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A Taylor polynomial approach for solving generalized
pantograph equations with nonhomogenous term

Mehmet Sezera*, Salih Yalçinbaşb and Mustafa Gülsua
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A numerical method for solving the generalized (retarded or advanced) pantograph equation with constant
and variable coefficients under mixed conditions is presented. The method is based on the truncated Taylor
polynomials. The solution is obtained in terms of Taylor polynomials. The method is illustrated by studying
an initial value problem. IIIustrative examples are included to demonstrate the validity and applicability
of the technique. The results obtained are compared to the known results.
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1. Introduction

In recent years, pantograph equations have been studied by many authors who have investigated
both their analytical and numerical aspects [14,3,16,6,5]. Functional differential equations with
proportional delays are usually referred to as pantograpf equations or generalized equations. The
name pantograph originated from the work of J.R.Ockendon andA.B.Tayler [18] on the collection
of current by the pantograph head of an electric locomotive.

Pantograph equations are characterized by the presence of a linear functional argument and
play an important role in explaining many different phenomena. In particular, they turn out to be
fundamental when ODEs based models fail. These equations arise in many applications such as
number theory [4], nonlinear dynamical system [15], industrial applications [10] and in studies
based on biology, economy, control and electro-dynamic [1,2]

On the other hand, many methods based on Taylor polynomials have been given to find
approximate solutions of the differential-difference and integro differential-difference equations
[17,20,22,13,19,12,11]. Our purpose in this study is to develop and apply the mentioned meth-
ods to the pantograph equation with variable coefficients, which is an extension of pantograph
equation given by Liu and Li [14] and Derfel and Iserles [3].
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In recent years there has been a growing interest in the numerical treatment of pantograph
equations of the retarted and advanced type. A special feature of this type is the existance of com-
pactly supported solitions [14]. This phenomonon was studied in [6], and has direct applications
to approximation theory and wavelets [5].

The Taylor method has been shown to solve linear differential, integral, integro-differential
equation equations and systems with approximate solutions which converge rapidly to accurate
solutions [20,22,13,19]. The basic motivation of this study is to apply the Taylor method to the
generalized pantograph equation

y(m)(t) =
J∑

j=1

m−1∑
k=0

Pjk(t)y
(k)(αj t) + f (t), t ≥ 0 (1)

which is a generalization of the pantograph equations given by [14,3,6,5,9,16,1,2], under the
initial conditions

m−1∑
k=0

c
ik
y(k)(0) = λi; i = 0, 1, . . . , n − 1 (2)

and to find the solution in the truncated Taylor series form

y(t) =
N∑

n=0

ynt
n, yn = y(n)(0)

n! . (3)

Here, Pjk(t) and f (t) are analytical functions; cik , λi and αj are real or complex constants; the
coefficitients yn, n = 0, 1, . . . , N are Taylor coefficients to be determined.

2. Fundamental matrix relations

Let us convert the expressions defined in equations (1–3) to matrix forms. First, let us assume
that the function y(t) and its derivative y(k)(t), respectively, can be expanded to the Taylor series
about t = 0 in the forms

y(t) =
∞∑

n=0

ynt
n, yn = y(n)(0)

n! (4)

and

y(k)(t) =
∞∑

n=0

y(k)
n tn (5)

where for k = 0, y(0)(t) = y(t) and y(0)
n = yn.

Now, take the derivative of equation (5) with respect to t and then put n → n + 1:

y(k+1)(t) =
∞∑

n=1

ny(k)
n tn−1 =

∞∑
n=0

(n + 1)y
(k)
n+1t

n (6)

From (5), it is clear that

y(k+1)(t) =
∞∑

n=0

y(k+1)
n tn. (7)
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Using the relations (6) and (7), we have the recurrence relation between the Taylor coefficients
y(k)

n and y(k+1)
n of y(k)(t) and y(k+1)(t):

y(k+1)
n = (n + 1)y

(k)
n+1; n, k = 0, 1, 2, . . . (8)

Now, let us take n = 0, 1, 2, . . . , N and assume y(k)
n = 0 for n > N . Then, the system (8) can be

transformed into the matrix form

Y(k+1) = MY(k), k = 0, 1, 2, . . . (9)

where

Y(k) =

⎡
⎢⎢⎢⎢⎢⎣

y
(k)
0

y
(k)
1

...

