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Abstract
In this paper, a novel model predictive Runge–Kutta neural network (RK-NN) controller
based on Runge–Kutta model is proposed for nonlinear MIMO systems. The proposed adap-
tive controller structure incorporates systemmodel which provides to approximate the K-step
ahead future behaviour of the controlled system, nonlinear controller where Runge–Kutta
neural network (RK-NN) controller is directly deployed and adjustment mechanism based
on Levenberg–Marquardt optimization method so as to optimize the weights of the Runge–
Kutta neural network (RK-NN) controller. RBF neural network is employed as constituent
network in order to identify the changing rates of the controller dynamics. So, the learning
ability of RBF neural network and Runge Kutta integration method are combined in the
MIMO nonlinear controller block. The control performance of the proposed MIMO RK-NN
controller has been examined via simulations performed on a nonlinear three tank system and
Van de Vusse benchmark system for different cases, and the obtained results indicate that the
RK-NN controller andRunge–Kuttamodel achieve good control andmodeling performances
for nonlinear MIMO dynamical systems.

Keywords Adaptive nonlinear MIMO controller · Nonlinear model predictive control ·
Runge–Kutta based system identification · Runge–Kutta EKF · Runge–Kutta neural
network controller

1 Introduction

Change is an inevitable existential truth of universe. This reality, depending on time, affects
all physical entities by altering their states. Dynamics is the study of this evolution of states
of physical systems as a function of time [1].

Nonlinearity is themost crucial characteristic which ensnarls the identification and control
of dynamics. Since system dynamics may exhibit unpredictable nonlinear behaviour and
interact especially in multiple input multiple output (MIMO) systems, machine learning

B Kemal Uçak
ucak@mu.edu.tr

1 Department of Electrical and Electronics Engineering, Faculty of Engineering, Muğla Sıtkı Koçman
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techniques have recently been exploited not only to identify the dynamical behaviour of
nonlinear multiple input multiple output (MIMO) systems but also to efform the nonlinear
dynamics as desired via nonlinear adaptive MIMO controller architectures.

Artificial Neural Networks (ANNs), imitating the learning mechanisms of biological
neural networks as far as optimization theory facilitates, can be utilized to learn complex
functional relations via a limited amount of input-output training data [2]. Due to ANNs
nonlinear learning and high generalization ability, they can be deployed to design nonlin-
ear adaptive MIMO controller structures in order to cope with nonlinearity and interaction
between system dynamics in nonlinear MIMO systems.

Conventional controller structures such as MIMO PID controller have linear relations
between controller input and control signal. The performance of the conventional controller
structures can be enhanced by introducing adaptation to the controller parameters. However,
the linear relationship between input and output can not be changed at every adjustment step.
PID controller has almost no memory and has low generalization ability when compared to
ANN controller since PID remembers only the previous two tracking error data and approxi-
mates the control signal depending on these two previous tracking error instances. However,
in ANN controller, in addition to previous tracking errors, previous system behaviours and
control signals can also be deployed as input features so as to enhance the approximation of
the optimal control signal. Therefore, the controller structures with nonlinear behaviour such
as ANN controller can be deployed to control highly nonlinear MIMO systems. Adaptive
control structures based on ANN can be structurally examined under three main headings:

• Adaptive conventional controller structures based on ANN system model.
• Composite controllers where ANN structure is deployed as feedforward controller.
• Nonlinear ANN controllers where ANN structure is directly deployed as controller.

In adaptive conventional controller structures based onANN systemmodel, the parameters of
conventional controller such as PID, state feedback controller etc. are adjusted via gradient
based optimization rules. The adaptation rules necessitates system Jacobian information
which is approximated via ANN model of controlled system. Tan and Keyser [3] introduced
an adaptive PID controller where the NN is implemented to approximate the system Jocabian
of a time delay system. Recursive Least Squares (RLS) learning algorithm is utilized to
attain parameters of the network in online manner. Zhang, Li and Liu proposed to deploy
radial basis function(RBF) NN to identify the system Jacobian in order to utilize in gradient
descent algorithm in training of PID [4]. Iplikci proposed to adjust PID parameters using
offline trained ANN approximating K-step ahead future behaviour of system to construct the
Jacobian matrix via K-step system Jacobian [5]. Akyar and Omatu deployed NN structure
as self-tuning regulator(STR) to identify the dynamics of PID parameters and aimed to fit
a regression function to the behaviour of controller parameters [6]. The technical literature
is very rich in terms of NN based PID structures [7–14] owing to the simple structure and
robustness of PID.

In composite controller structures, the overall control architecture is composed of a feed-
back controller in which usually a conventional controller is preferred and a feedforward
controller where ANN is utilized.The feedback controller is employed to stabilize the con-
trolled system and then ANN controller gradually takes over the control task and mimics
the inverse dynamics of the controlled system. Nordgren and Meckl [15] used a hybrid NN
controller with PD feedback compensator to control two coupled pendulums. Yamada and
Yabuta utilized a proportional controller in feedback controller block and NN in feedforward
structure to control a one degree of freedom force control system [16]. NN structure was
deployed as a feedforward controller where PD is implemented as feedback controller to

123



A novel model predictive RK–NN controller for nonlinear MIMO systems 1791

control a nonlinear robot arm in [17]. Ji and Familoni [18] employed a hybrid controller in
which the diagonal recurrent neural network (DRNN) structure with PID feedback controller
is executed so as to enhance control performance for simultaneous perturbation stochastic
approximation (SPSA) control system.

In nonlinear ANN controller structures whereANN is directly utilized as controller, unlike
the ANN systemmodel, an additional ANN structure can be employed to identify the dynam-
ics of the control signal applied to the controlled system. For this purpose, predictive system
model can be utilized to approximate the K-step ahead future behaviour and also Jacobian
of the controlled system. Wu, Hogg and Irwin employed an adaptive NN controller which is
trained with a new separate NN model of the controlled system to control a turbogenerator
system [19]. Khalid, Omatu and Yusof used an adaptive NN controller adjusted via offline
trained NN model of the controlled system [20]. Owing to their powerful nonlinear approxi-
mation ability, direct ANN controllers or ANN model based ANN controllers are frequently
deployed to solve tracking problems of linear and nonlinear systems [21–33].

In technical literature, in addition to ANN model based adaptive controller architectures,
various effective adaptive control architectures based on soft computing methods have been
offered for nonlinear control systems [34–38]. However, the mentioned methods suffer from
the computational load of the system identification procedure. Since the accuracy and also
computational load of the system identification blocks are vital in the real time execution
of the proposed control algorithm, the utilization of adaptive control algorithms with low
computational load and high identification accuracy is of great importance in adaptive control
theory. Whereas the convergence and accurate adjustment of the controller parameters are
directly affected by system model, the implementation of the algorithm for various kinds of
systems is restricted because of the computational load of the identification step. Therefore, so
as to enhance the applicability of the adaptive control algorithms, a novel system identification
technique based on Runge–Kutta model has been introduced by Iplikci [39] for nonlinear
MIMO systems to be executed in a nonlinearmodel predictive control (NMPC) structure. The
proposed identification method requires the differential equations of the controlled system to
be derivable [39,40]. Since this is possible formany kinds of dynamical systems at the present
time, the adaptive controller structures based on RK-model can be successfully deployed for
wide ranges of nonlinear MIMO systems [39,40].

In technical literature, various controller structures based on RK-system identification
technique have been proposed. The precessor form of the RK based identification technique
has been proposed by Iplikci in [39] to be implemented in the nonlinear model predictive
control (NMPC) framework. In NMPC structures, a finite-horizon open-loop optimal control
problem is solved during each sampling period. Therefore, NMPC necessitates the approxi-
mation of the future behaviour and also system Jacobian of the controlled system in response
to the candidate control signals. The adjustment rules to acquire the control signal vector
in NMPC are derived via the Taylor expansion of the objective function. Consequently, the
control problem is degraded to attain the sensitivity of the controlled system outputs with
respect to control signals (system Jacobian). Therefore, RK system model is deployed to
identify the dynamics of the controlled system. The Runge–Kutta identification block incor-
porates raw RK system model, RK based model parameter estimator block and RK based
EKF block. RK-model of the system is used for control, state estimation andmodel parameter
adjustment [39,41]. RK based EKF block is utilized to approximate the current states of the
controlled system via input-output data pair of the controlled system so as to estimate the
future behaviours of the states since only system input-output data pairs are available. RK
model parameter estimator block provides to obtain deviated systemmodel parameters or the
system parameters which can not be acquired accurately. Çetin et al. proposed an adaptive
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MIMO PID controller based on RK model in which the controller parameters are optimized
via Levenberg–Marquardt learning algorithm and RK model is employed to identify K- step
ahead system Jacobian information [42]. The proposed auto-tuning PIDmechanism incorpo-
rates the robustness of PID structure, fast convergence from theMPC framework and gradient
based adaptation ability [42]. Beyhan [41] introduced a Runge–Kutta model based nonlinear
observer in which the proposed RK based identification method in [39] is utilized to forecast
the K-step ahead sensitivity of the system outputs with respect to system states so as to attain
the system states optimized via Levenberg–Marquardt algorithm.

