Inter-Domain QoS Routing on Diffserv
Networks: A Region Based Approach

Ibrahim T. Okumus »* Haci A. Mantar ¢ Junseok Hwang®
Steve J. Chapin©

& Mugla University
Technical Education Faculty
Department of Electronics and Computer Education

b Syracuse University
School of Information Studies

¢Syracuse University
L.C. Smith College of Engineering and Computer Science

Abstract

Quality of Service (QoS) routing is inherently a difficult problem. Inter-domain QoS
routing is even harder, because it involves entities residing in distinct administra-
tive domains. There are two problems that need to be solved in inter-domain QoS
routing: topology distribution in a scalable fashion and finding paths that satisfy
QoS constraints and provide connectivity. In this paper we present a region-based,
link-state, source-specified, inter-domain QoS routing architecture that addresses
these questions. Our architecture is scalable and does not suffer from the problems
caused by hierarchical routing. Analysis results show that the average region size
and the average shortest path length are inversely proportional and scalability of
the approach increases as the region size decreases. Gain from the scalability is far
more than the loss from the average shortest path length, especially with larger
topologies.

Key words: QoS routing, Diffserv, Bandwidth Brokers, traffic engineering

* Corresponding author
Address: Mugla Universitesi Teknik Egitim Fakultesi 48000 Kotekli MUGLA
TURKEY

Email addresses: okumus@mu.edu.tr (Ibrahim T. Okumus),
hamantar@syr.edu (Haci A. Mantar), jshwang@syr.edu (Junseok Hwang),
chapin@ecs.syr.edu (Steve J. Chapin).

Preprint submitted to Computer Communications 9 August 2002

1 Introduction

The Internet consists of Autonomous Systems (AS) that are collections of net-
works and routers under a single administration. These ASes differ from each
other in terms of the services they provide. Some domains provide connectiv-
ity to their customers, but do not allow any transit traffic on their networks.
These domains are known as stub domains. Stub domains usually have a single
carrier network that allows them to reach the Internet; however, multi-homed
stub-domains are becoming more common. Another class of domains is known
as transit domains. These domains provide connectivity to their customer net-
works and they also pass traffic for destinations that are not directly connected
to transit domain. The third class is known as transit-only networks, which
provide only transit services to other domains, and serve no directly-connected
end-users.

BGP is the commonly used inter-domain routing protocol. BGP uses a path-
vector approach, which is an enhanced version of a distance-vector approach,
for route information distribution, and a hop-by-hop approach for data for-
warding. Both the link-state approach and the distance vector approach have
their advantages and disadvantages. The distance vector approach has a lim-
ited view of the network and there are also convergence problems. The link
state approach has a complete view of the network; it is possible to develop
fine path calculation algorithms based on this approach, but this approach
can suffer from scalability problems. Since every router has a complete view
of the network, scalability becomes an issue when the network gets larger and
larger.

There are two possible inter-domain level routing solutions to achieve end-to-
end QoS. One possible solution is to use the BGP protocol, which does not
have any QoS information, and verify the QoS information hop-by-hop. This
approach is a try-and-fail approach. The second approach is to calculate the
end-to-end QoS path from a source using an inter-domain QoS routing proto-
col. We use a QoS routing protocol as part of our effort to achieve end-to-end
QoS. We need the ability to calculate an end-to-end QoS path at the source
before we send out the traffic to ensure the required QoS can be met. This
can be achieved if a routing entity has a complete topology of the network.
This approach brings the need for the ability to forward the traffic along the
selected path. This requires source specified forwarding. In source specified
forwarding, path information needs to be sent with every packet. One solu-
tion is putting the full path into the packet, which is not feasible because
of the overhead it brings. Another solution is to use a path identifier. Using
a path identifier requires every router to keep state for every flow and also
requires establishment of an association between the path identifier and the
states in each router prior to sending the traffic. Keeping state on each router

brings another scalability problem similar to the one resource reservation pro-
tocol (RSVP) suffers from. Another solution is using core tunnels to forward
aggregate traffic. This requires a signaling protocol that can establish a tun-
nel along the pre-determined path. Our choice is to use a signaling protocol
to establish a tunnel and forward the packets inside these tunnels. This also
reduces the complexity at the router level.

As we mentioned at the beginning of this section, there are two possible so-
lutions to achieve end-to-end QoS. The first of the solutions is a try-and-fail
approach. If the network is not heavily used and resources are available for ev-
ery request, try-and-fail approach works fine. But this condition also brings the
argument that if the network is not loaded and resources are always available
for every request, then we do not need special quality of service architectures.
QoS is already satisfied because of the network conditions. We define QoS
as the treatment a flow gets from the network, when the network is heavily
loaded or congested. In this case try-and-fail approach will fail and this is the
situation where we most need the guaranteed QoS from the network.

2 Inter-Domain QoS Routing Approach and Architecture

When one thinks of designing a routing architecture on the Internet, one basic
approach is to have every domain maintain a topological view describing the
entire Internet and then calculate paths based on this view. Although this is
the best approach in terms of the resulting path (since it provides the whole
topology and makes it easy to calculate the optimum path), this approach
is not scalable. As of June 02, 2003, there are 15,264 Autonomous Systems
present on the Internet [1]. The storage at each routing agent is proportional
to Nas X FEas (Nag is the number of AS and E,g is the average number
of neighbors per AS), and the communication cost is proportional to N X
Er where Ng is the number of routers in the Internet and Eg is the average
number of neighbors per router (alaettinoglu et al. [2].)

To make this approach scalable, researchers have proposed several routing
architectures (RFC 1771 [3], Alaettinoglu et al. [2], Rekhter [4], D. Estrin et
al. [5], RFC 1478 [6], S.H. Kim et al. [7]). These approaches usually depend
on a hierarchy. In such hierarchical approaches, portions of the Internet are
divided and aggregated into hierarchical areas, and topology information at
each hierarchical level is aggregated and abstracted. This results in routing
entities at each hierarchical level having a simpler view of the topology. Having
hierarchy in the topology increases the storage and communication scalability,
but causes loss of detail in the aggregated areas, resulting in longer path
setup time and weak path computation. Aggregation is a lossy process and
can prevent the routing algorithm from finding a path that satisfies the QoS

constraints, even if one exists.

To implement end-to-end QoS, as we mentioned earlier, one solution is to
calculate an end-to-end QoS path at the source; so that we can be certain
that the QoS requirements are met before sending the traffic. After the QoS
path is calculated, a path needs to be established to the destination and during
this process the actual path parameters need to be verified. These steps ensure
the end-to-end QoS.

We are introducing a link-state-based source-specified inter-domain routing
architecture that consists of regions, which are collections of autonomous sys-
tems (AS). In our architecture, every autonomous system is represented by
a single routing agent, and each routing agent interacts with other routing
agents in its own region. By dividing the Internet topology into regions, we
are reducing the storage overhead in each routing agent. Regions also increase
the communication scalability by reducing the link-state flooding area, which
is the area where the link states sent by a routing entity can reach. Inside a
region, every routing entity only calculates QoS routes to every other domain
in its own region, which means we are also reducing the computation overhead.

In our routing architecture, we are not claiming to calculate the gateway
level QoS path to any destination. We are rather calculating the coarse inter-
domain QoS route (AS level paths) to a destination considering end-to-end
QoS parameters.