Y
(k)
N

⎤
⎥⎥⎥⎥⎥⎦

, M =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

...
...

0 0 0 . . . N

0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

.

For k = 0, 1, 2, . . . , it follows from (9) that

Y(1) = MY(0) = MY

Y(2) = MY(1) = M2Y

...

Y(k) = MY(k−1) = MkY

...

(10)

where clearly

Y(0) = Y = [y0 y1 · · · yN ]T .

On the other hand, the solution expressed by equation (3) and its derivatives can be written in the
matrix forms

[y(t)] = TY and [y(k)(t)] = TY(k) (11)

or using the relation in equation (10)

[y(k)(t)] = TMkY (12)

where

T = [1 t t2 · · · tN ].
To obtain the matrix form of the part

D(t) =
J∑

j=0

m−1∑
k=0

Pjk(t)y
(k)(αj t) (13)

which is defined in equation (1), we first write the function Pjk(t) in the form

Pjk(t) =
N∑

i=0

P
(i)
jk t i , P

(i)
jk = P

.(i)
jk (0)

i! (14)----
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and then, substituting (14) into (13), we obtain

D(t) =
J∑

j=0

m−1∑
k=0

N∑
i=0

P
(i)
jk t iy(k)(αj t). (15)

Here it is seen that, from equation (5),

y(k)(αj t) =
N∑

n=0

y(k)
n (αj )

ntn.

Hence the matrix representation of the terms t iy(k)(αj t) in equation (15) becomes

[t iy(k)(αj t)] = TIiAjY(k)

or from (10),

[t iy(k)(αj t)] = TIiAj MkY, i = 0, 1, 2, . . . , N (16)

where

Aj =

⎡
⎢⎢⎢⎣

(αj )
0 0 · · · 0

0 (αj )
1 · · · 0

...
...

...
...

0 0 · · · (αj )
N

⎤
⎥⎥⎥⎦ , Ii =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...

... · · · ...
... · · · ...

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

... · · · ...
... · · · ...

0 0 · · · 1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

clearly Ii = Ii
1, i = 0, 1, 2, . . . , N

Substituting the expression (16) into (15), we have the matrix relation

[D(t)] =
J∑

j=0

m−1∑
k=0

N∑
i=0

P(i)
jkTIiAj MkY. (17)

We now assume that the function f (t) can be expanded as

f (t) =
N∑

n=0

fnt
n, fn = f (n)(0)

n!

or written in the matrix form

[f (t)] = TF (18)

where

F = [f0 f1 · · · fN ]T .

Note that the matrix form of the first form y(m)(t), according to the relation (12), is

[y(m)(t)] = TMmY (19)

----
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Next we can obtain the corresponding matrix form for the initial conditions (7) as

m−1∑
k=0

cikT(0)MkY = [λi]; i = 0, 1, 2, . . . , m − 1 (20)

where

T(0) = [1 0 0 · · · 0].

3. Method of solution

We are now ready to construct the fundamental matrix equation corresponding to equation (1).
For this purpose, substituting the matrix relations (17–19) into equation (1) and then simplifying,
we obtain the fundamental matrix equation

⎧⎨
⎩Mm −

J∑
j=0

m−1∑
k=0

N∑
i=0

P(i)
jk IiAj Mk

⎫⎬
⎭Y = F (21)

which corresponds to a system of (N + 1) algebraic equations for the (N + 1) unknown
coefficients y0, y1, . . . , yn.

Briefly, we can write equation (21) in the form

WY = F or [W; F] (22)

so that

W = [wpq] = Mm −
J∑

j=0

m−1∑
k=0

N∑
i=0

P(i)
jk IiAj Mk.