In this paper, a novel predictive Runge–Kutta neural network controller has been intro-
duced for nonlinear multiple input multiple output (MIMO) systems. The adaptation
mechanismcomprises aRunge–KuttaRBFneural network controller to identify the dynamics
of the optimal control signal so as to compel the system outputs to the desired references and
a Runge–Kutta systemmodel to approximate the K-step ahead system Jacobian informations
required in adaptation law. Neural networks such as multi layer perceptrons (MLP) which
are constituted to acquire the relationship between input-output system states cannot appre-
hend the long-term behaviour of the identified systems well and long-term approximation
precision is usually not adequate enough since the network learns the system states, instead
of changing rates of system states [43], which motivates us to deploy Runge–Kutta neural
network to approximate the changing rates of the nonlinear control law. Therefore, Runge–
Kutta neural network structure, which comprehends the strong aspects of the Runge–Kutta
integration method and artificial neural networks, is opted for the nonlinear controller block.
RBF type neural network is utilized as constituent subnetwork in RK-NN structure because
of its superior approximation competency [44,45], its fast learning ability under favour of
locally tuned neurons [46–48] in comparison with other neural networks such as MLP etc.
and its more compact form than other neural networks [49]. In order to estimate the dynamic
behavior of the controlled nonlinear system, RK based identification method proposed by
Iplikci [39] is employed due to its low computational load and high identification precision.
The main contributions and differences of this paper from the existing studies in the literature
can be pointed out as

• Runge–Kutta integration method is deployed in both controller block to obtain optimal
control signal and system model block to identify the dynamics of the controlled system.

• The fast learning and convergence speed of RBF neural network and accurate integration
ability of Runge–Kutta method are fused in Runge–Kutta RBF neural network controller
structure to acquire the optimal control signal for nonlinear MIMO systems.

The performance evaluation of the proposed adaptive nonlinear controller has been car-
ried out on nonlinear three tank system and Van de Vusse benchmark system for various
circumstances. The obtained results demonstrate the closed-loop control and system iden-
tification accomplishments of the the disclosed Runge–Kutta neural network controller and
Runge–Kutta systemmodel. The paper is arranged as follows: Sect. 2 overviews the proposed
Runge–Kutta Neural Network controller. The basic principles of Runge–Kuttamodel utilized
in system identification block proposed by Iplikci [39] is described in Sect. 3. Construction
of the optimization problem and derivation of adjustment rules to deploy Runge–Kutta neu-
ral network directly as an adaptive controller and the proposed adjustment mechanism are
explained in detail in Sect. 4. In Sect. 5, the control performance of the proposed method has
been evaluated on a nonlinear three tank system and Van de Vusse benchmark system. The
paper is concluded with a brief conclusion part in Sect. 6.
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2 The Proposed Runge–Kutta Neural Network Controller

Adaptation and nonlinearity in control parameters provide flexibility to nonlinear control
structures in order to attune the alterations occurring in nonlinear systemdynamics. Therefore,
approximation of nonlinear system dynamics and design of optimal controller parameters
so as to compel the system dynamics to the desired operating conditions are vital steps in
adaptive controller structures. For this purpose, in this section, firstly, a brief information
about the mechanism and requirements of adaptive control structures are given in Sect. 2.1.
Then, in order to facilitate understanding of the proposed adaptive control mechanism, its
detailed outline is provided in Sect. 2.2. The content of the mechanism is detailed in the
following sections.

2.1 An Overview of Adaptive Control

An adaptive control mechanism contains system model, nonlinear controller and adaptation
law blocks as illustrated in Fig. 1 where u is the control signal applied to the system, fc
denotes a nonlinear control law,� stands for adjustable controller parameters,Cin represents
the input of the controller, y denotes system output and ym is system model output. Accurate
adjustment of controller parameters depends on the precise approximation of the system
output in response to alternations on controller parameters. Therefore, system model is a
substantial part of the mechanism to observe the possible future behaviour of the system. In
adaptation law block, the current adjustment rules for controller parameters are derived by
considering the history of the system dynamics and the future behaviour of the system via
the obtained system model. Then, by using the optimized controller parameters in controller
block, the optimal control signal which is anticipated to force the system dynamics to the
reference signal can be accurately achieved. As can be seen from Fig. 1, depending on
utilized system model, controller structure and adaptation law, numerous adaptive controller
structures can be introduced for nonlinear systems [50]. It is possible to employ any controller
with adjustable parameters in the controller block given in Fig. 1 [2]. In this work, Runge–
Kutta neural network controller is used as a nonlinear controller. As for the systemmodel part,
various machine learning based modeling techniques such as ANN [51–54], ANFIS [55,56],

u
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,c in=u f C
System

Adaptation Law

y
r

my

Adjustment 
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Fig. 1 Basic adaptive control mechanism
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Fig. 2 Model predictive Runge–Kutta neural network controller structure based on Runge–Kutta model

SVR [5,57,58] etc have previously been deployed to identify the system dynamics. In the
proposed controller structure, the dynamics of the controlled system are approximated using
Runge–Kutta systemmodel proposed by Iplikci [39] in order to enhance model accuracy and
diminish computational load of the control mechanism.

2.2 Runge–Kutta Neural Network Controller Structure Based on Runge–KuttaModel

The adaptation mechanism of the Runge–Kutta neural network controller architecture based
on Runge–Kutta model is depictured in Fig. 2 where R is the dimension of the system input
signal and Q represents the dimension of the controlled system output. The proposed mech-
anism has two main structures to be meticulously examined: Runge–Kutta neural network
controller to identify the dynamics of the optimal control signal and Runge–Kutta system
model to predict the future behaviour of the controlled system. In order to enhance intelligibil-
ity and simplicity, Runge–Kutta neural network controller is abbreviated as RK-NNcontroller

and Runge–Kutta system model is RKmodel throughout the entire article. The learning, pre-
diction and control phases of RK-NNcontroller and RKmodel in adjustment mechanism are
consecutively carried out in an online manner. In the adjustment mechanism, firstly, the con-
trol signals (u[n]) are computed via the current weights (�old = [

αold
1 · · · αold

M

]T ) of the
RK-NNcontroller as in (1):

u
[
n
]old = fNN(�old , Cin) (1)

where �̂ stands for the weights of RK-NNcontroller structure and Cin is the input feature
vector of RK-NNcontroller. Then, the attained control signals (u

[
n
]old ) are recurrently applied

to the RKmodel K-times so as to observe the K-step ahead future behaviour of the controlled
system in response to �old controller parameters. RKmodel is composed of Runge–Kutta
model based EKF(RKEKF), Runge–Kutta based model parameter estimation (RKestimator)
and raw Runge–Kutta system model subblocks, as can be seen from RKmodel. In order to
approximateK-step ahead systembehaviour, firstly, the current states of the controlled system

123



A novel model predictive RK–NN controller for nonlinear MIMO systems 1795

(
[
x̃1

[
n
] · · · x̃N

[
n
]]
) are attained via RKEKF. Then, if there is a substantial deviation in system

parameters (θ ), the corresponding RKmodel parameters (θ̂ ) are optimized depending on the
obtained current states of the system (

[
x̃1

[
n
] · · · x̃N

[
n
]]
) and control signals via RKestimator

subblock. Then, by considering the possibility that the system parameters may alter and
substantial deviations betweenRKmodel parameters (θ̂ ) and their nominal values θ may ensue,
the corresponding RKmodel parameters(θ̂ ) are optimized depending on the obtained current
states of the system (

[
x̃1

[
n
] · · · x̃N

[
n
]]
) and control signals via RKestimator subblock. Finally,

using the current optimized values ofmodel parameters (θ ), system states (
[
x̃1

[
n
] · · · x̃N

[
n
]]
)

and control signals (
[
u�
1

[
n
] · · · u�

R

[
n
]]
) in RKmodel, K-step ahead future behaviour of the

controlled system can be acquired. The feasible weights of RK-NNcontroller which compel
the system output to track the reference signal can be attained using the obtainedK-step ahead
system behaviour and adaptation law. For this purpose, the following objective function must
be minimized:

F
(
u
[
n
]
, eq

) =
Q∑

q=1

K∑

k=1

[
rq

[
n + k

] − ŷq
[
n + k

]
]2

+
R∑

r=1

λr

[
ur

[
n
] − ur

[
n − 1

]
]2

=
Q∑

q=1

K∑

k=1

[
êq

[
n + k

]]2 +
R∑

r=1

λr

[
ur

[
n
] − ur

[
n − 1

]]2
(2)

where K stands for the prediction horizon, Q denotes the number of the controlled outputs,
R is the number of the control signals and λ’s represent penalty terms utilized to restrict
the deviation of the control signals [40]. The network weights of the RK-NNcontroller can be
optimized via Levenberg–Marquardt optimization rule as follows:

�new = �old + Δ�, Δ� = −[
JT J + μI

]−1JT ê (3)

where J emblematises a (QK + R)x Z dimension system Jacobian matrix given as

J =

⎡
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and ê is the vector of the prediction errors

ê =
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(5)

As can be seen from(4), in order to constitute the system Jacobian matrix, it is required to
approximate the sensitivity of the system outputs with respect to RK-NNcontroller parameters

( ∂ ŷQ [n+K ]
∂αold

Z
). The term ( ∂ ŷQ [n+K ]

∂αold
Z

) in Jacobian Matrix(4) can be expanded via chain rule as

follows:
∂ ŷQ[n + K ]

∂αold
Z

=
[

R∑

r=1

∂ yQ
[
n + K

]

∂ur
[
n + 1

]
∂ur

[
n + 1

]

∂αold
Z

]

(6)

where ∂ yQ [n+K ]
∂ur [n+1] is the sensitivity of the Qth system outputs with respect to r th control

inputs and ∂ur [n+1]
∂αold

Z
indicates the sensitivity of the r th control signal with respect to Z th

RK-NNcontroller parameter. The term ∂ur [n+1]
∂αold

Z
can be easily acquired via the relationship

between r th control signal and Z th RK-NNcontroller parameter. In the ideal case, it is antic-
ipated that ŷq [n + 1], q ∈ {1, . . . , Q} converges to yq [n + 1], q ∈ {1, . . . , Q} during the
course of online working [2]. Thus, K-step ahead unknown system Jacobian information
term ( ∂ yQ [n+K ]