One challenge of representing every AS by a single agent is the difficulty of
aggregating the edge-to-edge QoS metrics of a domain. Hierarchical routing
strategies are often criticized because of the imprecision caused by aggregation
(S. Chen et al. [8]). Although our approach is non-hierarchical, our proposed
architecture may also suffer from the same problem. The question is: How can
we aggregate edge-to-edge QoS characteristics of a domain? Since we assume
that our proposal is based on Diffserv, there is an answer to this question in
this context. Every Diffserv domain has its own Per Domain Behavior (PDB)
characteristics. In RFC3086 [9], per domain behavior is defined as “the ex-
pected treatment that an identifiable or target group of packets will receive
from edge-to-edge of a DS domain”. This definition suggests that we do not
need to know the intra-domain topology of a Diffserv network to calculate a
QoS route through that domain; we can rely on the PDB of that domain.

To prevent the imprecision, we use a PDB of a domain when advertising the
link-states to other domains. A PDB of a domain can be determined based
on the worst-case scenario. A domain can establish a PDB from one edge to
another edge using maximum delay, maximum loss, minimum bandwidth etc.
These parameters can be the upper boundaries that domain can support when
the capacity for a certain QoS class is fully utilized. When all the capacity

allocated for a certain QoS class fully utilized, the domain will be responsi-
ble for delivering the PDB to the flows already accepted and will not admit
another flow of the same class unless some capacity becomes available.

The imprecision we are dealing with here is not the same imprecision that
are introduced by hierarchical routing approaches, which is the result of rep-
resenting a set of multiple domains’ parameters as a representative single set.
We are addressing the issue of how to represent a domain’s edge-to-edge pa-
rameters to the outside world and this problem is not unique to our approach.
Hierarchical approaches often address the issue of representing multiple do-
mains’ characteristics as if those are a single domain, but neglect to address
how to represent the edge-to-edge characteristics of a single domain. Before
addressing the representation of multiple domain characteristics as a single
domain, representation of a single domains’ edge-to-edge characteristics must
be addressed.

We designed our routing architecture to coexist with the Border Gateway
Protocol (BGP) on the Internet. BGP paths will be used to route best-effort
traffic and QoS paths will be used to deliver QoS traffic. Another feature of our
approach is that the QoS path information calculated by our routing agent is
not distributed to the routers inside the domain. Since QoS path information
is used to establish a path to a destination, this information is passed to the
entity that is responsible for path setup (such as a Bandwidth Broker in a
Diffserv network). Intra-domain routers forward the traffic based on the path
identifiers as is done in Multi Protocol Label Switching (MPLS). This requires
no change in the current conventional routing structure of the Internet; our
architecture can simply be plugged in on top of the current structure.

3 Region-Based Routing Architecture

The functional diagram and abstract path calculation process of our architec-
ture is shown in Figure 1.

3.1 Regions

In our architecture, the Internet is divided into regions. We consider the In-
ternet as a network I = (N, L) consisting of a finite set of nodes N and a
finite set of links L. Every node n€ N in this network is an AS. A region R;
= (V, E) is a connected graph that is a subset of network I (R; C I), and the
union of the regions is the Internet (I = Ry U R2U-..... UR,). One important
feature of the regions is that they overlap at the borders. If R,, and R, have

Functional Diagram

In-Region Path
Region Construction Link-State Exchange Calculation
(Precomputation)

Path Calculation Process

If Destination is
inanother Region

Path

In-Region Path
Calculation from

Regional Path
Calculation

Edge-to-edge AS-
level QoS Path

Precalculated Path
Extraction

Fig. 1. Functional diagram and abstract path calculation process.

an interconnecting link, then R,, N R, # (. Figure 2 gives a small representa-
tive internetwork. In this figure every node represents an AS. Figure 3 shows a
region configuration in that network. Every region consists of transit AS. Stub
AS are collected into special regions called stub-regions. All links between re-
gions appear in the topology. This is in contrast with other approaches which
choose a representative link and ignore secondary or tertiary links. This brings
richness to the topology and gives us the ability to calculate alternate paths
to a destination.

o Stub Domain

Fig. 2. A sample network

To construct a region we first determine the number of regions to have in
the network: 7. Next, we select ¢ number of nodes in the network that has
the highest degree as region leaders to construct a region. Starting from the
region leader of every region, we add other nodes into the regions based on

/Regionl \

Stub Regiof

v \ee

Fig. 3. Regions of the sample network in Figure 2

i

-

T

O\

the connectivity. One rule we follow is that a node cannot be a member of
more than one region, and every node is assigned to a region. Our region
construction algorithm is similar to the breadth-first search for a spanning
tree algorithm, but the difference is that the result is not a spanning tree,
but a connected subset of the graph. Region construction process is necessary
to identify the nodes in a region. After all the nodes of all the regions are
identified, region numbers are assigned to the nodes. Region identifications
along with node identifications are used to limit the link-state exchange in the
network. Following is the algorithm we used for region construction:

S is the temporary set of vertices, V is the set of highest degree nodes in

the network, and R is the set of regions, and i is the number of regions.

(1) Set S, to V, and set R, to the graph consisting of V,, and no edges,
where n=1,2,....i. V,, is the root of tree R,,.

(2) Process vertices in S,, in order. For each vertex x in S, add adjacent
vertex y to S, iff y is not in any Rn or .5,.

(3) Replace the content of S,, with the children in R,,. Go to step 2.

Once the regions are constructed, domains inside every region exchange link
states with other domains of the same region. Details of the link state ex-
change process are described in section 3.2. One of the important features
of our architecture is that regions do not constitute a hierarchy. There is no
single agent or system that represents a region and regions do not have any in-
telligence. Regions are only constructed to provide boundaries for a link state
exchange procedure.

Link State Area Regionl Link State Area Region2

Fig. 4. Link state area of regions of network in Figure 2

3.2 Link-State Fxchange

Inside every region, a link-state QoS routing protocol is employed. In our
architecture every domain is represented by a <domainld, Regionld> tuple.
Every domain inside a region keeps a table that consists of the neighbors of
the domain. We refer to this table as a peer table. In this context we define a
neighboring domain as a domain that has an edge to the origin domain. Every
domain inside a region keeps another table that consists of tuples <ingress
domain, region Id>. We refer to this table as a peer region table. Ingress
domain is a domain that has an edge to another domain in the reference
region. If a domain has an edge to another domain in another region, we call
this domain as an edge domain. Ingress domains are edge domains. A peer
table is constructed when the routing agents are first initialized.

Every domain advertises its link states to every other domain that is in its
peer table. When a domain gets a link-state message from a domain that is
in the peer table, the domain accepts the link-state message, updates its link-
state database and forwards the message to its own peers, except the one that
sent the message. This way link states of every domain reach to every other
domain in that region. If a domain is not an edge domain, that domain accepts
all the link-state messages and forwards them to its peers. If a domain is an
edge domain, it has to carefully examine the sender, originator, and regions
of the sender and the originator of the message before accepting the message
and relaying it into its own region. If a message is coming from a peer that is
in another region, and that domain is the originator of the message, an edge
domain accepts the message, updates its database and forwards that message
to its own peers that are in its own region. If a message is coming from a
peer domain that is in another region, and that peer domain is forwarding
the message from a domain that is not in the edge domains’ region, the edge
domain simply discards the message without updating its link-state database.

Domains should also be careful when forwarding link state messages. Messages
are not forwarded to the sending domain. If a peer domain is in another region
the message is not forwarded to that peer.

When a domain gets a link state message that is from a domain in another
region, the domain updates its link-state database and also updates its peer
region table. This way every domain in a region constructs its peer region
table that consists of all the ingress domains of all the neighboring regions.
This list of ingress domains is used for calculation of a path to a neighboring
region.