Also, the matrix form (20) for the conditions (2) can be written as

UiY = [λi] or [Ui; λi]; i = 0, 1, 2, . . . , m − 1 (23)

where

Ui =
m−1∑
k=0

cjkT(0)Mk = [ui0 ui1 · · · uiN ].

To obtain the solution of equation (1) under the initial conditions (2), by replacing the – rows
matrices [Ui; λi] in equation (23) by the last m rows of the matrix [W; F] in equation (22), we
have the argumented matrix [20,22]

[W̃; F̃] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w00 w01 · · · w0N ; f0

w10 w11 · · · w1N ; f1
...

...
...

... ; ...

wN−m,0 wN−m,1 · · · wN−m,N ; fN−m

u00 u01 · · · u0N ; λ0

u10 u11 · · · u1N ; λ1
...

...
...

... ; ...

um−1,0 um−1,1 · · · um−1,N ; λm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)
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If det(W̃) �= 0, then we can write

Y = (W̃)−1F̃. (25)

Thus, the coeffientients yn, n = 0, 1, . . . , N are uniquely determined by (25). If det(W̃) = 0, then
there is no solution and the method can not be used. Also, by means of systems we may obtain
the particular solution.

On the other hand, we can easily check the accuracy of the solutions as follows [22,13]:
Since the obtained polynomial solution is an approximate solution of equation (1), it must be

satisfied approximately; that is, for t = tr , r = 0, 1, 2, . . .

E(tr ) =
∣∣∣∣∣∣y

(m)(tr ) −
J∑

j=0

m−1∑
k=0

Pjk(tr )y
(k)(αj tr ) − f (tr )

∣∣∣∣∣∣
∼= 0

or

E(tr) ≤ 10−k (kr positive integer).

If max 10−kr = 10−k (k any positive integer) is prescribed, then the truncation limit N is increased
until the difference E(tr) at each of the points tr becomes smaller than the prescribed 10−k .

4. Examples

In this section, several numerical example are given to illustrate the properties of the method and
all of them were performed on the computer using a program written in Maple9. The absolute
errors in Tables are the values of |y(t) − yN(t)| at selected points.

Example 1 [9] Let us first consider the equation

y ′(t) = 1

2
e(t/2)y

(
t

2

)
+ 1

2
y(t), 0 ≤ t ≤ 1, y(0) = 1 (26)

which has the exact solution y(t) = et. When the presented method is applied to equation (24),
the fundamental matrix equation becomes

⎧⎨
⎩M1 −

1∑
j=0

0∑
k=0

5∑
i=0

P(i)
jk IiAj Mk

⎫⎬
⎭Y = F.

Hence, the computed results are compared with other methods [1,7,21,8] in Table 1.

Figure 1 shows the plot of the error points E(ti) for N = 5, N = 7 and N = 9. This plot clearly
indicates that when we increase the truncation limit N, we have less error.

Example 2 Consider the pantograph equation of third order

y ′′′(t) = ty ′′(2t) − y ′(t) − y

(
t

2

)
+ t cos(2t) + cos

(
t

2

)

y(0) = 1, y ′(0) = 1, y ′′(0) = −1.

We give numerical analysis for various N values in Table 2.
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Table 1. Error analysis of Example 1 for the t value.

Present Present Present
Spline Fnk. method Spline Spline method ADM with method

t Approx. [7] (N = 5) method [21] method [8] (N = 7) 13 terms [1] (N = 9)

0.2 0.198 E-7 0.271E-6 1.37 E-11 3.10 E-15 0.256E-10 0.000000 0.705E-14
0.4 0.473 E-7 0.882E-5 3.27 E-11 7.54 E-15 0.333E-8 2.22 E-16 0.106E-10
0.6 0.847 E-7 0.682E-4 5.86 E-11 1.39 E-14 0.577E-7 2.22 E-16 0.294E-9
0.8 0.135 E-6 0.293E-3 9.54 E-11 2.13 E-14 0.438E-6 1.33 E-15 0.386E-8
1 0.201 E-6 0.912E-3 1.43 E-10 3.19 E-14 0.212E-5 4.88 E-15 0.290E-7

Figure 1. Error points E(ti ) and the truncation limits for N = 5, 7 and 9.

