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Abstract

In Bayesian vector autoregressive models, the Litterman or Minnesota
Prior is widely used. However, in some cases, the Minnesota prior is
not the best prior distribution that can be used. Thus, other prior dis-
tributions can also be applied. In this paper, as well as the Minnesota
prior, four other prior distributions have been studied. Based on these
prior distributions, five different Bayesian vector autoregressive models
have been built to forecast the Turkish unemployment rate and the in-
dustrial production index for the two periods of the year 2008. Finally,
the five priors have been compared with each other according to the
forecasting performances of the models that they are used in.

Keywords: Bayesian vector autoregressive models, Vector autoregressive models, Prior
Distributions, Bayes’ Theorem, Bayesian approach.
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1. Introduction

Multivariate time series models such as vector autoregressive (VAR) and Bayesian
vector autoregressive (BVAR) models have been widely used in many areas of economics.

BVAR models were first proposed by Litterman [11] as an alternative to the VAR
models due to their some advantages such as solving the overparameterization of VAR
models and giving better forecasts. Litterman [11] in his study used the Minnesota prior
which has been traditionally used in BVAR analysis. Many computer programs that
build BVAR models use the Minnesota prior as the default prior distribution. However,
although the Minnesota prior is an important prior distribution, it is not the only prior
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distribution that can be used in BVAR analyses. In some cases some other prior distri-
butions could be applied in BVAR models with a better performance. In this paper, as
well as the classical Minnesota prior distribution, the four different prior distributions
proposed by Kadiyala and Karlsson [9] also have been given and based on these five dif-
ferent prior distributions, five different BVAR model have been developed to forecast the
Turkish unemployment rate and the industrial production index. Finally, the comparison
of these models in terms of their forecasting performances has been given.

2. Bayesian vector autoregressive models

When fitting macroeconomic models, structural models proposed by Cowles Commis-
sion were used until 1970’s. However, due to some changes in economic environments
and new relations appearing, those models used have become inadequate or invalid. In
this case, new models considering the dynamic relations were needed. Sims [13] has
proposed vector autoregressive models (VAR) as alternative to complicated structural
models and since then, VAR models have been a very important tool in macroeconomic
analyses. VAR models remove the constraints arising from the economics theory and use
the advantage of multivariate analysis. But it is seen that in large models with many
parameters VAR models have a disadvantage of overparameterization problem.

There are two different solutions proposed against the over-parameterization problem
which is seen in vector autoregressive models. The first solution is using a model called
structural VAR which has theoretical constraints and the second one is using a Bayesian
vector autoregressive model (BVAR) which has been introduced by Litterman [11] and
become a base for the recent studies.

The BVAR approach starts with the assumption that available data don’t involve
information at every dimension. This means, in a VAR model which involves too many
parameters, some parameters might be different from zero by coincidence. In this case the
contribution of the variables matching those parameters would be erroneous. Therefore,
the forecasts given by the model built this way would be quite inconsistent. In BVAR
approach, this shortcoming is solved by defining proper prior distributions for parameters.
The role of the prior distribution can be thought as a barrier preventing the parameters
from appearing as nonzero very easily by adding information to them. This barrier set
for the parameters by the prior distribution can be broken only when the sample set
really provides information.

While developing the BVAR model, Litterman has imposed some assumptions on the
unrestricted VAR model given by the following equation.

(2.1) yt = µ+ Π1yt−1 + Π2yt−2 + · · · + Πpyt−p + εt

The threshold point in Litterman’s study was that the series used to estimate the VAR
models are unpredictable. This idea can be expressed as each series can be defined
as a random walk around an unknown deterministic component. Therefore, the prior
distribution for the variable t is focused on the definition of a random walk.