Our architecture tolerates inter-domain link failures. We assume that intra-
domain link failures are handled by intra-domain routing protocol and do
not trigger an inter-domain link-state update. Whenever an inter-domain link
failure occurs, this failure is automatically detected by the routing agent and
this information is distributed to every other domain in the region. Also link
parameters are updated periodically. If a significant change occurs in the link
state, domains send out the new link states to other domains without waiting
for the next update time.

If an edge domain gets isolated from a region because of a link failure, other
domains inside the same region use other edge domains to reach other regions.
If the edge domain that is isolated is used as an ingress domain by another
region, those domains in the other region use another ingress domain to that
particular region. If the ingress domain is the only ingress domain to that
region, regional path will be updated and there will be a path to destinations,
and possibly to the subject edge domain (if it is not completely isolated from
the Internet) over another region. Based on our evaluation results, especially
in large networks, there are multiple ingress domains of a region and we don’t
expect any regional path changes.

Regions can be constructed by an authority, such as ARIN [10], and domains
can be assigned to a particular region based on the connectivity. One rule for
region construction is that every domain inside a region should be able to find a
path to every other domain in the same region without going out of the region.
Region size can be determined by the authority based on the performance of
the routing protocol, and region sizes need not be fixed and we expect the
region sizes will be different because of the heterogeneous connectivity of the
Internet.

3.8 Path Calculation Process

Whenever a domain accepts a new link-state message, it results in a change
in the link-state database. Every domain inside a region calculates a path

to every other domain inside the same region. Path calculation can be on-
demand or based on precalculation. When a source domain s wants to send
QoS traffic to a destination domain d, s first determines the region of the
destination domain (Ry). If the source domain is not in the same region as
the destination domain (Rs; # Ry), the source domain calculates a regional
path to the destination domain. This path consists of a sequence of regions
from R to Ry : Pr = (Rs,....,Rq). Starting from the source domain, every
ingress domain of regions on the regional path calculates a QoS path that
connects the previous region to the next region on the regional path. When
the source domain identifies the regional path Pg, the next step is to identify
an ingress domain of the next region on the regional path; then the source
domain calculates the shortest path that satisfies the QoS parameters to that
ingress domain. This approach is analogous to intra-domain link-state routing
approaches. In intra-domain routing, if a core router wants to transfer traffic
outside its domain, the core router identifies the border router that will carry
the traffic to other domains and calculates a path to that border router. After a
calculation of the QoS path through its own region, the source domain sends a
Path Request Message to the ingress domain of the next region. This message
includes the explicit regional path and the QoS parameters.

The QoS parameters embedded into the Path Request Message are not the
original QoS parameters requested by the end-system. After a domain calcu-
lates a QoS path through its own region, that domain knows the QoS charac-
teristics of that path. Let’s assume the original QoS parameters were additive
and values were: C', Cs, C3 and the QoS characteristics of the path calculated
by the domain djare: ci1q, < Cy, coq, < Cs, and csq, < C3. When sending a
Path Request Message, d; puts C,C%, and C% as QoS parameters where:

r ’ !’
Cl—Cl—Cldl ,CQ—CQ—Cle ,C3—03—03d1.

The path calculation process of the source domain is repeated by every ingress
domain of the regions on the regional path until the Path Request Message
reaches the destination domain. The destination domain simply responds with
a Path Response Message to the ingress domain that sent the message to the
destination domain. Every ingress domain involved in the path calculation pro-
cess relays the message back to the source domain after adding their subpaths
to the explicit path object in the Path Response Message. The end-to-end QoS
path is a concatenation of the subpaths calculated by ingress domains of every
region on the regional path P=(Pg,,...,Pr,). When the source domain receives
the positive Path Response Message, the QoS path is completely calculated
and the path setup can be initiated.

As it can be seen from the protocol, our goal is first to find the best QoS path

inside a region, then to calculate the regional path to the destination (which
consists of regions), and then to ask the ingress domain of the neighbor region

10

to calculate a path to the next region until the path is calculated to the
destination domain. The algorithm is shown in Figure 5.

Path Request:
Get PReqM(source-id,destination-id,
penultimate-id, JoS Parameters);
IF penultimate-id = my-id
Check the QoS parameters to the destination domain
IF available:
Path = (destination-id)
Return PRespM;
IF not available:
Return Error;
ELSE IF penultimate-region = my-region
Calculate the QoS path:
Path=(ni,nz...pn)
Update the QoS parameters
Send PRegM to pn with updated QoS parameters;
Wait for PRespM;

IF penultimate-region != my-region
get next-region: nr
get ingress to the nr: nri
Calculate the QoS path to the nrz:
Path = (ni,n2,...nrt)
Update the QoS parameters
Send PRegM to nr¢ with updated QoS parameters;
Wait for PRespM;

Path Response:
IF destination-id = my-id
Path’ = null;
Send PRespM(Path’) to penultimate-id;
ELSE
Get PRespM(Path)
Path = Path | MySubPath
Send PRespM(Path)

Fig. 5. Inter-region path calculation algorithm

We have three different sections to coordinate for this routing architecture to
work: intra-region interconnections, inter-region interconnections, and stub-
domains to core interconnections.

3.4 Intra-Region Interconnection

A region consists of a number of transit AS ! (Figure 3). A link-state flood-
ing area of a region is broader than the region itself. We include the ingress
domains of neighbor regions in the link-state topology (Figure 4), where an
ingress domain of a region is any domain that has at least a single link to
another domain in another region. Topological view of every domain in a re-
gion includes every other domain in the same region, and the ingress domains

L' An exception is the special regions for stub domains.

11

of neighbor regions. We note that although members of a region have the
ingress domains of neighboring regions in their topological view, those ingress
domains do not have those members in their topological view. Figure 3 and
Figure 4 show the difference between the definition of a region and the link-
state flooding area of a region. Penultimate domains - those transit domains
that connect to stub domains - have an exceptional topological view. Since
we are keeping stub domains out of the view of core regions for scalability
purposes, and we need to calculate a path to the edge of the destination stub
domain, we are including stub domains in penultimate domains’ topological
view by defining a region that includes only the penultimate domain and its
connected stub domains. This region is called a stub region. When a path
request comes to a penultimate domain for a certain stub domain, the penul-
timate domain simply checks the connection to that stub domain. This step
is necessary to verify that the QoS metrics are in fact satisfied through the
edge of the stub-domain.

3.5 Inter-Region Interconnection

Having every region’s topological view include its neighbors’ ingress domains
facilitates inter-region path calculation. Once a domain inside a region finds
the best path through its own region to the next region, that path ends at
the ingress domain of the neighbor region. The next step will be sending a
Path Request Message to that ingress domain to calculate a path to a certain
destination through its own region. Upon receiving the Path Request Message,
if the destination domain is in its own region, an ingress domain calculates
the path to the destination and sends back the result with a Path Response
Message. If the destination is in another region, the ingress domain calculates
a path to the ingress domain of the next region that has the available ca-
pacity, and forwards the Path Request Message to the next ingress domain
with updated QoS parameters. When an ingress domain receives a Path Re-
sponse Message that corresponds to a previously sent Path Request Message,
ingress domain appends the explicit path, which is calculated to the ingress
domain that is sending the Path Response Message, to the head of the path,
and forwards the Path Response Message to the originating domain of the
request. With the Path Request Message, requesting routing entity will pass
the updated QoS parameters and optionally the abstract regional path to the
ingress domain of the next region.