∂ur [n+1] ) can be successfully computed via RKmodel so as to construct the Jacobian
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matrix for Levenberg–Marquardt algorithm. Thus, as a consequence of adaptation law in
(3), RK-NNcontroller parameters are anticipated to iteratively converge their optimal values
in long run [5]. Occasionally, mostly in the transient-state and to some extent in the steady-
state, it is possible that the RK-NNcontroller parameters may not be optimally adjusted owing
to modeling inaccuracies and external disturbances, this induces a control action u[n] that
may not be adequate to force the system output toward the desired trajectory as a result of
the non-optimal controller parameters [5]. To solve this problem, a correction term δu

[
n
]

to be added to the control action (u
[
n
]
) is proposed to restore the deteriorations resulting

from non-optimal control action [5]. δu
[
n
]
correction term aims to minimize the objective

function F and is computed using the second-order Taylor approximation of the objective
function F as follows [5]:

F
(
u
[
n
] + δu

[
n
]) ∼= F

(
u
[
n
]) + ∂F

(
u
[
n
])

∂u
[
n
] δu

[
n
] + 1

2

∂2F
(
u
[
n
])

∂2u
[
n
]

(
δu

[
n
])2 (7)

According to the the first order optimality conditions, the derivative of the approximate F
with respect to δu

[
n
]
can be attained as

∂F
(
u
[
n
] + δu

[
n
])

∂δu
[
n
] ∼= ∂F

(
u
[
n
])

∂u
[
n
] + ∂2F

(
u
[
n
])

∂2u
[
n
] δu

[
n
] = 0 (8)

Thus, using the equality in (8), δu
[
n
]
can be acquired as

δu
[
n
] = −

∂F
(

u
[

n
])

∂u
[

n
]

∂2F
(

u
[

n
])

∂2u
[

n
]

(9)

As seen in (9), δu
[
n
]
term is composed of gradient ( ∂F(u[n])

∂u[n] ) and Hessian ( ∂2F(u[n])
∂2u

[
n
] ) terms.

The gradient vector can be easily constituted via (2) as

∂F
(
u
[
n
])

∂u
[
n
] = 2JTm ê (10)

where

Jm =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

− ∂ ŷ1
[
n+1

]

∂u1
[
n
] · · · − ∂ ŷ1

[
n+1

]

∂uR
[
n
]

...
. . .

...

− ∂ ŷQ
[
n+K

]

∂u1
[
n
] · · · − ∂ ŷQ

[
n+K

]

∂uR
[
n
]

√
λ1 · · · √

λ1
...

. . .
...√

λR · · · √
λR

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[(QK+R)x1]

(11)

TheHessian ( ∂2F(u[n])
∂2u

[
n
] ) termcan be estimated as in (12) in order to diminish the computational

load and complexity of the Hessian term resulting from 2nd order derivatives

∂2F
(
u
[
n
])

∂2u
[
n
] = 2JTmJm (12)
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Thus, by substituting (10) and (12) in (9), the correction term(δu
[
n
]
) can be computed as

δu
[
n
] = −[

JTmJm
]−1JTm ê (13)

Then, using the trained RK-NNcontroller parameters (�new), new control (unew) signal can
be calculated via (1). By adding the suboptimal correction term, the optimal control signal
which is applied to the real system in order to compel the system output to track reference
signal can be obtained as u�[n] = u[n] + δu[n] [40]. By now, the proposed adjustment
mechanism is outlined to provide laconic information. The elaborations related to working
principle of each block in RKmodel and the adjustment rules for RK-NNcontroller are given
in Sects. 3 and 4, respectively. The detailed pseudo code of the proposed adaptive control
architecture is presented in Sect. 4.3 so as to implement the control algorithm adroitly.

3 Nonlinear System Identification via Runge–Kutta SystemModel

In this section, nonlinear system identification block based on RK proposed by Iplikci [39]
is examined. The main idea behind the RK based identification method is to discretize the
continuous-time MIMO system dynamics via 4th order Runge–Kutta integration method
in order to acquire an adaptive and data sampled identification technique [40]. Therefore,
firstly, brief information about the basics of Runge–Kutta discretization method deployed to
discretize the continuous time MIMO system is presented in Sect. 3.1. One step ahead future
behaviour of the system can be approximated via Runge–Kutta discretization if the current
value of system states and system parameters utilized in state functions are available. That
is, the current states of the system and model parameters are two vital components of the
method in order to utilizeRunge–Kutta discretizationmethod effectively for nonlinearMIMO
systems. Since the identificationmethod based on Runge–Kutta is data sampled and accuracy
of the current states influences the correct approximation of future system behaviour, RK-
model based EKFmethod is deployed to estimate current states of the system using available
input-output data pairs of controlled system. In Sect. 3.2, the details related to RK-model
based EKF are given. Occasionally, it may be difficult to acquire the model parameters using
conventional modelling methods or system parameters may digress from their actual value
because of internal or external factors. Estimation of the system parameters is vital so as to
be able to execute control task successfully. For this purpose, in order to adjust the RK-model
parameters whenmodel parameters start to deviate from their actual values, the Runge–Kutta
Model based online model parameter estimation block is deployed as given in detail in Sect.
3.3. Thus, after all fundamental components of the RK based nonlinear system identification
block proposed by Iplikci [39] are diffusively viewed, a predictive model of system can be
acquired. In Sect. 3.4, RK-system model based predictive model deployed to approximate
K-step ahead future system behaviour is investigated.

3.1 An Overview of MIMO Systems and Runge–Kutta SystemModel

Consider an N-dimensional continuous-time MIMO system as illustrated in Fig. 3a where
the state equations of the system are denoted as
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Fig. 3 A continuous-time multiple-input multiple output (MIMO) system (a) and its Runge–Kutta model (b)

ẋ1
(
t
) = f1

(
x1

(
t
)
, . . . , xN

(
t
)
, u1

(
t
)
, . . . , uR

(
t
)
, θ

)

...

ẋN
(
t
) = fN

(
x1

(
t
)
, . . . , xN

(
t
)
, u1

(
t
)
, . . . , uR

(
t
)
, θ

)
(14)

subject to state and input constraints of the form

x1(t) ∈ X1, . . . , xN
(
t
) ∈ XN , ∀t ≥ 0

u1(t) ∈ U1, . . . , uR
(
t
) ∈ UR, ∀t ≥ 0

(15)

where Xi ’s and Ui ’s symbolise the box constraints for the states and inputs as given below,
respectively

Xi ∈ {
xi ∈ � | ximin ≤ xi ≤ ximax

}
f or i = 1, . . . , N

Ui ∈ {
ui ∈ � | uimin ≤ ui ≤ uimax

}
f or i = 1, . . . , R

(16)

and the output equations are

y1
(
t
) = g1

(
x1

(
t
)
, . . . , xN

(
t
)
, u1

(
t
)
, . . . , uR

(
t
))

...

yQ
(
t
) = gQ

(
x1

(
t
)
, . . . , xN

(
t
)
, u1

(
t
)
, . . . , uR

(
t
))

(17)

where R is the number of inputs, N emblematises the number of states, Q stands for the
number of outputs and θ indicates the parameters of the system [39]. The above system Eqs.
(14–17) for nonlinear MIMO systems can be expressed in more compact form as [39]

ẋ = f
(
x, u, θ

)

y = g
(
x, u

)

x ∈ X , u ∈ U

(18)

where fi and gi terms are assumed to be known and continuously differentiable with respect
to their input variables, the state variables and θ , and also presumed that the state and input
constraint sets X and U are compact [39]. By using Runge–Kutta integration algorithm, the
current states and control inputs of the system can be discretized as x1

[
n
] · · · xN

[
n
]
and

u1
[
n
] · · · uR

[
n
]
where n denotes the sampling instant as t = nTs . One-step ahead system

states and outputs, i.e xi
[
n+ 1

]
and yi

[
n+ 1

]
, can be estimated via the fourth-order Runge–

Kutta integration algorithm as follows
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x̂1
[
n + 1

] = x̂1
[
n
] + 1

6
K1X1

[
n
] + 2

6
K2X1

[
n
] + 2

6
K3X1

[
n
] + 1

6
K4X1

[
n
]

...

x̂N
[
n + 1

] = x̂N
[
n
] + 1

6
K1XN

[
n
] + 2

6
K2XN

[
n
] + 2

6
K3XN

[
n
] + 1

6
K4XN

[
n
]

(19)

and
y1

[
n + 1

] = g1
(
x̂1

[
n + 1

]
, . . . , x̂N

[
n + 1

]
, u1

[
n
]
, . . . , uR

[
n
])

...

yQ
[
n + 1

] = gQ
(
x̂1

[
n + 1

]
, . . . , x̂N

[
n + 1

]
, u1

[
n
]
, . . . , uR

[
n
])

(20)

where

K1X1

[
n
] = Ts f1

(
x̂1

[
n
]
, . . . , x̂N

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

...

K1XN

[
n
] = Ts fN

(
x̂1

[
n
]
, . . . , x̂N

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)
(21)

K2X1

[
n
] = Ts f1

(
x̂1

[
n
] + 1

2
K1X1

[
n
]
, . . . , x̂N

[
n
] + 1

2
K1XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

...

K2XN

[
n
] = Ts fN

(
x̂1

[
n
] + 1

2
K1X1

[
n
]
, . . . , x̂N

[
n
] + 1

2
K1XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

(22)

K3X1

[
n
] = Ts f1

(
x̂1

[
n
] + 1

2
K2X1

[
n
]
, . . . , x̂N

[
n
] + 1

2
K2XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

...

K3XN

[
n
] = Ts fN

(
x̂1

[
n
] + 1

2
K2X1

[
n
]
, . . . , x̂N

[
n
] + 1

2
K2XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

(23)

K4X1

[
n
] = Ts f1

(
x̂1

[
n
] + K3X1

[
n
]
, . . . , x̂N

[
n
] + K3XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

...