(2.2) yt − yt−1 = c+ εt

The i th equation in the VAR model can be written as below:

(2.3)
yit = ci + φ

(1)
i1 y1,t + φ

(1)
i2 y2,t−1 + · · · + φ

(1)
in yn,t−1 + φ

(2)
i1 y1,t−2 + φ

(2)
i2 y2,t−2

+ · · · + φ
(2)
in yn,t−2 + · · ·φ

(p)
i1 y1,t−p + φ

(p)
i2 y2,t−p + · · · + φ

(p)
in yn,t−p

where, φ
(s)
ij is the coefficient relating yit to yj,t−s
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The restriction (2.2) requires that φ1
ii = 1 and that all other φ

(s)
ij be zero. These 0 or

1 values represent the mean value of the prior distribution for the coefficients. Litterman
has chosen the γ value as the standard deviation of the prior distribution. The variance-
covariance matrix of the prior distribution was taken as the diagonal matrix.

(2.4) φ
(1)
ii ∼ N(1, γ2).

Although each equation i = 1, 2, . . . , n of the VAR is estimated separately, the same
value γ is used for each i. Smaller values of γ mean greater confidence in the prior
information. For example, γ = 0.2 means that, without seeing the data, the researcher is
95% confident that φ1

ii is not smaller than 0.60 and no greater than 1.40. The coefficients
relating yit to further lags are estimated to be zero and Litterman states that confidence
in this estimation is greater when the lag is greater. Therefore, he suggested taking

φ
(2)
ii ∼ N(0, (γ/2)2)

φ
(3)
ii ∼ N(0, (γ/3)2)

· · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · ·

φ
(p)
ii ∼ N(0, (γ/p)2)

That is, tightening the prior distribution with a harmonic series for the standard deviation
as the lag increases. After the means have been determined, the remaining process is to
obtain an estimation of the dispersion around the prior mean. Litterman [12] defines a
standard error function for the coefficient of the l th lag of the j th variable in the i th
equation as

(2.5) S(i, j, l) =
[γ g(l) f(i, j)] si

sj
.

3. Prior and posterior distributions for Bayesian vector autore-

gressive models

Bayesian analysis requires explicit specification of the prior distribution to be used in
the analysis. Since, both the prior distribution and sample data are required to obtain the
posterior distribution, the choice of the prior distribution depends on the knowledge and
experience of the researcher. Some theoretical assumptions are also effective in the choice
of the priors. There are a lot of different views about including the prior information in
the analysis (Lindley [10], Bernardo [2], Efron [6], Berger and Bernardo [1], Canova [3]).

The main idea in BVAR models is that the model parameters are random variables.
The mechanism of this idea is representing the prior information for all the unknown
quantities through a prior distribution and combining them with the objective infor-
mation coming from observations to obtain the posterior distributions. Posterior dis-
tributions are obtained by the application of Bayes’ Theorem. In general, the choice
of the prior distribution depends on the structure of the available information. In this
paper, prior distributions such as Minnesota, Diffuse, Normal-Wishart, Normal-Diffuse
and Extended Natural Conjugate distributions that are suitable for BVAR models are
considered, and their structure and appropriate posterior distributions are given sepa-
rately in the following subsections. The most widely used prior distribution in BVAR
models is the Minnesota prior distribution proposed by Litterman which is based on the
Normal distribution.
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3.1. The Minnesota Prior. The variance-covariance matrix of the prior Ψ is defined
as fixed and diagonal. Therefore, the prior for the i th equation is as given below:

(3.1) γi ∼ N(γ̃i,Σi).

Then using Bayes’ Theorem the posterior distribution is given by

(3.2) γi/y ∼ N(γi,Σ)i,

where

Σi = (Σ̃−1
i + ψ−1

ii Z′Z)−1

and

γi = Σi(Σ̃
−1
i γ̃i + ψ−1

ii Z′yi).

The diagonal elements ψii of Ψ and are obtained from the data.

3.2. The diffuse and Normal–Wishart priors. These priors are the ones that were
first proposed by Geisser [7], Tiao and Zellner [14], and the diffuse prior is as follows.

(3.3) p(γ,Ψ) ∝ |Ψ|−(m+1)/2 .

