistent (SC) Thomas-
Fermi-Poisson theory of screening [13] plus the local
Ohm’s law [8], which are also the bases of the present
paper. However, the interrelation between the IQHE and
the potential profiles was left unresolved. In a subsequent
theoretical work [9] it was reported that the Thomas-Fermi
approximation (TFA), which surpasses the solution of the
Schrödinger equation by assuming the wave functions as
δ(x−X0) and replaces center coordinate X0-dependent
energy dispersion by the local potential plus Landau
energies, leads crucial discrepancies compared to the full
SC solution of the Schrödinger and Poisson equations.
The most prominent difference between these two approx-
imations is that, the TFA results in artificially narrow ISs
compared to the full solution, which is due neglecting the
finite extent of the wave functions. In other words, the
ISs narrower than the quantum mechanical length scales
are smeared out, not surprisingly while TFA becomes
questionable at these length scales. The non-existence of
the ISs at certain B intervals were reported before [14],
however, forgotten for many years. In ref. [9] the effect
of the finite extent of the wave functions on the ISs was
simulated by a spatial averaging of the local quantities
over quantum mechanical length scales such as the Fermi
wavelength λF or magnetic length l (=

√
�/eB). We

discuss the justification of this spatial averaging over
λF later, which enabled them to relax the strict local
approximation considering magneto-transport and to lift
the artifacts arising from the TFA. The main outcome of
this work was to show explicitly that, if there exists an IS
somewhere across the sample IQHE is measured, i.e. the
widths of the quantized Hall plateaus strongly depend
on the widths of the ISs. For a complete review of the
screening theory, we suggest the reader to check ref. [15].
It is worthwhile to emphasize that the predictions of
the screening theory about the nonsymmetric QHPs
with respect to the classical Hall resistance depending

on the mobility and sample width [16] are confirmed
experimentally [17,18].
In this work, we first present our geometry and the

related electrostatic problem in the presence of a strong
perpendicular magnetic field. Next, we investigate the
effect of a large current on the local electron density nel(x)
within the local Ohm’s law, where the DOS D(E) and the
magneto-transport coefficients are obtained from the SC
Born approximation [19]. The current density j(r), nel(x)
and magneto-resistances are calculated and compared in
the out of linear response regime for equally (generic) and
unequally depleted samples, far from the source and drain
contacts. At unequally depleted samples, the potential
profile is steeper at narrow depleted side (here left),
compared to the wider depleted side (right). Therefore,
the electron density becomes nonsymmetric with respect
to the center of the sample, hence the distribution of the
ISs. We show that the IS at the steep edge is narrower than
the one at the smoother edge. The effect of nonsymmetric
density distribution on measured quantities (RH and RL)
is utilized as an experimental test. We observe that QHPs
are enhanced imposing a certain current direction and
shrinks at the other direction. Such a rectification effect
is counter intuitive considering the conventional theories
of QHE, both bulk and the edge, since the extend of the
QHPs mainly depend on the mobility at fixed temperature
and current amplitude, not its direction.
Here we follow the path of ref. [9] in describing our

2DES implementing the historical Chklovskii geometry [6],
i.e. a translation invariance in y-(current) direction with
two in-plane side gates. However, different boundary
conditions [20] and system geometries [21] can be used
and are shown to lead similar electrostatic results. The
donor density n0 is assumed to be homogeneous residing
together with the electron layer on the z = 0 plane. The
2DES is depleted from the edges by applying VL and VR
to the metallic gates on sides. In the screening theory
of the IQHE, the Coulomb interaction is included to
a spinless single-particle Hamiltonian, within a Hartree-
type approximation, via adding an effective mean-field
potential (energy) given by

VH(x) =
2e2

κ

∫ d
−d
nel(t)K(x, t)dt, (1)

where κ is an average dielectric constant (= 12.4 for
GaAs) at the interface of the 2DES and the kernel
K(x, t) preserves the boundary conditions V (−d) = VL
and V (d) = VR for the above described model. The total
potential energy is then

V (x) = Vbg(x)+VG(x)+VH(x), (2)

where Vbg(x) is the background potential generated by the
donors and VG(x) by the gates for a sample width of 2d.
To calculate the Hartree potential, one needs the electron
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density distribution, which is given within TFA by

nel(x) =

∫
dED(E)