K4XN

[
n
] = Ts fN

(
x̂1

[
n
] + K3X1

[
n
]
, . . . , x̂N

[
n
] + K3XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)
(24)

The Runge–Kutta integration method or discrete time representation of the MIMO system
in (19) and (20) can be shown in a more compact form as

x̂
[
n + 1

] = f̂
(
x̂
[
n
]
, u

[
n
]
, θ

)

ŷ
[
n + 1

] = g
(
x̂
[
n
]
, u

[
n
]) (25)

Thus, in the case that current state variables x1[n] · · · xN [n] and input signals u1
[
n
] · · · uR[n]

at the sampling instants t = nTs are available, one-step ahead system states and outputs can be
approximated via (25). If the newly obtained states are iteratively applied to the discretizated
model in (25), it is possible to attain a nonlinear predictivemodelwhich assists to approximate
K-step ahead future behaviour of the system and also system Jacobian (sensitivity of the
system outputs with respect to control signal) which is a very vital part of model based control
structures. As can be seen from the compact form in (25), determination of the current states
of the system (x̂[n]) and systemmodel parameters (θ ) are vital to acquire K step ahead future
system output predictions since the states of the controlled MIMO system are unavailable.
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Therefore, in the following Sect. 3.2, firstly, in order to attain the currents states of the
system using the available system inputs and outputs, Runge–Kutta model based EKF is
introduced. Then, in order to approximate the unknown or undesignated system parameters
(θ ), Runge–Kutta model based online system model parameter estimator is viewed in Sect.
3.3.

3.2 Runge–Kutta Model Based EKF(RKEKF)

The main objective of RKEKF is to approximate the current system states (x̂1[n] · · · x̂N [n])
required to attain future behaviour of the system states given in (25) at any time during
the control period. For this reason, it is significant to remember EKF. The simplicity and
computational efficiency of EKF provides it to be the most popular tool for state estimation
problems [59]. A nonlinear discrete MIMO system can be expressed as follows:

x[n + 1] = h
(
x[n], u[n]) + w[n]

y[n + 1] = g
(
x[n], u[n]) + v[n] (26)

where x stands for the N -dimensional state vector to be estimated, u ∈ �R represents the
input vector and y ∈ �Q indicates the output vector,w denotes the vector of systemnoisewith
covariance matrix Q and v emblematises the vector of measurement noise with covariance
matrix R. In EKF, estimation of the system states are performed in twomain steps: prediction
and correction. In prediction step, the states and covariance matrix of the states are computed
as follows:

x̃−[
n
] = h

(
x̃
[
n − 1

]
, u

[
n − 1

])

P−[
n
] = A

[
n
]
P
[
n − 1

]
AT [

n
] + Q

(27)

where x̃−[
n
]
and P−[

n
]
indicate the predicted state and covariance matrix at time n, x̃

[
n−1

]

and P
[
n − 1

]
denote the corrected state and covariance matrix at time n − 1 and A

[
n
]
is

the state transition matrix of linearized system [39,40,59]. In correction step, by means of
the measurements from the system, the predicted states x̃−[

n
]
and covariance matrix of the

states P−[
n
]
are corrected as follows:

K
[
n
] = P−[

n
]
HT [

n
](

H
[
n
]
P−[

n
]
HT [

n
] + R

)−1

x̃
[
n
] = x̃−[

n
] + K

[
n
](

y
[
n
] − g

(
x̃−[

n
]
, u

[
n − 1

]))

P
[
n
] =

(
I − K

[
n
]
H

[
n
])

P−[
n
]

(28)

where K
[
n
]
is the Kalman gain of filter, x̃

[
n
]
and P

[
n
]
are corrected and estimated system

state vector and corresponding covariance matrix [40]. Jacobian A
[
n
]
and H

[
n
]
for EKF can

be obtained as follows [39,40]:

A
[
n
] = ∂h

∂x

∣∣∣∣
[

x = x̃
[
n − 1

]

u = u
[
n − 1

]
], H

[
n
] = ∂g

∂x

∣∣∣∣
[

x = x̃
[
n − 1

]

u = u
[
n − 1

]
]

(29)

Since EKF is convenient for systems in discrete form, in this study, the nonlinear systems
under investigation which are in continuous form can be represented with discrete models
via Runge–Kutta discretization method in (25). Thus, the Jacobian matrices A

[
n
]
and H

[
n
]

can be acquired as follows:
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A
[
n
] = ∂ f̂

∂x

∣
∣
∣
∣
[

x = x̃
[
n − 1

]

u = u
[
n − 1

]
], H

[
n
] = ∂g

∂x

∣
∣
∣
∣
[

x = x̃
[
n − 1

]

u = u
[
n − 1

]
]

(30)

where
∂ f̂
∂x

∣
∣
∣
∣[x = x̃

[
n − 1

]

u = u
[
n − 1

]
] =

[
∂ fi

(
x̃
[
n − 1

]
, u

[
n − 1

])

∂ x̃ j
[
n − 1

]
]

=
[

∂ x̃i
[
n
]

∂ x̃ j
[
n − 1

]
]

(31)

for i = 1, . . . , N and j = 1, . . . , N , and

∂ x̃i
[
n
]

∂ x̃ j
[
n − 1

] = δi, j + 1

6

∂K1Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] + 2

6

∂K2Xi

[
n − 1

]

∂ x̃ j
[
n − 1

]

+ 2

6

∂K3Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] + 1

6

∂K4Xi

[
n − 1

]

∂ x̃ j
[
n − 1

]

(32)

∂K1Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] = Ts
∂ fi

(
x̃1

[
n − 1

]
, . . . , x̃N

[
n − 1

]
, u1

[
n − 1

]
, . . . , uR

[
n − 1

])

∂ x̃ j
[
n − 1

]

= T s
∂ fi
∂x j

∣∣∣∣[x = x̃
[
n − 1

]

u = u
[
n − 1

]
]

(33)

∂K2Xi

[
n − 1

]

∂ x̃ j
[
n − 1

]

= Ts

( N∑

p=1

∂ fi
∂xp

(
δp, j + 1

2

∂K1X p

[
n − 1

]

∂ x̃ j
[
n − 1

]
))∣∣∣∣⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

x1 = x̃1
[
n − 1

] + 1
2K1X1

[
n − 1

]

...

xN = x̃N
[
n − 1

] + 1
2K1XN

[
n − 1

]

u = u
[
n − 1

]

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

(34)

∂K3Xi

[
n − 1

]

∂ x̃ j
[
n − 1

]

= Ts

( N∑

p=1

∂ fi
∂xp

(
δp, j + 1

2

∂K2X p

[
n − 1

]

∂ x̃ j
[
n − 1

]
))∣∣∣∣⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

x1 = x̃1
[
n − 1

] + 1
2K2X1

[
n − 1

]

...

xN = x̃N
[
n − 1

] + 1
2K2XN

[
n − 1

]

u = u
[
n − 1

]

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

(35)

∂K4Xi

[
n − 1

]

∂ x̃ j
[
n − 1

]

= Ts

( N∑

p=1

∂ fi
∂xp

(
δp, j + ∂K3X p

[
n − 1

]

∂ x̃ j
[
n − 1

]
))∣∣∣∣

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

x1 = x̃1
[
n − 1

] + K3X1

[
n − 1

]

...

xN = x̃N
[
n − 1

] + K3XN

[
n − 1

]

u = u
[
n − 1

]

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

(36)
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where

δi, j =
{
1, i = j
0, i 	= j

In a nutshell, the current states of the system can be successfully approximated by its Runge–
Kutta model deployed in the EKF algorithm via (27–36) [39]. Therefore, the EKF method
employed in this section is called as Runge–Kutta model based EKF (RKEKF).

3.3 The Runge–Kutta Model Based Online Oarameter Estimation (RKestimator)

Obtaining the model parameters via conventional modeling techniques may be difficult due
to the nonlinearity of the system or inadequacy of the modeling methods. When system
model parameters digress from their actual values, the identification performance of RKmodel

aggravates [40]. Therefore, online estimation and readjustment(rehabilitation) of deterio-
rated or unmeasured system parameters are crucial to enhance the identification performance
of RKmodel [40]. If the Runge–Kutta model of the system is deployed, the current states
of the system can be easily associated to its previous states (x1

[
n
]
, . . . , xN

[
n
]
), inputs

(u1
[
n
]
, . . . , uR

[
n
]
) and parameters (θ ) via (19,21–24) [39,40]. The parameter vector of

the system (θ [n]) can be adjusted as

θ
[
n + 1

] = θ
[
n
] − JTθ e

JTθ Jθ

(37)

where

Jθ =
[

∂e1
[
n+1

]

∂θ
[
n
] · · · ∂eN

[
n+1

]

∂θ
[
n
]

]T

= −
[

∂ x̂1
[
n+1

]

∂θ
[
n
] · · · ∂ x̂N

[
n+1

]

∂θ
[
n
]

]T

(38)

and

e =
⎡

⎢
⎣

e1
[
n + 1

]

...

eN
[
n + 1

]

⎤

⎥
⎦ =

⎡

⎢
⎣

x1
[
n + 1

] − x̂1
[
n + 1

]

...

xN
[
n + 1

] − x̂N
[
n + 1

]

⎤

⎥
⎦ (39)

by assuming that previous state x
[
n
]
and current state x

[
n + 1

]
of a non-linear system (14)

are given directly (or estimated by EKF) at time
[
n+1

]
Ts and that the previous control input

u
[
n
]
is known [39]. The sensitivity of the system states with respect to model parameters

(
∂ x̂i

[
n+1

]

∂θ
[
n
] ) necessary for the construction of Jacobian in (38) can be attained as

∂ x̂i
[
n + 1

]

∂θ
[
n
] = ∂ x̂i

[
n
]

∂θ
[
n
] + 1

6

∂K1Xi

[
n
]

∂θ
[
n
] + 2

6

∂K2Xi

[
n
]

∂θ
[
n
]

+ 2

6

∂K3Xi

[
n
]