12

3.6 Stub-Domain Penultimate-Domain Interconnection

The next step is to solve the stub domain - penultimate domain interconnec-
tion issue. If we think in terms of routing, a path found by a penultimate
domain to a destination and a path found by a stub domain to the same
destination is the same path except that the stub domain path also includes
the penultimate domain, because the stub domain must use the penultimate
domain to transfer its traffic. In the case of multihomed networks, the same
argument is valid; in that case, the choice of the penultimate domain will de-
termine the path and the path will be the same path as the chosen penultimate
domain’s path.

Every stub domain has its related penultimate domain and other stub do-
mains that are connected to the same penultimate domain in their topology.
A stub domain requests a path to a destination from its penultimate domain.
Once the path is calculated to the penultimate domain of the destination stub
domain, one last Path Request Message is sent to the penultimate domain
of the destination stub domain. The penultimate domain verifies that QoS
metrics still hold to the edge of the destination stub domain. Once the path
information comes back to the originating domain, QoS path is ready and
path setup process is initiated using the calculated QoS path.

One of the issues we need to solve is “how do we find the penultimate domain
of a network we are trying to reach?” Stub domains are not visible to the
core of the network. This makes it hard for a domain to determine the path
to that network. To solve this issue, every region can keep a nameserver that
has the stub domain, penultimate AS, region information for networks. This
information can be extracted from a BGP routing information base. BGP
announces the whole AS path to neighbors for a destination. By looking at
this message we can prepare a table that consists of a reverse tree, starting
from the network, to the penultimate AS and to the region.

It is important to note that we are not proposing a new QoS routing heuristic
that will enable one to solve multi-metric path calculation problem. There are
various heuristics that can be employed in our architecture. We are provid-
ing an architecture and framework that facilitates scalable link-state routing
without loss of any information due to aggregation property of hierarchical
approaches. Inside every region, there can be different routing protocols run-
ning. Every region can use different heuristics to compute a QoS path with
multiple metrics. As long as domain-level routing agents understand the Path
Request and Path Response Messages, and be able to respond with an explicit
path, our architecture works. Another important feature of our architecture is
that a source domain does not have any control over the intra-domain path se-
lection of any other domain. Intra-domain topology is completely hidden from

13

other domains and an intra-domain path selection is responsibility of every
autonomous system. A source domain only calculates an AS level path. This
will prevent malicious use of the architecture to create congestion in other
domain’s intra-domain links.

Another important assumption we have to note is on the QoS model. As a
QoS model, we are assuming that every domain allocates a certain percentage
of its physical link capacity to a certain class of traffic. Bandwidth constraint
model does not permit one traffic class to starve another traffic class. A flow
belonging to a certain traffic class always gets the treatment of that class as
long as there is available capacity for that class to accommodate the flow.
This means that at any time, there cannot be a situation where a link cannot
support given traffic that has already been accepted, except for link failure
cases.

As we mentioned earlier, we use this architecture along with BGP. As this
routing approach is used for QoS traffic, BGP is used for best effort traffic.
When this routing approach stabilizes and becomes widely used over the In-
ternet, best effort traffic can also be channeled by our routing approach and
with extension to the protocol to enable it to communicate with the border
routers, BGP can be completely replaced by our new routing architecture.

4 Evaluation Results

In this section we explain the evaluation methodologies, test scenarios and
evaluation results for our QoS routing architecture. We tested our architecture
in terms of scalability. We compared our architecture with the basic approach
(every domain, except stub domains, on the Internet is represented as a single
entity in the topology), and analyzed the effect of the size of a region on
the scalability. We also analyzed the path-finding ability of our protocol. The
reason for this investigation is that our architecture uses a concatenation of
regional subpaths to find an end-to-end AS-level path to a destination, and
there is a possibility we will miss the best path, because the source does not
have a complete view of the Internet. The best path found inside a region might
not be a component of the absolute best path across the Internet. Comparison
between the size of a region and the impairment of shortest path finding ability
will reveal the architectures’ tradeoff between scalability and path finding
ability. The question we answer is “how much are we sacrificing to make the
architecture scalable and is the sacrifice tolerable with respect to the gain from
scalability?”

14

4.1 Simulation Environment and Topologies

We evaluated our architecture using the ns2 simulation tool [11]. We con-
structed the topologies using the BRITE topology generator [12]. Our topolo-
gies are generated using heavy-tailed Waxman model and heavy-tailed Barabasi-
Albert model [13]. We evaluated our architecture using three different topolo-
gies: 100 nodes, 1500 nodes, and 3000 nodes. All topologies consist of only
transit domains. Our region structuring technique is independent of the num-
ber of AS present in the underlying network.

For the topology selection, apart from topology generators, we have one other
choice, which is to use topologies that are generated from a BGP routing table.
One source we are aware of for this kind of topologies is the data provided by
University of Oregon Route Views Project [14]. One can suggest that using
the topologies generated from real BGP routing tables will be more realistic
for the evaluation of the subject study. One important issue we have to point
out with this suggestion is the possibility of the incompleteness of topologies
generated by using these routing tables. Authors in [15] studied the topolo-
gies generated using Oregon Route Views BGP data and compared that with
topologies they constructed using the data they collected employing several
different Looking Glass sites and Internet Routing Registry (IRR). As a result
of the study, authors found out that “there are at least about 25%-50% more
AS connections in the Internet than commonly-used BGP-derived AS maps
reveal”. This is an important finding. Even if we generate a topology using
real BGP tables, the generated topology still misses a significant amount of
connectivity that exists in the Internet. The result we cited above compares
two approaches, where one approach uses only one BGP table and the other
one uses multiple data sources. Even the second approach has a chance to miss
the existing links in the Internet. In order to evaluate the second approach’s
completeness, we need to know the exact topology of the Internet, which no
one has today.

Whether we use a topology generated by a topology generator or a topology
generated using BGP data, that topology will not be the exact representation
of the Internet. Main point we need to look at is whether the topology we
use has the basic characteristics of the Internet topology, rather than asking
whether it is a real Internet topology or not. Another point we need to carefully
think is whether the topology affects the evaluation results; in other words,
what is the sensitivity of the approach to the topology?

Since we do not have a chance to obtain the exact topology of the Internet, and
the Internet topologies generated by a BGP data misses significant amount of
links that exist in the Internet, which is important to have for an inter-domain
routing study, any topology we choose to use, whether it is generated by a BGP

15

data or by a topology generator, will be missing some of the characteristics
of the real Internet topology. Rather than verifying the representativeness of
the topology we use in our simulations, which is out of scope of this study, we
study the sensitivity of our architecture to the topology in addition to other
evaluations we mentioned above.

4.2 Simulation and Evaluation Details

We automated the region construction process using a simple heuristic. At
first we determine the number of regions we want to have in the topology.
Then we select the same number of nodes from the topology starting from the
node that has the highest degree. We refer to these nodes as “region leaders”.
Then following the edges of the region leaders, we add other nodes to the
region. This iteration continues until all the nodes in a topology are assigned
to a region. Every node in a topology is represented by a (node-id,region-id)
pair.

Inside each region we employed a link-state approach to distribute the topology
information to every other member of the region. We only considered available
bandwidth, which is advertised within the link-state, as a QoS metric in our
path calculations. This bandwidth is the minimum of the inter-domain link
bandwidth and the available intra-domain bandwidth to the advertised des-
tination. We used the Bellman-Ford (BF) algorithm to select the QoS paths
inside a region. The advantage of using BF is that this algorithm finds the
shortest path with the requested amount of available bandwidth, which means
that the path is optimized with respect to the available bandwidth and the hop
count [16].