[
e
(E−µ∗(x))
kBT +1

]−1
, (3)

where kB is the Boltzmann constant, T the temper-
ature, µ∗(x) = µ∗eq−V (x) the electrochemical potential
and µ∗eq the chemical potential at equilibrium. We define
the widths of the broadened LLs Γ from the mobility-
dependent short-range scattering [9,19]. The SC scheme
is closed by eqs. (2) and (3) provided that the left and
right depletion lengths, bl and br, are given. The numeri-
cal task is now to solve these equations by iteration until
the electron density distribution remains unchanged up
to a numerical accuracy of 10−8. Next, the local current
density j(r) is calculated assuming a fixed current in the

y-direction I =
∫ d
−d jy(x, y)dx via (local) Ohm’s law

∇µ∗(r)/e≡E(r) = ρ̂(r)j(r), (4)

provided that the resistivity tensor ρ̂(r) is known through
the DOS [8,9] and assuming a stationary state using the
local electric field E(r) obtained in the previous step.
The translation invariance is utilized together with the
equation of continuity ∇ · j(r) = 0 and ∇×E(r) = 0 to
obtain

jx ≡ 0, Ey(x)≡E0y ,
jy(x) =E

0
y/ρL(x), Ex(x) =E

0
yρH(x)/ρL(x),

(5)

where ρL(x) and ρH(x) are the diagonal and off-
diagonal entries of the resistivity tensor, respectively,
and the constant electric field in the y-direction

E0y = I.
[∫ d
−d

dx
ρL(x)

]−1
. Then µ∗(x) is obtained from

eq. (4) by integration, up to a constant which is fixed
by nel. The numerical scheme is initialized with nel(x)
calculated without current, afterwards calculate the
current distribution for a given fixed I. Next, we obtain
µ∗(x) such that nel is kept constant and start the new
iteration from the newly calculated nel(x). This procedure
is continued until convergence is obtained. Here, we apply
the above described scheme to an unequally depleted gate
defined sample. Likewise in ref. [9], we perform a spatial
averaging over λF (∼ 33 nm) to simulate the effects of
the finite extend of the wave functions, which also lifts
the strict locality of the Ohm’s law. Recent analytical
calculations including higher order contributions to the
local conductivity tensor [22] provide a firm ground to
make such an averaging in our theory. At this point
we clarify our assumptions about the injection and
probe contacts. It is well known that the current within
the ISs is divergent free [16] and the current cannot be
injected directly to them, therefore, the current is first
injected to the compressible regions from the (injection)
contacts. Since there is an electrostatic field parallel to the
boundary between compressible and incompressible strip,
there will be a Hall current crossing this boundary due to

the change in Hall conductivity across the boundary then
imposed current is confined to the ISs. Similarly, impu-
rity scattering may play a role with a less pronounced
importance, which is included implicitly when calculating
the conductivity tensor elements from the SC Born
approximation. The explicit treatment of the contacts
is a formidable task [23] and is beyond the scope of the
present paper. Since we perform our calculations suffi-
ciently faraway from the source and drain contacts hence
can avoid such a complicated treatment. Considering the
probe contacts, one measures the difference of the electro-
chemical potential on the two edges of the Hall bar. In our
scheme, we start with a constant (position-independent)
electrochemical potential in equilibrium and by solving
the self-consistent set of equations considering electrostat-
ics and local Ohm’s law, and obtain a position-dependent
electrochemical potential, which results in a difference
between the two edges of the Hall bar. Another important
assumption of our model is to perform an spatial averag-
ing over λF, the full Hartree calculations explicitly show
that if the width of the IS becomes comparable with the
extend of the wave function, i.e. ∼√2l, the IS vanishes.
Moreover, due to scattering the overlap of the wave func-
tions become large and the IS becomes “leaky” even on
these length scales. For a comparison at 5T the extend of
the wave function is ∼20 nm, which is at the same order as
λF ∼ 25–35 nm for typical samples. Also note that, we are
dealing with a thermodynamic ensemble, i.e. we utilize the
Fermi-Dirac distribution, which makes sense only if there
are sufficient number of particles within the considered
spatial region. This also sets a constriction on the length
scales related to the mean particle distance, i.e. Fermi
wavelength, where one can perform reliable calculations.
It is known that the large current, i.e. out of linear