Using that prior in the BVAR model, the posterior distribution is obtained as

(3.4)
γ|Ψ, y ∼ N(γ̂,Ψ ⊗ (Z′Z−1)

Ψ|y ∼ invWishart ((Y − ZΓ̂)′(Y − ZΓ̂), T − k)

The marginal posterior distribution of Γ in the joint posterior distribution is

(3.5) Γ|y ∼ MT (Z′Z, (Υ − ZΓ̂)′(Υ − ZΓ̂), Γ̂, T − k).

In the case where variance-covariance matrix for normally distributed data is not known,
the unknown parameters would be γ and Ψ. The specification of the joint prior distri-
bution of these two parameters is as follows:

(3.6) f(γ,Ψ) = f(γ|Ψ)f(Ψ).

If the assumption of a fixed and diagonal variance-covariance matrix is loosed, the natural
joint prior for normal data is the Normal-Wishart distribution

(3.7) γ|Ψ ∼ N(γ̃,Ψ ⊗ Ω̃),Ψ ∼ iW (Ψ̃, α).

The γ parameters need to be estimated, so Ψ is a parameter that can be neglected (a
nuisance parameter). The main target is to find the posterior moments of the posterior
distribution of γ. The posterior distribution is obtained as follows:

(3.8) γ|Ψ, y ∼ N(γ,Ψ ⊗ Ω),Ψ|y ∼ iW (Ψ, T + α),

where

Ω = (Ω̃−1 + Z′Z)−1,

Γ = Ω(Ω̃−1Γ̃ + Z′ZΓ̂),

Ψ = Γ̂′Z′ZΓ̂ + Γ̃′Ω̃−1Γ̃ + Ψ̃ + (Υ − ZΓ̂)′(Y − ZΓ̂) − Γ
′

(Ω̃−1 + Z′Z)Γ.

The marginal posterior distribution of Γ is again a multivariate t-distribution.

(3.9) Γ|y ∼ MT (Ω
−1
,Ψ,Γ, T + α).
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3.3. The Normal-Diffuse prior. This prior distribution was first proposed by Zellner
[15]. This prior avoids the constraints that are imposed by the Normal-Wishart prior
on the variance-covariance matrix of γ, and allows a non-diagonal variance-covariance
matrix. The multivariate normal prior belonging to the regression parameters of the
Minnesota prior is combined with a diffuse prior on the residual variance-covariance
matrix. That is there is a prior independence between γ and Ψ given by

(3.10) γ ∼ N(γ̃, Σ̃), p(Ψ) ∝ |Ψ|−(m+1)/2 .

By an application of Bayes’ Theorem in the BVAR model, the marginal posterior distri-
bution of γ is obtained as

(3.11)
p(γ|y) ∝ exp

{
− 1

2
(γ − γ̃)′Σ̃−1(γ − γ̃)

}∣∣(Υ − ZΓ̂)′(Υ − ZΓ̂)

+ (Γ − Γ̂)′Z′Z(Γ − Γ̂)
∣∣−T/2

When the Minnesota, Normal-Wishart and Diffuse priors are used, the posterior distri-
butions can be obtained in a closed form. In other words, the multivariate distribution
obtained by the multiplication of the prior distribution and the likelihood is in a distri-
bution form which is known. By the help of this distribution, the necessary estimations
can be analytically obtained. However, the posterior distribution for the Normal-Diffuse
and ENC priors cannot be obtained in a form which allows an analytical process. To
overcome this problem, Gibbs sampling, which is one of the MCMC methods, or other
numerical methods need to be used.

After some mathematical arrangement the following conditional posterior distribution
is obtained.

γ|Ψ, y ∼ N(γ, (Σ−1 + Ψ−1 ⊗ Z′Z)−1),(3.12a)

Ψ−1|γ, y ∼W
([

(Υ − ZΓ̂)′(Υ − ZΓ̂) + (Γ − Γ̂)′Z′Z(Γ − Γ̂)
]
−1
, T

)
,(3.12b)

where,

γ = (Σ−1 + Ψ−1 ⊗ Z′Z)−1 [
Σ−1γ̃ + (Ψ−1 ⊗ Z′Z)γ̂

]
.