For the calculation of an abstract regional path to a destination, we also
selected the shortest regional path possible. For the simulations we ran, we
used static regional paths. Once the regional path is selected, a node needs to
determine an ingress node to the next region in the abstract regional path. If
there is a single ingress node to next region, this selection is straightforward. If
there are multiple ingress nodes to a neighbor region (which is highly possible),
we selected the shortest path to that region that has the requested available
bandwidth.

As a result of these simulations, we analyzed our architecture in terms of com-
munication, computation and storage scalability. All these measures depend
on the number of regions in a topology, which determines average region size.
The region sizes are not uniform. Every region has a different size depend-
ing on the selected region leader at the beginning of the region-construction
process.

16

Another important measure we considered when evaluating our architecture
is whether our architecture imposes additional traffic on the Internet or not,
which is also used as a measure for analysis by G. Apostolopoulos et al. [17].
This measure is evaluated by the average number of hops in the shortest
paths. If an average shortest path length (SPL) found by this architecture is
longer than average of the absolute shortest path lengths of the topology, extra
traffic is being imposed on the Internet by our architecture by occupying extra
links. We analyzed the tradeoff between the scalability and the extra traffic by
comparing the increase in the region size and the average SPL. If the average
SPL is not increasing dramatically while we reduce the region size, and in
turn increase the communication, computation and storage scalability, our
architecture is successful.

We also considered the path setup time as a measure to study our architecture.
If a destination domain is in the same region as a source domain, only one
path calculation takes place. If the destination domain is in another region,
then path establishment time is increased based on the number of regions
the destination is away. Every region should calculate the path and return
the results. For the path setup time, we took the number of Path Request
Messages as a measure. Every Path Request message adds to the path setup
time.

4.8 100 Domain Simulation

l 100 AS H Avg Region Size [Avg SPL Longest SPL % of longer SPL Avg. # of PRM

1 Region

100

3.41

6

0

0

5 Regions

38.6

4.29

10

8.08

1

11 Regions

18.5

4.35

12

11.05

1.25

Table 1
Results for 100 node simulation

Table 1 shows the simulations results for a topology with 100 nodes. For
this topology we simulated our architecture using 3 different configurations:
1 Region, 5 Regions, and 11 Regions. We calculated paths from each node to
every other node in the topology. This means we calculated every possible path
in the topology, which adds up to 9900 path calculations. All path calculations
are based on a fixed-size bandwidth request. The first configuration has a single
region and all the nodes are members of this region. The paths calculated on
this configuration are the absolute shortest paths in this topology and we use
this calculation as a basis of our comparison with other configurations.

The first column in the table shows the number of regions used for the simu-
lation. Having results for different sized regions gives us a solid foundation to
evaluate our architecture in terms of the scalability measures we mentioned
above. The second column in table 1 shows the average size of a region for a

17

given configuration. The third column shows the average length of the shortest
path lengths (SPL) found during the simulations; the fourth column shows the
longest of the SPL found for that configuration. Column five gives the percent-
age of the SPL that are longer than the longest SPL of the base configuration
(in this case 1 region) for a given configuration. The sixth column shows the
average number of path request messages which is important for path setup
time measurements.

For simulation of one region, all the nodes are members of a single region and as
a result the size of the region is 100. In this configuration, the number of entries
in a nodes’ Forwarding Information Base (FIB) is 99. Average SPL in this
configuration is the average of the absolute shortest paths for this topology.
We use this value as a benchmark for the other configuration results on the
same topology. The longest SPL found in this configuration is 6, and since
there is only one region there is no path request message for this configuration.

SPL Distribution for 100 ASes

A
R

- /// N\

e NN

1 2 3 4

| —=—" Region =5 Regions —t— 11 Regions ‘

Fig. 6. SPL distribution for 100 node simulation

For 5 regions, average region size is reduced by 61.4% compared to 1 region,
and the average SPL is increased by 25%. For 11 Regions, the region size is
reduced by 81.5% and average SPL is increased by 28% compared to the 1
region configuration. This suggests a tradeoff between the scalability and the
SPL. Although we are sacrificing from the average SPL, the gain from the
region size is far more than the loss from the SPL. Figure 6 shows the SPL
distribution for 100 node simulation.

The average number of PRM determines the effect of our architecture on path
establishment time. For 5 region configuration, there is only 1 PRM to calcu-
late a path to destinations that are in another region. 11 region configuration
requires 1.25 PRM on average to calculate paths to destinations that are in
other regions.

18

To verify the results we got from the 100 node network, and to test the sensitiv-
ity of the results to the simulation topology, we decided to rerun the simulation
on multiple networks with 100 nodes that are generated by the same topology
generator. We generated 10 different topologies. 5 of the topologies are gener-
ated using heavy-tailed Barabasi-Albert model, and 5 of them are generated
using heavy-tailed Waxman model. Results from these topologies show us the
sensitivity of our architecture to the topology of the network. Table 2 shows
the results for these simulations.

100 AS || 1 Region | 5 Region | 10 Region
BA1 2.93 3.65 3.75
BA2 2.92 3.55 3.73
BA3 2.99 3.68 3.80
BA4 2.92 3.51 3.66
BAS5 3.08 3.75 3.85
WwWé 3.4 4.31 4.37
W7 3.37 4.05 4.26
W8 3.4 4.22 4.34
w9 3.32 4.11 4.35
W10 3.37 4.20 4.39

Table 2
Average SPL for 10 different 100 node topologies.

As it can be seen from figures 7, and 8, results of all the simulations for
different topologies are in parallel to the results we got for the first 100 node
simulation. On all the topologies, for 5 region simulations average SPL is
increased by 20%-27% compared to 1 region, and for 11 region simulations
average SPL is increased by 25%-30% compared to 1 region average SPL. By
looking at table 2, we can observe different characteristics of the topologies.
Topologies generated using Barabasi-Albert (BA) model has significantly less
SPL than the topologies generated by Waxman model. Average region size for
BA topologies is very close to the average region size for Waxman topologies.
For 10 region, all BA topologies have average 20.7 domains inside a region; all
Waxman topologies have 21 domains. For 5 regions, all BA topologies have
40.4 domains inside a region, and all Waxman topologies have 41 domains
inside a region which are also similar to previous results.

Results from the exhaustive 100 node simulation runs on different topologies

suggest that results do not depend on the characteristics of a topology; our
architecture performs similarly on different types of topologies.

19

bal ba2 ba3 ba4 ba5 whtl wht2 wht3 wht4 wht5
Topology

‘—0—1 Reg —e—5Reg 10 Reg ‘

Fig. 7. SPL for 10 different 100 AS topologies

Percent

bal ba2 ba3 ba4 bas whtl wht2 wht3 wht4 wht5

Topologies

‘—0—1 Reg —m—5Reg 10 Reg ‘

Fig. 8. Percentage changes of SPLs based on 1 region SPL being 100 percent for 10
different 100 AS topologies.

4.4 1500 Domain Simulation

To analyze the performance of our approach on large networks, we simulated
our approach on several different large topologies. The first one of these topolo-
gies is generated using BRITE topology generator [12] and has 1,500 AS in
the network. We will refer to this topology as B1500 for the rest of this sec-
tion. This topology is an AS level topology as in the 100 node case and does
not include any router level details of an AS. The second topology we used is
generated using the same topology generator. In this case we generated 15,000
AS topology, which is approximately the size of the Internet as of Jun 2003. To
complete the simulation in a reasonable time, we extracted transit AS from the

20

topology, and as a result we ended up with 1621 AS and 2936 interconnecting
links. For the rest of this section, we will refer to this topology as B15000.
We selected our third topology from University of Michigan Topology Project
webpage [18] that represents the connectivity of the actual Internet on that
day, which we will refer as MT1500. This topology is based on the topology
generated by the Oregon Route Views data [14], and specifically from the
BGP data collected on March 31 2001. Details of how this topology is gen-
erated are described in Q. Chen et al. [19]. From this topology we extracted
transit autonomous systems and as a result of this reduction, our topology
has 1522 autonomous systems and 6822 edges in total. For the first topology
we simulated our approach using four different configurations: 10 region, 24
region, 44 region, and 60 region. For all other topologies, we only simulated
our approach for one configuration and that is 60 region configuration.