response regime, induces an asymmetry on the widths of
the ISs [8,10], which is also observed experimentally [24].
This due to the tilting of the LLs as a result of self-
consistency, i.e. adding the Hall potential to the total
potential and recalculating the electron density. The slope
of the Hall potential is determined by the current direction
and its amplitude, thereby the tilting angle of the LLs.
To avoid any confusion we use the word asymmetric to
denote the effect of imposed current and nonsymmetric
for the effect of unequal depletion on the density or IS
distributions. Our aim is, first to present this current-
induced asymmetry calculated for an equally (and widely)
depleted sample from both edges. Next using the side
gates, we deplete the sample unequally such that the
potential on the right hand side (RHS) is smoother than
that of the left hand side (LHS). Hence, the IS on RHS
is larger even without any current-induced effect. Finally,
we apply large negative (−) and positive (+) DC currents
to the system and investigate its effect on the density
distribution and the widths of the QHPs.
In our calculations, the current amplitude is sufficiently

large being in the out of linear response regime (I ∼ 3µA).
As a consequence of a (+) bias, if there is an IS, the spatial
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Fig. 1: (Color online) (a) The spatial distribution of ν(x)
and the corresponding jy(x) considering a generic (symmetric,
i.e. bl = br = 150 nm, assuming VL = VR = 0) 3µm sample.
(b) The SC and electrochemical potentials under low (solid
lines) and high bias (broken lines). All calculations are done
for �(eB/m)/E0F (=Ω/E

0
F ) = 0.94, where E

0
F (= 12.75meV) is

the Fermi energy at the center, i.e. X = 1.5µm, at the default
temperature kBT/Ω= 0.025. A homogeneous donor density of
n0 = 4× 1011 cm−2 is assumed, with the impurity parameter
Γ/Ω= 0.03.

extend of the (energy) gapped region on the RHS becomes
wider, whereas shrinks on the LHS, resulting in a wider
IS on the RHS and a narrower IS on the LHS. Such a
situation is shown in fig. 1a for the generic sample, which
will be positively biased throughout the paper. The local
electron density distributions (or equivalently the local
filling factor ν(x) = 2πl2nel(x)) calculated at low (thick
solid lines) and high (thick broken lines) current biases
are shown together with the current density distribution
(thin vertical lines) in the upper panel. Clearly, the IS
on the RHS is larger than the one on the LHS under the
large current bias (cf. the inset of fig. 1) and the current
(horizontal lines) is well confined to the ISs. Figure 1b
presents the SC potentials (thick lines) together with the
position-dependent electrochemical potentials (thin lines).
We observe that at the large bias the Hall potential tilts
the total potential, hence the LLs. Since, the compressible
regions can almost perfectly screen the Hall potential, we
see that the major effect on the µ∗(x) is observed at the
regions where an IS resides.
Further, we investigate the effect of current-bias–

induced density asymmetry at the unequally depleted
samples. In fig. 2 (black) solid curves present ν(x) of a
generic sample. For the lowest B value (a), no ISs exist
larger than λF for the generic and negatively biased
unequally depleted samples (dash-dotted (blue) lines).
Therefore, the electron and the current densities both
remain symmetric (the system is completely compress-
ible), hence the induced Hall potential can be almost
perfectly screened. The current distribution exhibits, local
peaks at the positions of ν(x)≈ 2, where ρL(x) takes small
values in the very close vicinity of ν(x) = 2, although no
IS exists. One can see that some amount of current is

Fig. 2: (Color online) The local variation of the filling factor
and the current densities for three selected B values, indicated
in fig. 4, considering: i) a generic sample (black solid line) and
ii) an unequally depleted sample, by setting VL = 0 and VR =
−1.1V which results in bl = br/2 = 75 nm. Current directions
are indicated by (red) broken lines for (+) and (blue) dash-
dotted lines for (−) bias. The unequal depletion is shown by the
diagonal shaded region on LHS and horizontal shaded region
on RHS (c), which lead E0F = 13.12meV.