∂θ
[
n
] + 1

6

∂K4Xi

[
n
]

∂θ
[
n
]

(40)

where
∂K1Xi

[
n
]

∂θ
[
n
] = Ts

∂ fi
(
x̃1

[
n
]
, . . . , x̃N

[
n
]
, u1

[
n
]
, . . . , uR

[
n
])

, θ
[
n
]

∂θ
[
n
]

= T s

[
∂ fi
∂θ

]∣∣∣∣
⎡

⎢
⎢
⎣

x = x̃
[
n
]

u = u
[
n
]

θ = θ
[
n
]

⎤

⎥
⎥
⎦

(41)
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∂K2Xi

[
n
]

∂θ
[
n
] = Ts

[
∂ fi
∂θ

+ 1

2

N∑

j=1

∂ fi
∂x j

∂K1X j

[
n
]

∂θ

]∣
∣
∣
∣⎡
⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎣

x1 = x̂1
[
n
] + 1

2K1X1

[
n
]

...

xN = x̂N
[
n
] + 1

2K1XN

[
n
]

u = u
[
n
]

θ = θ
[
n
]

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎦

(42)

∂K3Xi

[
n
]

∂θ
[
n
] = Ts

[
∂ fi
∂θ

+ 1

2

N∑

j=1

∂ fi
∂x j

∂K2X j

[
n
]

∂θ

]∣
∣
∣
∣⎡
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

x1 = x̂1
[
n
] + 1

2K2X1

[
n
]

...

xN = x̂N
[
n
] + 1

2K2XN

[
n
]

u = u
[
n
]

θ = θ
[
n
]

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(43)

∂K4Xi

[
n
]

∂θ
[
n
] = Ts

[
∂ fi
∂θ

+
N∑

j=1

∂ fi
∂x j

∂K3X j

[
n
]

∂θ

]∣
∣
∣
∣⎡
⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

x1 = x̂1
[
n
] + K3X1

[
n
]

...

xN = x̂N
[
n
] + K3XN

[
n
]

u = u
[
n
]

θ = θ
[
n
]

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(44)

Thus, all derivations for RKestimator can be achieved.

3.4 K-Step Ahead Future System Behaviour Predictions and Jacobian Computations

The K-step ahead future behaviour of the system can be acquired by feeding back and
repetitively applying the obtained values of states toRK-model given in (25), and by assuming
that the control signal vector u

[
n
]
remains unchanged during the prediction phase between

time instants
[
t + Ts t + KTs

]
[39,40]:

x̂
[
n + k

] = f̂
(
x̂
[
n + k − 1

]
, u

[
n
]
, θ

)

ŷ
[
n + k

] = g
(
x̂
[
n + k − 1

]
, u

[
n
])

for k = 1, . . . , K
(45)

Thus, a series of future predictions can be approximated for each output as [39]
[
ŷq

[
n + 1

] · · · ŷq
[
n + K

]]
for q = 1, . . . , Q (46)

In order to derive the required derivatives for system Jacobian which is the most crucial part
of the model based adaptive mechanism, firstly, (19 - 24) can be reexpressed in an iterative
way as follows [39,40]:

x̂i
[
n + k

] = x̂i
[
n + k − 1

] + 1

6
K1Xi

[
n + k − 1

] + 2

6
K2Xi

[
n + k − 1

]

+ 2

6
K3Xi

[
n + k − 1

] + 1

6
K4Xi

[
n + k − 1

] (47)

for i = 1, . . . , N and

ŷq
[
n + k

] = gq
(
x̂1

[
n + k − 1

]
, . . . , x̂N

[
n + k − 1

]
, u1

[
n
]
, . . . , uR

[
n
])

(48)
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for q = 1, . . . , Q where

K1Xi

[
n + k − 1

] = Ts fi
(
x̂1

[
n + k − 1

]
, . . . , x̂N

[
n + k − 1

]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

K2Xi

[
n + k − 1

] = Ts fi
(
x̂1

[
n + k − 1

] + 1

2
K1X1

[
n + k − 1

]
, . . . , x̂N

[
n + k − 1

]

+ 1

2
K1XN

[
n + k − 1

]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

K3Xi

[
n + k − 1

] = Ts fi
(
x̂1

[
n + k − 1

] + 1

2
K2X1

[
n + k − 1

]
, . . . , x̂N

[
n + k − 1

]

+ 1

2
K2XN

[
n + k − 1

]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

K4Xi

[
n + k − 1

] = Ts fi
(
x̂1

[
n + k − 1

] + K3X1

[
n + k − 1

]
, . . . , x̂N

[
n + k − 1

]

+ K3XN

[
n + k − 1

]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

(49)

Thus, sensitivity of the system outputs with respect to the control signals(
∂ ŷq

[
n+k

]

∂ur
[
n
] ) can be

derived as follows:

∂ ŷq
[
n + k

]

∂ur
[
n
]

=
(

∂gq
∂ur

+
N∑

i=1

∂gq
∂xi

∂ x̂i
[
n + k

]

∂ur
[
n
]

)∣∣
∣∣⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x1 = x̂1
[
n + k

]

.

.

.

xN = x̂N
[
n + k

]

gq = gq
(
x̂1

[
n + k

]
, . . . , x̂N

[
n + k

]
, u1

[
n
]
, . . . , uR

[
n
])

ur = ur
[
n
]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(50)
∂ x̂i

[
n+k

]

∂ur
[
n
] term can be acquired as follows:

x̂i
[
n + k

]

∂ur
[
n
] = x̂i

[
n + k − 1

]

∂ur
[
n
] + 1

6

K1Xi

[
n + k − 1

]

∂ur
[
n
] + 2

6

K2Xi

[
n + k − 1

]

∂ur
[
n
]

+ 2

6

K3Xi

[
n + k − 1

]

∂ur
[
n
] + 1

6

K4Xi

[
n + k − 1

]

∂ur
[
n
]

(51)

where

∂K1Xi

[
n
]

∂ur
[
n
] = Ts

∂ fi
(
x̃1

[
n
]
, . . . , x̃N

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

[
n
])

∂ur
[
n
]

= Ts

(
∂ fi
∂ur

+
N∑

j=1

∂ fi
∂x j

∂ x̂ j
[
n + k − 1

]

∂ur
[
n
]

)∣∣∣∣⎡
⎢
⎢⎢
⎣

x1 = x̂1
[
n + k − 1

]

...

xN = x̂N
[
n + k − 1

]

⎤

⎥
⎥⎥
⎦

(52)
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and

∂K2Xi

[
n
]

∂ur
[
n
]

= Ts

(
∂ fi
∂ur

+
N∑

j=1

∂ fi
∂x j

(
∂ x̂ j

[
n + k − 1

]

∂ur
[
n
] + 1

2

∂K1X j

[
n + k − 1

]

∂ur
[
n
]

))∣∣∣
∣⎡
⎢
⎢
⎢
⎣

x1 = x̂1
[
n
] + 1

2 K1X1

[
n
]

.

.

.

xN = x̂N
[
n
] + 1

2 K1XN

[
n
]

⎤

⎥
⎥
⎥
⎦

(53)
∂K3Xi

[
n
]

∂ur
[
n
]

= Ts

(
∂ fi
∂ur

+
N∑

j=1

∂ fi
∂x j

(
∂ x̂ j

[
n + k − 1

]

∂ur
[
n
] + 1

2

∂K2X j

[
n + k − 1

]

∂ur
[
n
]

))∣∣
∣∣⎡
⎢
⎢⎢
⎣

x1 = x̂1
[
n
] + 1

2 K2X1

[
n
]

.

.

.

xN = x̂N
[
n
] + 1

2 K2XN

[
n
]

⎤

⎥
⎥⎥
⎦

(54)
∂K4Xi

[
n
]

∂ur
[
n
]

= Ts

(
∂ fi
∂ur

+
N∑

j=1

∂ fi
∂x j

(
∂ x̂ j

[
n + k − 1

]

∂ur
[
n
] +

∂K3X j

[
n + k − 1

]

∂ur
[
n
]

))∣∣∣
∣⎡
⎢
⎢⎢
⎣

x1 = x̂1
[
n
] + K3X1

[
n
]

.

.

.

xN = x̂N
[
n
] + K3XN

[
n
]

⎤

⎥
⎥⎥
⎦

(55)

Consequently, all derivations required to constitute system Jacobian information can be
attained [40].

4 Runge–Kutta RBF Neural Network Controller

4.1 An Overview of Runge–Kutta Neural Network

Let us consider a MIMO nonlinear system characterized by the following ODE

ẋ
(
t
) = f

(
x
(
t
))

(56)

with the initial conditionx
(
0
) = x0 [40].Assuming that f is known, one-step aheadbehaviour

of the system dynamics can be estimated via 4th order Runge–Kutta integration formulas as
follows:

x
[
n + 1

] = x
[
n
] + 1

6
Ti

[
K1x

[
n
] + 2K2x

[
n
] + 2K3x

[
n
] + K4x

[
n
]]

(57)

where Ti indicates the Runge–Kutta integration stepsize [53], K1x
[
n
]
, K2x

[
n
]
, K3x

[
n
]
and

K4x
[
n
]
are the slopes used to compute the changing rates of the system states [53]. These

slopes can be acquired as [39,43,53]
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K1x
[
n
] = f

(
xc

[
n
])

∣
∣
∣
∣
xc

[
n
]
=x

[
n
]

K2x
[
n
] = f

(
xc

[
n
])

∣
∣
∣
∣
xc

[
n
]
=x

[
n
]
+ 1

2 Ti K1x

[
n
]

K3x
[
n
] = f

(
xc

[
n
])

∣
∣
∣
∣
xc

[
n
]
=x

[
n
]
+ 1

2 Ti K2x

[
n
]

K4x
[
n
] = f

(
xc

[
n
])

∣
∣
∣
∣
xc

[
n
]
=x

[
n
]
+Ti K3x

[
n
]