Table 3 shows the results for simulations using B1500 topology. For this simu-
lation we randomly selected 1000 source-destination pairs and used the same
set for path calculations on all the configurations. For these 1000 source-
destination pairs, we calculated a path that satisfies a certain amount of band-
width. Our analysis is based on the relative performance of the configurations.

l 1500 AS H Avg Region Size [Avg SPL [Longest SPL [% of longer SPL [Avg. # of PRM ‘
10 Regions 286.5 6.98 13 0 1
24 Regions 121.75 7.08 13 0 1.01
44 Regions 69.3 7.63 16 1.7 1.28
60 Region 50.65 7.84 17 3.9 1.46
Table 3

Results for B1500 topology simulation

We used the 10-Region simulation results as the base of our comparisons
because of the long simulation run time of 1 region configuration on B1500
topology. In terms of average region size, 24 Regions results indicate a 57.5%
decrease from 10 Regions simulation region size, 44 Regions results indicate
a 75.8% decrease relative to 10 Regions, and 60 Regions results indicate an
82.3% decrease. In contrast to this, 24 Regions indicates a 1.4% increase in the
average SPL; 44 Regions indicates a 9.3% increase, and 60 Regions indicates
a 12.3% increase in the average SPL. Figure 9 shows the SPL distribution for
B1500 topology simulation.

For the last two topologies, we used 60 region configuration, and we selected
5000 random AS pairs for the path calculation. Table 4 shows the results for
these simulations and 60 region simulation results for B1500 topology simula-
tion.

Figure 10 shows SPL distribution of 60 region configuration on B15000 topol-
ogy. The average SPL on this topology for 60 region configuration is 6.21,
which is comparable to 60 region configuration of B1500 topology, which has

21

SPL Distribution for 1500 ASes

260

200

160

-\
77\
I = N

L N

1 2 3 4 5 B 7 3 3 10 1 12 13 14 15 i 17
| == 10 Regions =—¢=2¢ Regions =—-@=—dJ44 Regions -—f—G0Regions |

Fig. 9. SPL distribution for B1500 topology simulation

1500 AS H Avg Region Size [Avg SPL [Longest SPL [Number of AS [Number of Links

B1500 50.65 7.84 17 1500 3000

B15000 50.3 6.21 17 1621 2936

MT1500 116.4 2.81 11 1522 6822
Table 4

Results for 1500 node 60 region simulations

7.84 average SPL. The maximum SPL is the same for both of the topologies
and also the average number of edges are very close: 1.81 for B15000 and
2.0 for B1500. For both of these topologies, the average region size is also
very close. Although we extracted transit domains among 15,000 domains in
B15000 topology, the characteristics of the network is very similar to B1500
network, which is generated using the same topology generator.

B15,000 SPL Distribution for 60 Region Configuration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
SPL

== B15,000 60 Region

Fig. 10. SPL distribution for 60 region B15,000 topology

Results of the 60 region simulation on MT'1500 topology show that the average

22

SPL for this topology is 2.81. This average is much less than B1500 and B15000
topologies’ average SPL. Reason for this difference is the high connectivity of
MT1500 topology. In this topology there are 6822 edges for 1522 nodes, which
means the average number of edges per domain is 4.48; in B1500 it is 2.0,
and in B15000 average edges per domain is 1.81. High connectivity of the
MT1500 topology also affects the average region size, because a region size
also includes the ingress domains of neighbor regions. As the number of edges
to other regions increases, number of ingress domains in a region’s topology
also increases. On MT1500 topology simulation, the average region size is
114.7, which is more than twice the average region sizes of B1500 and B15000
topologies.

If we add source and destination stub domains as two hops to the SPL of
MT1500 topology, the average AS path length will be 4.81, which is less than
the actual average path length visible on the Internet on March 31 2001,
which is 5.3 [20]. Although we did not calculate paths for all possible source
destination pairs, maximum visible AS path length in our simulation is still
comparable to the actual maximum visible AS length on the Internet. With
consideration of source and destination stub domains, maximum visible AS
path length in our architecture is 13, where in actual Internet it is 17 [20].
Although we cannot compare the results with other configurations that are
on the same topology, we can compare these results with the results from the
B1500 topology 60 region configuration, and B15000 topology 60 region config-
uration. Results from MT1500 topology show that our architecture performs
significantly better in terms of average SPL in highly connected networks. The
SPL distribution for this simulation is shown in Figure 11.

SPL Distribution

1800 +

1600

AN
“ 7\
i A N

Number of Paths
o]
(=]
(=]

—&=—SPL Distribution

Fig. 11. SPL distribution for 60 region MT1500 topology

Figure 12 and Figure 13 show the relative percentage changes of average SPL
and average region size for 100 nodes and B1500 topology simulations respec-

23

tively. Figure 14 shows the percentage changes on the SPL and region size for
10 different 100 domain topologies. As it can be seen from the figures, gain
from the region size is always far more than the increase in the SPL.

140 4

] 128
120 /D*T
100
. \
60 \

20 \

~=<> 185

Percentage

1 5 11

Number of Regions

‘—D—Avg. Spl === Avg. Region Size ‘

Fig. 12. The average SPL and the average region size comparison for 100 node
simulations.

120

i]| 112.3
100 _ Jmﬂ/‘:’w,T
80 N\
60 \
w0 \4&5
\\
20 T 177
0

10 24 44 60

‘*Avg Region Size ==Om== Avg. spl ‘

Fig. 13. The average SPL and the average region size comparison for B1500 node
simulations.

Throughout our simulations we used bandwidth as the QoS metric. It is shown
in Wang et al. [21] that deciding a simple path which satisfies multiple ad-
ditive metric constraints or multiple multiplicative metric constraints is NP-
complete. This limitation lead researchers to develop heuristics (Korkmaz et
al. [22]) and metric selection criterias (Wang et al. [21]) to solve multi-metric
path computation problem. It is also shown in Wang et al. [21] that bandwidth
and delay are not independent metrics. These are the reasons for us to con-
sider only the available bandwidth as a QoS metric and any of the developed

24

140

—e—balSPL

&4 —=—balSPL
120 — —ba2SPL
—»—ba2Reg
—¥—ba3SPL
100

—e—ba3Reg

——ba5SPL
baSRe:
80 9

——wht1SPL

\ whtlReg

60 — —wht2SPL
wht2Reg

——wht3SPL

40 wht3Reg
—o—wht4SPL

20 wht4Reg

——wht5SPL

Percent

———WwWht5Reg

1 Reg 5 Reg 10 Reg

Configuration

Fig. 14. SPL and region size percentage changes for 10 different 100 domain topolo-
gies.

heuristics can be used in our architecture.

Results of 1500 nodes simulations support the results of 100 nodes simulations.
For 1500 nodes, percentage change in the average SPL with decreasing region
size is far less than the percentage change in 100 nodes simulations. This
indicates that our architecture performs better in bigger topologies. There
is a clear tradeoff between the region size (which effects the communication,
computation and storage scalability) and the average SPL. As the topology
gets larger, scalability becomes much more important and our results suggest
that the increase in the SPL is far less than the gain from the scalability.