Using equations (3.12a), (3.12b) and the algorithm given by Geweke [8], which is neces-
sary to make draws from (3.12b), Gibbs sampling can easily be done. The problem is that
the equation (3.12a) requires the factorization of a mk ×mk matrix, and taking the in-
verse of the factor matrix at every step. Therefore, the speed of the algorithm will sharply
decrease as the number of parameters in the VAR model increases. Gibbs sampling starts
with the generation of Ψ as the least squares estimation of γ from equation (3.12a). A
“burning” period of 200 draws is determined (that is the values obtained in this period
are not used). Some experiments have shown that Gibbs sampling is insensitive to the
choice of initial values for Ψ.

3.4. The Extended Natural Conjugate prior. The extended natural conjugate
prior brings about a solution to the constraints on Var (γ) of the Normal-Wishart prior.
This solution is obtained by the re-parametrization of the VAR equation given below.

(3.13) yt =

p∑

i=1

yt−iAi + xtC + εt.
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Let ∆ be a mk×m matrix. Let the γi ’s be the diagonal elements and the other elements
be zero,

∆ =




γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γm


 .

Let also Ξ = ι′ ⊗Z and let ι be a m× 1 vector of 1’s. The equation (3.13) can be written
as Υ = Ξ∆ + E. For the prior distribution below

(3.14)
p(∆) ∝

∣∣∣Ψ̃ + (∆ − ∆̃)′M̃(∆ − ∆̃)
∣∣∣
−α/2

,

Ψ|∆ ∼ iW (Ψ̃ + (∆ − ∆̃)′M̃(∆ − ∆̃), α)

and normal data, the posterior distribution is given by Dréze and Morales [4] as follows:

(3.15)
p(∆|y) ∝

∣∣Ψ + (∆ − ∆)′M(∆ − ∆)
∣∣−(T+α)/2

,

Ψ|∆, y ∼ iW (Ψ̃ + (∆ − ∆)′M(∆ − ∆), T + α),

where

M = M̃ + Ξ′Ξ,

Ψ = Ψ̃ + ∆̃′M̃∆̃ + Υ′Υ − ∆
′

M∆,

and

∆,M∆ = M̃∆̃ + Ξ′Υ.

If M̃ is of full rank, thenM is also of full rank and ∆ is singular. The marginal distribution
of ∆ has the form of a multivariate t-distribution. However, due to the restricted structure
of ∆, it does not have a multivariate t-distribution (Kadiyala and Karlsson [9]).

The Gibbs sampling algorithm for deriving a posterior distribution for the Extended
Natural Conjugate prior distribution is based on the lemma of Dréze and Richard [5]. Ac-
cording to this rule the parameters of the i th equation have a multivariate-t distribution
conditionally on the parameters of the remaining equations.

(3.16) γi|γ1, . . . , γi−1, . . . , γm ∼ t

(
di

qii

T + α− k
P−1

ii , T + α− k

)
.

Thus, Gibbs sampling is implemented by cycling through equation (3.16) for i = 1, . . . ,m.
In each cycle, qii values, the vectors di and the matrices Pii need to be calculated. These
calculations may be time consuming in large models. The prior means of γi are used as
the initial values of the Gibbs sampling. A “burning” period for the first 200 draws is
used. After the burning process the initial values do not have a real effect on the draws,
and Gibbs sampling converges to the real posterior distribution rapidly.

4. A Bayesian vector autoregressive analysis of the Turkish un-

employment rate and industrial production index

In this section, using the prior distributions emphasized above, five different BVAR
models have been built and forecasts for the Turkish unemployment rate and industrial
production index are obtained. The most important reason for choosing the unemploy-
ment rate and the industrial production index is that the unemployment rate within a
country is a very important economic indicator and therefore that forecasting the Turkish
unemployment rate would be a useful task.
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The computer program used in this study is an open source program that allows the
use of prior distributions other than the Minnesota prior. It is written by Kadiyala and
Karlsson [9], and provided by the Stockholm School of Economics for academic use. The
program has been run according to the aims of our study and then the forecasts have
been obtained. The data used in the study is for the years 1990-2007.