(58)

Using the powerful function approximation ability of neural network (NN) structures, the
unknown f function can be precisely identified so as to predict these four slopes such that
NN can successfully carry out long-term prediction of the state trajectory x(t) of the system
described in (56) [40]. The structure emerged by combining the powerful integration feature
of Runge–Kutta method and powerful approximation and generalization abilities of NN
structure is called asRunge–Kutta neural network(RK-NN). The input and output relationship
of the RK-NN can be expressed as

x
[
n + 1

] = x
[
n
] + 1

6
Ti

[
K1x

[
n
] + 2K2x

[
n
] + 2K3x

[
n
] + K4x

[
n
]]

(59)

where

K1x
[
n
] = N f

(
xc

[
n
]
,�

)
∣∣∣∣
xc

[
n
]
=x

[
n
]

K2x
[
n
] = N f

(
xc

[
n
]
,�

)
∣∣∣∣
xc

[
n
]
=x

[
n
]
+ 1

2 Ti K1x

[
n
]

K3x
[
n
] = N f

(
xc

[
n
]
,�

)
∣∣∣∣
xc

[
n
]
=x

[
n
]
+ 1

2 Ti K2x

[
n
]

K4x
[
n
] = N f

(
xc

[
n
]
,�

)
∣∣∣∣
xc

[
n
]
=x

[
n
]
+Ti K3x

[
n
]

(60)

and N f
(
x
[
n
]
,�

)
is a NN structure with input x

[
n
]
and network weights �. The net-

work structure of the RK-NN is depictured in Fig. 4. It must be emphasized that the four
N f

(
x
[
n
]
,�

)
subnetworks in Fig. 4 are identical, which means they have the same net-

work structure and utilize the same corresponding weights [43]. The slopes K1x
[
n
]
, K2x

[
n
]
,

K3x
[
n
]
and K4x

[
n
]
can be approximated by consecutively applying the obtained output of

the constituent subnetwork to itself as given in Fig. 4 and (60). The fact that n subnetworks
of an n order RK-NN are identical facilitates the realization of the RK-NN in both software
or hardware implementations [43]. That is, the real network size of an n-order RK-NN is the
same as that of its constituent subnetwork [43].

[ ]nx Σ Σ Σ Σ

[ ]1K nx

[ ]2K nx

[ ]3K nx

[ ]4K nx

Σ [ ]1n +x

2
2

iT
2

iT
2 iT iT

6

Fig. 4 Runge–Kutta neural network structure
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4.2 Adjusment Rules for Runge–Kutta RBF Neural Network Controller

In this section, the adjustment rules for the weights of the RK-NNcontroller deployed to obtain
feasible control signal vector are derived. Consider that the control law produced by RK-
NNcontroller is expressed as

u
[
n
] = fNN

(
�[n], C[n]) =

⎡

⎢
⎣

u1
[
n
]

...

uR
[
n
]

⎤

⎥
⎦

Rx1

�
[
n
] =

⎡

⎢
⎣

α1
[
n
]

...

αZ
[
n
]

⎤

⎥
⎦

Zx1

C
[
n
] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1
[
n
]

...

cR
[
n
]

...

cN
[
n
]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

u1
[
n − 1

]

...

uR
[
n − 1

]

�
[
n
]

⎤

⎥
⎥
⎥
⎦

=
[

u
[
n − 1

]

�
[
n
]

]

(61)

where R indicates the number of control inputs, Z denotes the number of adjustable parame-
ters of RK-NNcontroller and C

[
n
]
represents the input feature vector of RK-NNcontroller. Input

vectorC
[
n
]
is composed of entries which are previously approximated by network (u

[
n−1

]
)

and not (�
[
n
]
). Thus, the control signal produced by RK-NNcontroller can be reexpressed as

u
[
n
] =

⎡

⎢
⎣

u1
[
n
]

...

uR
[
n
]

⎤

⎥
⎦ = u

[
n − 1

] + Δu
[
n
]

= u
[
n − 1

] + 1

6
Tc

[
K1u

[
n
] + 2K2u

[
n
] + 2K3u

[
n
] + K4u

[
n
]]

(62)

where

K1u
[
n
] = Nu

(
C

[
n
]
,�[n])

∣∣∣∣
C
[
n
]
=

[
u
[
n − 1

]

�
[
n
]

]

K2u
[
n
] = Nu

(
C

[
n
]
,�[n])

∣∣∣∣
C
[
n
]
=

[
u
[
n − 1

] + 1
2TcK1u

[
n
]

�
[
n
]

]

K3u
[
n
] = Nu

(
C

[
n
]
,�[n])

∣∣∣∣
C
[
n
]
=

[
u
[
n − 1

] + 1
2TcK2u

[
n
]

�
[
n
]

]

K4u
[
n
] = Nu

(
C

[
n
]
,�[n])

∣∣∣∣
C
[
n
]
=

[
u
[
n − 1

] + TcK3u
[
n
]

�
[
n
]

]

(63)

and “Tc” indicates the Runge–Kutta integration stepsize [53] of controller, Nu denotes the
regression function of NN structure, u[n] is the estimated states and �[n] symbolises the
remaining features such as previous system outputs (y) or reference signal r. Thus, the con-
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Fig. 5 Structure of RK-NNcontroller
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Fig. 6 Constituent RBF neural network structure for RK-NNcontroller

troller structure can be illustrated as in Fig. 5. RBF neural network is deployed as constituent
subnetwork in RK-NNcontroller owing to the following salient properties [60]:

• Universal approximator [44].
• Superior approximation competency [45].
• Fast learning ability under favour of locally tuned neurons [46–48] in comparison with

other neural networks such as MLP.
• Possesses more compact form than other neural networks [49].

The constituent RBF neural network is depictured in Fig. 6 where m ∈ {1, 2, 3, 4} and R is
the number of the control inputs. The RBF neural network is composed of input, hidden and
output layers. The input feature vector or data constitutes the input layer. In hidden layer,
the data in input space is mapped to a hidden space via nonlinear functions [61]. The output
layer, whose parameters are linear, is the layer from which the data obtained in the hidden
layer is weighted and combined. The intuitive nature of RBF network structure, in which
each neuron can be considered as approximating a small region of the surface around its
centre, provides adjustment of the centres and bandwidth of neurons in an intelligent manner
[62]. In Fig. 6, input feature vector Cm[n] and the entry mu[n−1] are utilized since the input
feature vector of the networks changes depending on the approximated slope (Kmu[n]). The
mth slope of the Rth output of the constituent RBF network can be computed as

KmuR

[
n
] = NuR

(
Cm

[
n
]
,�[n]) =

S∑

i=1

wR,i
[
n
]
�

(
Cm

[
n
]
, ρi [n], σi [n])

=
S∑

i=1

wR,i
[
n
]
exp

(−||Cm
[
n
] − ρi [n]||2

σ 2
i [n]

)
, m ∈ {1, 2, 3, 4}

(64)
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where S is the number of the neurons deployed in RBF, ρi [n] and σi [n] denote center vector
and the bandwidth of neurons respectively. The output vector of the constituent RBF network
can be computed in matrix notation as follows:

KMU =
⎡

⎢
⎣

Kmu1
...

KmuR

⎤

⎥
⎦ = W� (65)

where

W =
⎡

⎢
⎣

w11 · · · w1S
...

. . .
...

wR1 · · · wRS

⎤

⎥
⎦ , � =

⎡

⎢
⎣

Ψ1
...

ΨS

⎤

⎥
⎦

ΨS = Ψ
(
Cm

[
n
]
, ρS[n], σS[n])

(66)

and

Cm =
⎡

⎢
⎣

mu[n − 1]
...

�[n − 1]

⎤

⎥
⎦ , ρ = [

ρ1 · · · ρS
] =

⎡

⎢
⎣

ρ11 · · · ρS1
...

. . .
...

ρ1N · · · ρSN

⎤

⎥
⎦

ρS =
⎡

⎢
⎣

ρS1
...

ρSN

⎤

⎥
⎦ = , σ =

⎡

⎢
⎣

σ1
...

σS

⎤

⎥
⎦

(67)

where N is the number of the features in input vector and S is the number of the neurons
utilized in RBF. RK-NNcontroller parameters to be adjusted are given as follows:

� = [
w11 · · · wRS ρ11 · · · ρSN σ1 · · · σS

]T (68)

Thus, using Levenberg–Marquardt rule in (3), the weights of the constituent subnetwork can
be optimized as

�new = �old + Δ� , Δ� = −[
JT J + μI

]−1JT ê (69)

where J is a
(
QK + R

)
x
(
S
(
R + N + 1

))
dimension Jacobian matrix given as

J =

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

∂ ê1
[
n+1

]

∂w11
· · · ∂ ê1

[
n+1

]

∂wRS

∂ ê1
[
n+1

]

∂ρ11
· · · ∂ ê1

[
n+1

]

∂ρSN

∂ ê1
[
n+1

]

∂σ1
· · · ∂ ê1

[
n+1

]

∂σS

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

∂ êQ
[
n+K

]

∂w11
· · · ∂ êQ

[
n+K

]

∂wRS

∂ êQ
[
n+K

]

∂ρ11
· · · ∂ êQ

[
n+K

]

∂ρSN

∂ êQ
[
n+K

]

∂σ1
· · · ∂ êQ

[
n+K

]

∂σS√
λ1

∂Δu1
[
n
]

∂w11
· · · √

λ1
∂Δu1

[
n
]

∂wRS

√
λ1

∂Δu1
[
n
]

∂ρ11
· · · √

λ1
∂Δu1

[
n
]

∂ρSN

√
λ1

∂Δu1
[
n
]

∂σ1
· · · √

λ1
∂Δu1

[
n
]

∂σS

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

√
λR

∂ΔuR
[
n
]

∂w11
· · · √

λR
∂ΔuR

[
n
]

∂wRS

√
λR

∂ΔuR
[
n
]

∂ρ11
· · · √

λR
∂ΔuR

[
n
]

∂ρSN

√
λR

∂ΔuR
[
n
]

∂σ1
· · · √

λR
∂ΔuR

[
n
]

∂σS

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

[(QK+R)x(Sx(R+N+1))]

(70)

and ê is the vector of the prediction errors
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ê =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

ê1
[
n + 1

]

...