Region-based routing can have economical effects on the Internet. Although
we are not analyzing the economic effects, from the findings of our simulations
we can comment on the economic effect of our architecture. As we show in
table 3, as we change the size of a region in a network, the average shortest
path length in the network for that particular region configuration increases.
If we take that every link has a unit economic cost, then shortest length path
becomes shortest cost path and when the number of regions increases, average
cost of the path also increases. This is the tradeoff of our architecture.

4.5 3000 Domain Simulation

Last simulation result is shown in Table 5. This simulation is performed on a
3000 node topology. We used only one configuration on this topology, which

25

has 128 regions. The reason for us to perform this simulation is to demon-
strate that our architecture can work on a huge network. Currently there are
approximately 7.6 stub-AS on the Internet for every 1 transit-AS. Because of
this 3000 AS network corresponds to around 23000 AS Internet.

[3000 As | Avg Region Size | Avg SPL | Longest SPL | Max. Number of PRM |

l 128 Regions H 47.7 [9.18 [20 [2 ‘
Table 5
Results for 3000 node Simulation

5 Related Work

In this section, we review various inter-domain routing approaches. These
approaches can be classified as path-vector approaches, hybrid approaches
(link-state and path-vector together), and hierarchical approaches that are
proposed to make the link-state-based approaches scalable.

Currently, a majority of the Internet uses BGP4 [3] for inter-domain routing.
This protocol is based on a path vector algorithm. Every AS that uses BGP
advertises to its BGP peers the reachibility information for its domain. There
are several studies about the problems BGP is facing in today’s Internet [23],
[24], [25], [26]. Major concerns with BGP are the convergence time and the size
of the BGP routing table. Implicit inter-domain traffic engineering using BGP
also adds stress to these concerns. There are attempts to add QoS capability to
BGP [27], [28], [29], but the proposed solutions make BGP even more complex.

The most common approach to solve the scalability problem of link-state-
based inter-domain routing is to use a hierarchy [4], [6]. Hierarchical ap-
proaches are known to be lossy in terms of domain level information, since
several domains have to be represented as if they are a single domain, and
all the parameters concerning the inter-domain routing have to be aggregated
into a single set of parameters. As a result of this, a routing algorithm may
not be able to find a path to a destination that satisfies certain requirements,
even though one exists.

Alaettinoglu and Shankar [2] propose to use viewservers to solve the prob-
lems of hierarchical routing. This approach basically uses subsets of the In-
ternet topology to calculate a path to a destination by merging views of the
viewservers that exist in the topology in a hierarchical manner. Viewservers
provide topological information on their level of the hierarchy. One concern
with this approach is that the size of the merged view at the source can in-
crease computational and storage costs. Another drawback is that path setup
time is increased by the number of requests for views from the viewservers.

An approach that addresses the inter-domain QoS routing problem is de-

26

scribed in S.H. Kim et al. [7]. This approach also uses hierarchies to make
the approach scalable. When constructing the hierarchical groups of domains,
all the gateways are included in a graph. Evaluation results of this routing
approach are not available, making it difficult to analyze this approach.

D. Estrin et al. [5] present a hybrid approach to solve the inter-domain rout-
ing problem. This approach proposes to use the path-vector approach for most
common Type of Service (ToS) and policy constraints, and the link-state ap-
proach for rare ToS and policy constraints. This proposal does not address the
scalability of the link-state part of the proposed architecture.

In [6] M. Streenstrup proposes using link state approach to implement inter-
domain policy routing with source specified route generation. This gives a do-
main the ability to distribute the route information to the domains it chooses
and to calculate the route to a specific destination based on its own reason-
ing. This approach proposes the use of superdomains, which are collections
of multiple domains into a representative single domain that are built in a
hierarchical way to make the approach more scalable. The problem with su-
perdomains is the loss of information during the abstraction process.

P. Zhang et al. [30] focuses on how QoS routing can be realized and used
to setup end-to-end QoS paths in a Diffserv network. It can be seen from
this work that the main bottleneck is the lack of knowledge on whether the
resources are available beyond an Autonomous System (AS) or not and that
lack of knowledge tends to increase the path setup time. There is a survey
paper by S. Chen et al. [8], which analyzes the QoS routing approaches with
their advantages and disadvantages. This paper helps to understand the issues
involved in QoS routing problem.

An example work for bypassing BGP for resiliency purposes is “Resilient Over-
lay Networks (RON)” by D. Andersen et al. [31] and [32]. This work aims to
provide more robust and resilient operation for applications over the Internet.
End points called RON nodes configure themselves into an overlay network.
Connections among participating RONs are calculated based on link param-
eters between two RONs. Then end RONs calculate the best path to another
RON using the overlay topology. Source routing is achieved by IP encapsu-
lation. The goal of this work is not to provide QoS, but rather to make the
overlay network resilient and more efficient and immune to the faults of the
network caused by BGP. Another work on “End-to-End Effects of Internet
Path Selection” by S. Savage et al. [33] analyzes the paths taken in the In-
ternet and tries to show that in most cases there are better alternate paths
than the one given by current routing protocols. This work shows that in “30-
80 percent of the cases, there is an alternate path with significantly superior
quality”.

27

These last two work support our idea of forwarding our QoS traffic on a path
that we select using the link metrics independent from the route provided
by traditional inter-domain routing protocol (such as BGP). We don’t want
to change the infrastructure of the Internet. Our solution sits on top of the
current topology and QoS traffic is forwarded using QoS paths calculated by
our approach and best effort traffic is forwarded along the paths that are
advertised by the current routing protocols.

6 Comparison of Results with the Viewserver Approach

To evaluate the performance of our architecture, we need to compare it with
another system. One study that has a methodology to evaluate the routing
approach and has the results that has properties with which we can compare
our architecture is Alaettinoglu et al. [2]. In this work performance of the
routing approach is studied in terms of scalability and path calculation ability.
Although results from this study depend on the underlying network topology,
size of the topology used for this study is comparable to the size of the topology
we used for 1500 node simulation. The topology used by Alaettinoglu et al.
[2] has 11,100 nodes which includes 1000 Metropolitan Area Networks, 100
regional networks, and 10 backbones. If we exclude stub domains from this
topology, there are 1110 transit networks in the topology. In our topology, we
have 1500 transit nodes in the topology.

Number of Nodes Region Size Number of Messages

Region-Based 1500 50.65/286.5 1/1.46

Number of Nodes Merged View Size Number of Messages
Viewserver 1100 23/362.15/486 3/7.51/8

Table 6

Comparison of region-based approach with viewserver approach.

To calculate the complete path, a source queries multiple viewservers, merges
these views at the source and then calculates the path. If the source cannot
find a path in the merged view, the source queries more viewservers to enrich
the merged view. To measure storage scalability, authors used size of the
topology kept at each source, and merged view size. These measures give the
memory requirement at each source. Another measure used by the authors is
the number of query messages to calculate a path to a destination, which in
turn determines the path calculation time. We will compare these measures
with results of our architecture. For the storage scalability, our measure is the
average region size. For path calculation time, as we mentioned earlier, we use
average number of PRM.

Authors of [2] used different configurations to evaluate the effect of each con-
figuration to the results. Since authors suggested that vertex-ex scheme is
the best configuration, we will use results from this configuration to compare

28

our results. For storage scalability, we will compare our results with merged
view size results of [2], because that gives the information about the required
amount of storage to calculate a path.