Table 2. Error analysis of Example 2 for the t value.

Present methodExact
t solution Ne = 5 Ne = 8 Ne = 10

0.0 1.000000 0.000000 0.000000 0.000000
0.2 0.980066 0.112E−4 0.100E−11 0.900E−11
0.4 0.921060 0.398E−4 0.132E−7 0.115E−9
0.6 0.825335 0.134E−3 0.574E−6 0.986E−8
0.8 0.696706 0.115E−2 0.786E−5 0.234E−6
1.0 0.540302 0.417E−2 0.587E−4 0.271E−5

Example 3 [16] Consider the pantograph equation of first order

y ′(t) = −y(t) + q

2
y(qt) − q

2
e−qt , y(0) = 1 (28)

where y(t) = e−t . Table 3 compares the results of the present method and collocation method [20]
for this problem.

Example 4 [9] Consider the pantograph equation of second order

y ′′(t) = 3

4
y(t) + y

(
t

2

)
− t2 + 2, y(0) = 0, y ′(0) = 0, 0 ≤ t ≤ 1.

After the ordinary operations and following the method in Section 3, we obtain y(t) = t2 and this
is the exact solution.

0,008 

0,006 

0.004 

0.002 

/ 
/ 

/ 

,, 
N = 5 / 

I 

' ' 

N_,..;r.,,...-,-
0i========~-:.:;:-c::;;;.;::;;,-=,.:=;~ .. "" ... -=-;:::··~c:; .... :==·:;::= :-:::: ... :-;:::.~::;:· ::'.:rı.-Mı;:, .. =.,· Q;:ı_"_""--1" 

O 0.2 0.4 Q6 0.8 



1062 M. Sezer et al.

Table 3. Error analysis of Example 3 for the t value.

Present method Present method
Muroya [16] Muroya [16]

t (q = 1) N = 10 N = 11 N = 12 (q = 0.2) N = 10 N = 12

2−1 0.500E−5 0.100E−9 0.300E−9 0.000000 0.219E−4 0.200E−9 0.124E−9
2−2 0.187E−6 0.200E−9 0.500E−9 0.100E−9 0.108E−5 0.100E−9 0.974E−10
2−3 0.643E−8 0.200E−9 0.400E−9 0.000000 0.381E−7 0.100E−9 0.700E−10
2−4 0.210E−9 0.200E−9 0.400E−9 0.000000 0.126E−8 0.100E−9 0.914E−10
2−5 0.670E−11 0.100E−9 0.200E−9 0.000000 0.409E−10 0.100E−9 0.528E−10
2−6 0.210E−12 0.000000 0.100E−9 0.000000 0.120E−11 0.000000 0.195E−10

Example 5 Let us consider the problem

y ′′(t) = 1

2
ty ′(2t) − 3y

(
1

2
t

)
− 15

4
t2 + 2t − 3, y(0) = −1, y ′(0) = 2. (30)

Following the previous procedures, we get the approximate solution of problem (30) for N = 5 as

y(t) = 3t2 + 2t − 1

which is an exact solution.

5. Conclusions

A new technique using the Taylor series to numerically solve the pantograph equations is presented.
Nonhomogenous pantograph equation with variable coefficients are usually difficult to solve
analyticaly. Then it is required to obtain the approximate solutions. For this reason, the present
method has been proposed for approximate solution and also analytical solution.

It is observed that the method has the best advantage when the known functions in an equation
can be expanded to the Taylor series with converge rapidly. To get the best approximation, we
take more terms from the Taylor expansion of functions; that is, the truncation limit N must be
chosen large enough.

The method presented in this study is a method for computing the coefficients in the Taylor
expansion of the solution of a nonhomogenous pantograph equation.The Taylor matrix method
is an effective method for cases where the known functions have the Taylor series expansions at
t = 0. In addition, an interesting feature of this method is to find the analytical solutions if the
equation has an exact solution that is a polynomial of degree N or less than N .

The method can also be extended to the non-linear pantograph initial problem but some
modifications are required.
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