ê1
[
n + K

]

...

...

êQ
[
n + 1

]

...

êQ
[
n + K

]
√

λ1Δu1
[
n
]

...√
λRΔuR

[
n
]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

ê
[
n + 1

]

...

ê
[
n + K

]

...

...

ê
[
n + (Q − 1)K + 1

]

...

ê
[
n + QK

]
√

λ1Δu1
[
n
]

...√
λRΔuR

[
n
]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

r1
[
n + 1

] − ŷ1
[
n + 1

]

...

r1
[
n + K

] − ŷ1
[
n + K

]

...

...

rQ
[
n + 1

] − ŷQ
[
n + 1

]

...

rQ
[
n + K

] − ŷQ
[
n + K

]

√
λ1

[
Δu1

[
n
] − Δu1

[
n − 1

]]

...

√
λR

[
ΔuR

[
n
] − ΔuR

[
n − 1

]]

⎤

⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[(QK+R)x1]

(71)

As can be seen from the Jacobian given in(70), it is required to compute the
∂ êQ

[
n+K

]

∂wRS
,

∂ êQ
[
n+K

]

∂ρSN
,

∂ êQ
[
n+K

]

∂σS
,

∂ΔuR
[
n
]

∂wRS
,

∂ΔuR
[
n
]

∂ρSN
and

∂ΔuR
[
n
]

∂σS
terms. By using chain rule, the men-

tioned terms can be derived as follows:

∂ êQ
[
n + K

]

∂wri
= ∂ êQ

[
n + K

]

∂ yQ
[
n + K

]
∂ yQ

[
n + K

]

∂ur
[
n + 1

]

[
4∑

m=1

∂ur
[
n
]

∂Kmur

[
n
]
∂Kmur

[
n
]

∂wri

]

,

r ∈ {1, . . . R}, i ∈ {1, . . . S}
∂ êQ

[
n + K

]

∂ρi j
= ∂ êQ

[
n + K

]

∂ yQ
[
n + K

]

[
R∑

r=1

∂ yQ
[
n + K

]

∂ur
[
n
]

[
4∑

m=1

∂ur
[
n
]

∂Kmur

[
n
]
∂Kmur

[
n
]

∂ρi j

]]

,

i ∈ {1, . . . S}, j ∈ {1, . . . N }
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∂ êQ
[
n + K

]

∂σi
= ∂ êQ

[
n + K

]

∂ yQ
[
n + K

]

[
R∑

r=1

∂ yQ
[
n + K

]

∂ur
[
n
]

[
4∑

m=1

∂ur
[
n
]

∂Kmur

[
n
]
∂Kmur

[
n
]

∂σi

]]

,

i ∈ {1, . . . S}
∂Δur

[
n
]

∂wri
=

[
4∑

m=1

∂ur
[
n
]

∂Kmur

[
n
]
∂Kmur

[
n
]

∂wri

]

, r ∈ {1, . . . R}, i ∈ {1, . . . S}

∂Δur
[
n
]

∂ρi j
=

[
4∑

m=1

∂ur
[
n
]

∂Kmur

[
n
]
∂Kmur

[
n
]

∂ρi j

]

, i ∈ {1, . . . S}, j ∈ {1, . . . N }

∂Δur
[
n
]

∂σi
=

[
4∑

m=1

∂ur
[
n
]

∂Kmur

[
n
]
∂Kmur

[
n
]

∂σi

]

, i ∈ {1, . . . S}

∂ur
[
n
]

∂K1ur

[
n
] = Tc

6
,

∂ur
[
n
]

∂K1ur

[
n
] = Tc

3
,

∂ur
[
n
]

∂K3ur

[
n
] = Tc

3
,

∂ur
[
n
]

∂K4ur

[
n
] = Tc

6
(72)

where

∂Kmur
[
n
]

∂wri
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂K1ur

[
n
]

∂wri
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂wri

]
, Cm

[
n
] =

⎡

⎢⎢
⎢⎢⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

]

�
[
n
]

⎤

⎥⎥
⎥⎥⎥
⎦

∂K2ur

[
n
]

∂wri
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂wri
+ ∂Nur

(
Cm

[
n
]
,�[n]

)

∂cr [n]
∂cr [n]

∂K1ur [n]
∂K1ur

[
n
]

∂wri

]
,

Cm
[
n
] =

⎡

⎢⎢
⎢⎢
⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

] + 1
2 TcK1ur

[
n
]

�
[
n
]

⎤

⎥⎥
⎥⎥
⎥
⎦

∂K3ur

[
n
]

∂wri
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂wri
+ ∂Nur

(
Cm

[
n
]
,�[n]

)

∂cr [n]
∂cr [n]

∂K2ur [n]
∂K2ur

[
n
]

∂wri

]
,

Cm
[
n
] =

⎡

⎢⎢⎢
⎢⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

] + 1
2 TcK2ur

[
n
]

�
[
n
]

⎤

⎥⎥⎥
⎥⎥
⎦

∂K4ur

[
n
]

∂wri
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂wri
+ ∂Nur

(
Cm

[
n
]
,�[n]

)

∂cr [n]
∂cr [n]

∂K3ur [n]
∂K3ur

[
n
]

∂wri

]
,

Cm
[
n
] =

⎡

⎢
⎢⎢⎢
⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

] + TcK3ur
[
n
]

�
[
n
]

⎤

⎥
⎥⎥⎥
⎥
⎦

(73)
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∂Kmur
[
n
]

∂ρi j
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂K1ur

[
n
]

∂ρi j
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂ρi j

]
,

Cm
[
n
] =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

]

�
[
n
]

⎤

⎥⎥⎥
⎥⎥⎥
⎦

∂K2ur

[
n
]

∂ρi j
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂ρi j
+ ∂Nur

(
Cm

[
n
]
,�[n]

)

∂cr [n]
∂cr [n]

∂K1ur [n]
∂K1ur

[
n
]

∂ρi j

]
,

Cm
[
n
] =

⎡

⎢⎢⎢
⎢⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

] + 1
2 TcK1ur

[
n
]

�
[
n
]

⎤

⎥⎥⎥
⎥⎥
⎦

∂K3ur

[
n
]

∂ρi j
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂ρi j
+ ∂Nur

(
Cm

[
n
]
,�[n]

)

∂cr [n]
∂cr [n]

∂K2ur [n]
∂K2ur

[
n
]

∂ρi j

]
,

Cm
[
n
] =

⎡

⎢⎢⎢
⎢⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

] + 1
2 TcK2ur

[
n
]

�
[
n
]

⎤

⎥⎥⎥
⎥⎥
⎦

∂K4ur

[
n
]

∂ρi j
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂ρi j
+ ∂Nur

(
Cm

[
n
]
,�[n]

)

∂cr [n]
∂cr [n]

∂K3ur [n]
∂K3ur

[
n
]

∂ρi j

]
,

Cm
[
n
] =

⎡

⎢⎢
⎢⎢⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

] + TcK3ur
[
n
]

�
[
n
]

⎤

⎥⎥
⎥⎥⎥
⎦

(74)
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∂Kmur
[
n
]

∂σi
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂K1ur

[
n
]

∂σi
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂σi

]
, Cm

[
n
] =

⎡

⎢⎢⎢
⎢⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

]

�
[
n
]

⎤

⎥⎥⎥
⎥⎥
⎦

∂K2ur

[
n
]

∂σi
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂σi
+ ∂Nur

(
Cm

[
n
]
,�[n]

)

∂cr [n]
∂cr [n]

∂K1ur [n]
∂K1ur

[
n
]

∂σi

]
,

Cm
[
n
] =

⎡

⎢⎢
⎢⎢⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

] + 1
2 TcK1ur

[
n
]

�
[
n
]

⎤

⎥⎥
⎥⎥⎥
⎦

∂K3ur

[
n
]

∂σi
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂σi
+ ∂Nur

(
Cm

[
n
]
,�[n]

)

∂cr [n]
∂cr [n]

∂K2ur [n]
∂K2ur

[
n
]

∂σi

]
,

Cm
[
n
] =

⎡

⎢
⎢⎢⎢
⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

] + 1
2 TcK2ur

[
n
]

�
[
n
]

⎤

⎥
⎥⎥⎥
⎥
⎦

∂K4ur

[
n
]

∂σi
=

[
∂Nur

(
Cm

[
n
]
,�[n]

)

∂σi
+ ∂Nur

(
Cm

[
n
]
,�[n]

)

∂cr [n]
∂cr [n]

∂K3ur [n]
∂K3ur

[
n
]

∂σi

]
,

Cm
[
n
] =

⎡

⎢⎢
⎢⎢⎢
⎣

c1[n] = u1
[
n − 1

]

.

.