still flowing from the bulk for these cases, i.e. generic and
unequally depleted sample with (−) bias. However, for
the unequally depleted sample under (+) bias (broken
(red) lines) the IS on the RHS is larger than λF and
the current is confined within this region mainly and no
current flows from the bulk. We observe that for this B
value, the generic sample under (+) bias and unequally
depleted sample under (−) bias are out of the QHP, i.e.
no ISs exist across the samples. Increasing B slightly
(fig. 2b), an IS develops on the RHS of the generic sample
where most of the current is confined to. Meanwhile on
the LHS, due to the local minima mentioned before,
a small amount of current also flows. Interestingly, at
this B value no current flows from the bulk (up to our
numerical accuracy, i.e., 10−14A) and the system is in a
QHP both for generic and unequally depleted positively
biased samples. Increasing the B-field furthermore, leads
formation of an IS also at the unequally depleted sample
under (−) bias, hence all three samples are in the plateau
regime. When the center ν becomes equal to two (not
shown here) the two edge ISs merge at the bulk and all
the current flows from the incompressible bulk, slightly
asymmetric with respect to the center. At the highest
B-field strengths shown in fig. 4, the system is out of
the QHP and both the electron and the current densities
become symmetric, again.
Next, we analyze the calculated Hall potential profiles

in terms of Ahlswede experiments [11]. In fig. 3 the
sequence of the potential types, calculated at six B values
with equal steps of 0.05Ω/E0F (starting from 0.8) for
different samples are shown. Our results for the generic
sample in the out of linear response regime coincides with
the experimental findings [11], where to obtain a clear
voltage signal a relatively high current is imposed and as a
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Fig. 3: (Color online) Position-dependent electrochemical
potentials calculated at characteristic B values for: a) generic,
b) and c) unequally depleted samples under positive (a, b) and
negative (c) bias. The potential types are indicated by I, II and
III (and also by color code), each calculated profile is shifted
in energy by a small amount (∆= 0.001Ω/E0F ) for clarity.

consequence asymmetric potential drops were observed at
the edges. The sequences of potential profiles we observe
are: I-I-III-III-II-I for the generic sample, for the unequally
depleted samples, I-III-III-III-II-I at (+) bias and I-I-I-
III-II-I at the (−) negative bias. It was stated that [11],
if the Hall potential is linear the system is out of the
QHP (classical Hall effect), both experimentally [11] and
theoretically [16]. Therefore we would expect that the
unequally depleted sample under (+) bias remains in the
plateau for the largest B interval, whereas same sample
under (−) bias should present the narrowest plateau. This
is somehow easy to understand, if one starts already with
an nonsymmetric density profile, the asymmetry induced
by the large current will be either enhanced or suppressed
depending on the current direction. A (+) bias will tilt
the LLs resulting a high potential on the RHS as in fig. 3a
and 3b, whereas a (−) bias will do the opposite, 3c.
Therefore, for the (+) bias the IS on the RHS becomes
wider, which essentially means that the unequally depleted
sample enters to the QHP at a lower B-field compared
to a generic sample and (−)-biased ones, due to already
existing large IS at the RHS. The situation is rather
different for the (−) bias, since the narrow IS is on the
LHS and the high bias will enlarge this IS. Hence, there is
a competition between the slope of induced Hall potential
and the confinement, and thereby screened, potential to
generate a wide IS. Thus, the unequally depleted sample
when (−)-biased will enter to the QHP at a higher B-field
value compared to both (+)-biased and generic samples.
Our findings suggest that, if the Hall potential profiles
are measured by the scanning force microscopy setup
considering unequally depleted samples, the sequence of
the potential types will alter at the lower B-field side of
the QHP under (+) and (−) current bias.
Finally we investigate the magneto-resistance quantities

of the systems under consideration. As mentioned above,
the extend of the QHPs depend strongly on the density

Fig. 4: (Color online) The spatial distribution of the ISs
(blue regions) as a function of B together with calculated
RH (black solid line) for generic (a) and unequally depleted
samples with positive (b) and negative (c) DC current. (d) The
corresponding RH and RL. Vertical lines indicate the B-field
values shown in fig. 2.