In Alaettinoglu et al. [2], average merged view size for vertex-extension config-
uration is 362.15, and average number of viewservers queried to obtained the
merged view size is 7.51. In our architecture, for 1500 node topology, average
region size is 286.5 for 10 region, 121.75 for 24 region, 69.3 for 44 region, and
50.65 for 60 region configuration. Average number of PRM are 1 for 10 region,
1.01 for 24 region, 1.28 for 44 region, and 1.46 for 60 region configurations.
In our configurations, worst case for storage scalability is 10 region configura-
tion, which has 286.5 average region size. Although this is the worst case in
our architecture for this topology, average region size is less than the merged
view size. In terms of the path calculation time, worst case in our architecture
for this topology is 60 region case, which requires on average 1.46 PRM to get
the complete path to a destination. This is much less than 7.51 view query
messages to get a merged view to be able to calculate a path to a destina-
tion in viewserver architecture. If we consider all the configuration cases for
viewserver hierarchy, average merged view size ranges from 71.03 to 396.8. In
our architecture, average region sizes ranges from 50.65 to 286.5. Although
these are not the only possible configurations for our architecture, results are
still better than viewserver results. Comparison results are listed in table 6.

7 Conclusion

In this paper we introduced a novel scalable link-state based source-specified
inter-domain QoS routing architecture. Our architecture represents every Au-
tonomous System as a single routing agent in the Internet topology. These
routing agents are divided into non-hierarchical regions. Edge-to-edge AS-level
QoS paths are calculated as concatenation of sub-paths that are calculated by
ingress domains of the regions along the regional path.

The performance of the architecture is evaluated with simulations. Results of
analysis show that this approach’s scalability depends on the size of a region.
Further analysis shows that as the scalability of the approach increases, the
average path length is also increased, but the gain from the scalability is far
more than the loss from the increase in the average path length, especially
with large topologies. We also observed that results do not depend on the
topology used in the simulation, and architecture gives similar results on dif-
ferent topologies that have different characteristics. The architecture provides
the following advantages:

e Reduced link-state advertisement messages.

29

e Limited link-state flooding area.
e Reduced topology table size in each routing agent.
e Reduced forwarding table size.

These items correspond to the architecture’s communication, computation,
and storage scalability. To the best of our knowledge, our architecture and the
resulting scalability solutions are novel.

References

1]

2]

[9]

Asia Pacific Network Information Center. hitp://www.apnic.net/mailing-
lists /bgp-stats /index.shtml.

C. Alaettinoglu and A. U. Shankar. The viewserver hierarchy for interdomain
routing: Protocols and evaluation. IEEE Journal on Selected Areas in
Communications, 13(8):1396-1410, October 1995.

Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). RFC1771, March
1995.

Yakov Rekhter. Inter-domain routing protocol (idrp). Internetworking:
Research and Experience, 4, 1993.

Deborah Estrin, Yakov Rekhter, and Steve Hotz. Scalable interdomain
routing architecture. Proc. of ACM SIGCOMM’92 Applications, Technologies,

Architecture, and Protocols for Computer Communication, Baltimore,
Maryland, USA, August 1992.

M. Streenstrup. An architecture for inter-domain policy routing. RFC 1478,
June 1993.

Seung-Hoon Kim, Kyungshik Lim, and Cheecha Kim. A scalable qos-based
inter-domain routing scheme in a high speed wide area network. Computer
Communications, 21(4):390-399, February 1998.

Shigang Chen and Klara Nahrstedt. An overview of quality-of-service routing
for the next generation high-speed networks: Problems and solutions. IEFE
Network, Special Issue on Transmission and Distribution of Digital Video, Nov-
Dec 1998.

K. Nichols and B. Carpenter. Definition of differentiated services per domain
behaviors and rules for their specification. RFC 3086, April 2001.

[10] American registry for internet numbers, http://www.arin.net/.

[11] The network simulator - ns-2, http://www.isi.edu/nsnam/ns/.

[12] Boston university representative internet topology generator (brite),

http://www.cs.bu.edu/brite/.

30

[13] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. Brite:
An approach to universal topology generation. In Proceedings of the
International Workshop on Modeling, Analysis and Simulation of Computer
and Telecommunications Systems- MASCOTS 01, Cincinnati, Ohio, August
2001.

[14] David Meyer. University of oregon route views project,
http://www.routeviews.org/.

[15] H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. Towards
capturing representative as-level internet topologies. Computer Networks
Journal, Elsevier Publisher, 44(6), 2004.

[16] Roch A. Guérin, Ariel Orda, and Douglas Wiliiams. Qos routing mechanisms
and ospf extensions. IFEE Global Communications Conference 1996, 1996.

[17] Roch Guerin and Ariel Orda. Computing shortest path for any number of hops.
IEEE/ACM Transactions on Networking, 10(5), October 2002.

[18] Topology Project. http://topology.eecs.umich.edu/.

[19] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger.
The origin of power laws in internet topologies revisited. IEFEE The 21st
Annual Joint Conference of the IEEE Computer and Communications Societies,
Infocom 2002, New York, NY, June 2002.

[20] Asia pacific network information center,
routing table report, http://www.apnic.net /mailing- lists/bgp-stats /archive
/2001 /03 /msg00030.html.

[21] Zheng Wang and Jon Crowcroft. Quality-of-service routing for supporting
multimedia applications. IEEE Journal of Selected Areas in Communications,
14(7):1228-1234, September 1996.

[22] Turgay Korkmaz and Marwan Krunz. Multi-constrained optimal path selection.
In Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies, pages 834-843, April 2001.

[23] G. Huston. Commentary on inter-domain routing in the internet. RFC 3221,
December 2001.

[24] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent
route oscillations in inter-domain routing. Computer Networks (Amsterdam,
Netherlands: 1999), 32(1):1-16, 2000.

[25] D. Obradovic. Real-time model and convergence time of bgp. Infocom 2002,
The 21st Annual Joint Conference of the IEEE Computer and Communications
Societies, June 2002.

[26] T.G. Griffin and G. Wilfong. An analysis of bgp convergence properties.
ACM SIGCOMM’99 Applications, Technologies, Architectures, and Protocols
for Computer Communication, August 1999.

31

[27] B. Abarbanel and S. Venkatachalam. Bgp-4 support for traffic engineering.
Internet Draft, work in progress, September 2000.

[28] C. Jacquenet. Providing quality of service indication by the bgp-4 protocol: the
qos-nlri attribute. Internet Draft, work in progress, June 2003.

[29] J. Hwang, J. Altmann, H. Oliver, and A. Suarez. Enabling dynamic market-
managed qos interconnection in the next generation internet by a modified bgp
mechanism. The IEEFE International Conference on Communications 2002, New
York, New York, USA, April 2002.

[30] P. Zhang and R. Kantola. Mechanisms for inter-domain qos routing in
differentiated service networks. 1st International Workshop on Quality of Future
Internet Services (QofIS’2000), September 2000.

[31] D.G. Andersen, H. Balakrishnan, M.F. Kaashoek, and R. Morris. The case for
resilient overlay networks. Proc. The 8th Workshop on Hot Topics in Operating
Systems HotOSVIII, May 2001.

[32] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay
networks. Proceedings of the 18th ACM Symposium on Operating Systems
Principles, October 21-24, October 2001.

[33] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. End-to-end
effects of internet path selection. Proc. ACM SIGCOMM’99 Applications,

Technologies, Architecture, and Protocols for Computer Communication,
September 1999.

32