The variables unemployment rate and industrial production index are used after taking
their logarithm in each two-dimensional BVAR model. The data was collected from the
records of TÜİK (Turkish Institute of Statistics). The industrial production index is
recorded seasonally by the institute. However, although the unemployment rate has
been recorded seasonally between the years 2000-2007, it has been recorded biannually
before the year 2000. Therefore, the data set has been rearranged as biannual data after
the necessary calculation of averages. The unemployment rate and industrial production
index for the years 1990:1 – 2007:2 are shown in Figure 1 and Figure 2, respectively.

Figure 1. Turkish unemployment rate for the years 1990:1 - 2008:2
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Figure 2. Turkish industrial production index for the years 1990:1 - 2008:2
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In the following sections, with the help of the prior distributions mentioned in section 3,
two steps ahead forecasts for the Turkish unemployment rate and the industrial produc-
tion index are given based on four lags. The two steps ahead forecast values belong to
the periods 2008:1 and 2008:2. The calculation of the RMSE values is as follows:

(4.1) RMSE =

√√√√
Nk−1∑

j=0

[Ft+j+k + At+j+k]2

Nk
,

where

k = 1, 2, . . . , 12 : Forecast step,

At : The realized value of the exchange rate,

Ft : The forecast value of the exchange rate,

Nt : Total number of k-step ahead forecasts in the projection period for which the realized
value of the exchange rate At is known.

5. The Bayesian vector autoregressive forecasts based on the five

prior distributions

The forecast values for the unemployment rate and Industrial production index ob-
tained from the model parameters updated by the application of Bayes’ Theorem using
the priors and RMSE values for the periods 2008:1 and 2008:2 are briefly given in Table 1
and Table 2, respectively.

Table 1. BVAR forecasts of the five different prior distributions and RMSE

values for the Turkish unemployment rate

2008:1 2008:2

UnemploymentRate RMSE UnemploymentRate RMSE

Minnesota 10.14 1.07 9.74 1.65

Diffuse 9.24 1.66 7.94 2.14

Normal-Wishart 9.49 1.11 8.57 1.67

Normal-Diffuse 10.15 1.13 9.78 1.77

ENC 10.09 1.08 9.64 1.65

Table 2. BVAR forecasts of the five different prior distributions and RMSE

values for the Turkish industrial production index

2008:1 2008:2

ProductionIndex RMSE ProductionIndex RMSE

Minnesota 2.07 0.58 2.12 0.82

Diffuse 2.09 0.88 2.13 4.65

Normal-Wishart 2.06 0.49 2.10 0.62

Normal-Diffuse 2.07 0.64 2.12 0.85

ENC 2.07 0.59 2.12 0.83
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It can be seen from the tables that the results for the five different prior distributions are
quite close to one another. In addition, the RMSE values of the four prior distributions
other than the Diffuse prior have similar values. However, the Diffuse prior, which is a
noninformative prior, gives the highest RMSE values. That means that it has the worst
performance for both the unemployment rate and the industrial production index, as
expected. It is remarkable that, although the Normal-Wishart prior has given the same
forecast values for the industrial production index as the Minnesota prior, its RMSE
value is less than one of the Minnesota prior’s. This means that it displayed a better
performance.

6. Conclusion

In this study it is pointed out that the BVAR models, which are proposed as an
alternative to the VAR models, can be built not only based on the Minnesota prior but
also on other prior distributions. The modeling application in the study shows that each
prior distribution proposed can be an alternative to the Minnesota prior. The choice of
the prior distribution that is to be used in the BVAR analysis involves certain criteria,
such as choosing an informative prior distribution and a prior distribution which leads
to a posterior distribution that can be analytically obtained.
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