asymmetry and the current direction. Figure 4 summarizes
our main findings, where we show the calculated Hall and
longitudinal resistances obtained from our self-consistent
scheme, together with the positions and the widths of ISs
with ν(x) = 2 at the background. We only depict the ISs
wider than λF with dark (blue) regions, whereas if the
electrons reside in a compressible region it is colored by
white areas. Figure 4a presents the evolution of the ISs
as a function of the B-field for a generic sample under
(+) current with an amplitude of 3µA. To clarify the
color code we suggest the reader to compare the positions
of the ISs with fig. 2 along the lines denoted by a, b
and c. As soon as an IS formed (B ∼ 0.88) at the lower
edge of the sample (x∼ 0.5µm) the system is in the QH
regime. As an important note, it is sufficient to have only
one incompressible strip to observe quantized Hall effect.
This is in contrast to many-edge channel theories [5,6].
However, such an effect is already known as the cold
edge by the experimentalists [25]. In the out of linear
response regime, the RL is measured only from one side
of the sample, since backscattering takes place on the
other side (the IS is smeared out, the hot edge) and RL
never vanishes as a consequence of the density asymmetry
induced by the large current. We should also mention
that such a situation cannot be handled by perturbation
methods [22] (or like Kubo formalism) without self-
consistency. The Hall resistances and the distribution of
ISs for unequally depleted samples are shown in fig. 4b
and c. It is observed that the current direction affects the
widths of the ISs, hence, the extend of the QHPs. The
large (+) bias enlarges the already wide IS on the RHS
which leads an extended QHP, whereas (−) bias results in
the opposite.
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Let us discuss the experimental conditions to investigate
the predicted rectification effect. First of all, the Hall bars
should be defined on high-mobility (�1.0× 106 cm2V/s)
and narrow (2d� 10µm) unequally depleted samples. One
possible option is to define the Hall bars similar to the
ones investigated in ref. [17,18], at which an asymmetry
in RL, concerning probe sides, is observed. The prelim-
inary experimental findings measured at these samples
provide a clear signature of the predicted rectification. The
main drawback of the gate defined samples relies on the
fact that, using gates one cannot create very steep edge
potential profiles, therefore, rectification may be some-
what suppressed. Meanwhile, one can define Hall bars with
steeper edge potentials by deep etching, of course, with
different etching dept on both sides. However, it is known
that etching can cause inhomogeneities at the density
profile which may become important when considering
narrow samples. A hybrid solution, i.e. one side etched,
other side gate defined, seems to be the most reason-
able solution. To obtain the extreme sharp edge on one
side, it is desirable to perform the suggested experiments
on cleaved edge overgrown (CEO) samples, where it has
been shown that no ISs reside at the sharp edge [26]. The
experiments need not to be done at very low temperatures
(0.4<T < 4.0K), whereas the imposed current should not
exceed the breakdown current due to Joule heating [10],
which can easily be determined by the experiments.
In conclusion, we utilized the SC calculation scheme

developed by R. R. Gerhardts and his co-workers to obtain
the electron density and magneto-resistance properties
of equally and unequally depleted samples, i.e. in the
presence of an asymmetric lateral confinement. Noticeably,
our theory does not involve the localization of the wave
functions which was the main-stream idea of the QHE for
two decades, which fails to provide an explicit calculation
scheme to obtain magneto-resistances under experimental
conditions. Strikingly we observe that it is sufficient
to have only one edge incompressible strip to measure
quantized Hall resistance, which is also in contrast to other
edge-channel theories.
For the high-mobility, narrow and unequally depleted

samples we predict that, the large current either enlarges
or shrinks the QHPs depending on whether the asymmetry
induced by the current and the nonsymmetric density
distribution caused by the edge profile are in the same
direction or not. Based on our findings, we proposed three
sets of sample structures where the effect of the current-
induced asymmetry and thereby the rectification of the
QHPs can be controllably measured. We expect that, the
rectification effect will be even enhanced due to the Joule
heating at such high currents, since the narrow ISs will
be smeared out easily. Beyond the breakdown current the
current direction will be unimportant, while no ISs exists.
Moreover, we also predict that the Hall potential profile
types at the lower edge of the Hall plateau will be altered
if scanned by force microscopy techniques concerning the
unequally depleted samples.
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[5] Büttiker M., Phys. Rev. Lett., 57 (1986) 1761.
[6] Chklovskii D. B., Shklovskii B. I. andGlazman L. I.,
Phys. Rev. B, 46 (1992) 4026.

[7] Chang A. M., Solid State Commun., 74 (1990) 871.
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