.

cr [n] = ur
[
n − 1

] + TcK3ur
[
n
]

�
[
n
]

⎤

⎥⎥
⎥⎥⎥
⎦

(75)

where r ∈ {1, . . . , R}, i ∈ {1, . . . , S} and j ∈ {1, . . . , N }. In order to acquire the above

derivations,
∂Nur

(
Cm

[
n
]
,�[n]

)

∂wri
,

∂Nur

(
Cm

[
n
]
,�[n]

)

∂ρi j
,

∂Nur

(
Cm

[
n
]
,�[n]

)

∂σi
and

∂Nur

(
Cm

[
n
]
,�[n]

)

∂c j [n]
terms can be derived via the regression function of the constituent RBF subnetwork. Using
the regression function of RBF network in (63 - 64), the above terms can be computed as

∂Nur

(
Cm

[
n
]
,�

[
n
])

∂wri
= �

(
Cm

[
n
]
, ρi

[
n
]
, σi

[
n
]) = exp

(−‖Cm
[
n
] − ρi

[
n
]‖2

σ 2
i

[
n
]

)

∂Nur

(
Cm

[
n
]
,�

[
n
])

∂ρi j
= 2 wri �

(
Cm

[
n
]
, ρi

[
n
]
, σi

[
n
])(c j

[
n
] − ρi j

[
n
]

σ 2
i

[
n
]

)

∂Nur

(
Cm

[
n
]
,�

[
n
])

∂σi
= 2 wri �

(
Cm

[
n
]
, ρi

[
n
]
, σi

[
n
]) (‖Cm

[
n
] − ρi

[
n
]‖2

σ 3
i

[
n
]

)

∂Nur

(
Cm

[
n
]
,�

[
n
])

∂c j
[
n
] = −

S∑

i=1

∂Nur

(
Cm

[
n
]
,�[n])

∂ρi j

= −2
S∑

i=1

wri �
(
Cm

[
n
]
, ρi

[
n
]
, σi

[
n
])(c j

[
n
] − ρi j

[
n
]

σ 2
i

[
n
]

)

(76)

where r ∈ {1, . . . , R}, i ∈ {1, . . . , S} and j ∈ {1, . . . , N }.
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4.3 Pseudocode for Proposed Adjustment Mechanism

The details related to the working principle of the proposed adjustment mechanism are
presented step by step via the following pseudo code. In the control procedure given below,
u−[

n
]
denotes the control signal produced by RK-NNcontroller obtained at the previous step

andu+[
n
]
indicates the control signal estimatedwith the trainedRK-NNcontroller at the current

step.

Step 1 Initialization

– Initialize RK-NNcontroller, RKEKF and RKmodel parameters.

Step 2 Computation of control signal (u−[
n
]
) via RK-NNcontroller

– Set time step n.
– Compute the control signal u−[

n
]
via RK-NNcontroller(�−) trained at previous step

(n − 1) via (62, 63).

Step 3 Runge–Kutta model based-EKF (Prediction Phase)

– Apply candidate control signal (u−[
n
]
) once to Runge–Kutta Model based- EKF to

acquire current states via (27–36)
x̃
[
n
] = [

x̃1
[
n
] · · · x̃N

[
n
]]

Step 4 Runge–Kutta model based parameter estimation (Prediction phase)

– Utilize model parameters obtained at current step (n) θn .

Step 5 Runge–Kutta model of the system (Prediction phase)

– Apply candidate control signal (u−[
n
]
) K-times to Runge–Kutta model using esti-

mated states (x̃
[
n
]
) and estimated model parameters (θn) so as to;

5.1 Obtain K-step ahead future behaviour of the system dynamics and prediction
errors vector via (45–49, 71)
5.2 Compute objective function given by (2)
If F

(
u
[
n
]
, eq

)
> εclosed−loop

Jump to next substep 5.3.
else
Continue with RK-NNcontroller parameter adjusted at previous step and jump to step
8
end
5.3 Attain K-step ahead Jacobian of the system via (50–55) which is required to form
Jacobian matrix for RK-NNcontroller

5.4 Construct Jm via (11) and obtain the correction term δu
[
n
]
for control action via

(13)

Step 6 Construction of Jacobian matrix for RK-NNcontroller

– Construct the Jacobian matrix in (69) for RK-NNcontroller via (70–74) and K-step
ahead Jacobian of the system via (50–55) which is attained at step 5.

Step 7: Training phase for RK-NNcontroller (�) (Levenberg–Marquardt Algorithm)

– Optimize the parameters of RK-NNcontroller via (69)

Step 8: Computation of control signal (u+[
n
]
) using trained RK-NNcontroller
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– Compute the control signal u
[
n
]
produced by trained RK-NNcontroller via (62, 63)

Step 9: Control of real system

– Apply the control action (u+[
n
]+ δu

[
n
]
) to the real system so as to force the system

dynamics to the desired position. δu
[
n
]
has already been computed in step 5.4. Thus,

real system states and system outputs can be acquired.

Step 10: Runge–Kutta model based parameter estimation (Training phase)

– Attain Jθ via (38, 40–44) and e via (39)
– Adjust the deteriorated system model parameters using Runge–Kutta model based

parameter estimation block as θ
[
n + 1

] = θ
[
n
] − JTθ e

JTθ Jθ
given in (37).

Step 12: Incrementation of time step

– Increment n = n + 1 and back to step 2 for new cycle.

5 Simulation Results

The performance evaluation of the proposed model predictive Runge–Kutta neural network
controller is assessed on a nonlinear three tank system (TTS) and Van de Vusse system. Nath-
less, it is possible to deploy the proposed adjustment mechanism to control a diverse range
of nonlinear MIMO systems and to solve the fundamental control problems that frequently
appear in practice such as nonlinearity, instability, etc.

5.1 Three-Tank System

The three tank system(TTS) is ofttimes utilized to evaluate the control performance ofMIMO
type controller structures proposed for nonlinear MIMO systems in technical literature [39,
42,57]. The schematic diagram of the TTS is depictured in Fig. 7. The whole system is

10az
13az

30az 32az
20aznS nS

A

DC DC

1y

3y
2y

1u 2u

Pump 1 Pump 2

Fig. 7 Three tank system
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composed of three ideal cylindrical tanks serially interconnected to each other, two pumps in
order tomove thewater at the bottom of the reservoir, valves providing the flowbetween tanks
and water reservoir in the bottom. The system dynamics describing the dynamic behavior of
the system can be denoted via the following differential equations:

ẏ1 = 1

A

[
u1

(
t
) − Q13

(
t
) − Q10

(
t
)
]

ẏ2 = 1

A

[
u2

(
t
) + Q32

(
t
) − Q20

(
t
)
]

ẏ3 = 1

A

[
Q13

(
t
) − Q32

(
t
) − Q30

(
t
)
]

(77)

where
Q13

(
t
) = az13 Sn sgn

(
y1

(
t
) − y3

(
t
))√

2g|y1
(
t
) − y3

(
t
)|

Q32
(
t
) = az32 Sn sgn

(
y3

(
t
) − y2

(
t
))√

2g|y3
(
t
) − y2

(
t
)|

Q10
(
t
) = az10 Sn

√
2g|y1

(
t
)|

Q20
(
t
) = az20 Sn

√
2g|y2

(
t
)|

Q30
(
t
) = az30 Sn

√
2g|y3

(
t
)|

(78)

and yi (t) denotes the liquid level of the i th tank as the i th output, ui (t) stands for the supply
flow rate of the i th pump as the i th input and Q ji (t) emblematises the flow rate between
tank j and i [39,40,42,63]. The diorism and numerical values of all symbols utilized in Fig. 7
and (77, 78) are given in Table 1. The closed-loop TTS control objective is to independently
force the liquid levels of tank 1 and tank 2 to the desired reference levels by adjusting the
flow rates of pump 1 (u1(t)) and pump2 (u2(t)) within allowed intervals [39,40,42,63,64].
For this purpose, the controlled outputs of the system are chosen as y1(t) and y2(t) while
u1(t) and u2(t) are control inputs.The third output of the system (y3(t)), liquid level of the
middle tank, is an uncontrollable dynamic [64]. In the simulations, sampling time is utilized
as T s = 1 s and themagnitudes of the control signals are astricted as u1min = u2min = 0m3/s
and u1max = u2max = 10−4 m3/s [39]. The obtained control signals are applied to the system
during τ1min = τ2min = τ1max = τ2max = Ts = 1.0 s continuation period. Runge–Kutta based
EKF is deployed to estimate the dynamic behavior of the states since only the input-output
signals are available and states of the system can not be measured [39]. The performance of
the system has been assessed for three separate cases:

(1) Nominal case with no measurement noise and parametric uncertainty.
(2) Measurement noise is added to the controlled outputs of the system.
(3) Parametric uncertainty in a system parameter.
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Table 1 System parameters for
three tank system [39,40,63]

Parameter description Value

az13: outflow coefficient between tank 1 and tank 3 0.52

az32: outflow coefficient between tank 3 and tank 2 0.55

az10: outflow coefficient from tank 1 to reservoir 0.26

az20: outflow coefficient from tank 2 to reservoir 0.28

az30: outflow coefficient from tank 3 to reservoir 0.45

A: cross section of the cylinders 0.0154 [m2]
Sn : section of connection pipe n 5 × 10−5 [m2]
g: gravitation coefficient 9.81[m/s2]

For all cases, the number of the neurons in RBF networks (S) is assigned as “2” and input fea-

ture vectors ofRK-NNcontroller are designated asC
[
n
]=

⎡

⎢
⎢
⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

u1
[
n − 1

]

u2
[
n − 1

]

y1
[
n
]

y2
[
n
]

e1
[
n
] − e1

[
n − 1

]

e1
[
n
]

e1
[
n
] − 2e1

[
n − 1

] + e1
[
n − 2

]

e2
[
n
] − e2

[
n − 1

]

e2
[
n
]

e2
[
n
] − 2e2

[
n − 1

] + e2
[
n − 2

]

⎤

⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=
[

u
[
n − 1

]

�
[
n
]

]
. Thepredictionhorizonofmodel predictive(MP) structure is settled as K = 5.

5.1.1 Nominal Case with NoMeasurement Noise and Parametric Uncertainty

The tracking performance of the RK-NNcontroller for the nominal case is depicted in Fig. 8a, d
for staircase reference signal and the produced control signals by RK-NNcontroller and control
signal correction terms are also illustrated in Fig. 8b, c, e, f. As can be palpably seen from
Fig. 8, the RK-NNcontroller can successfully perform the control task by only small transient
and steady-state errors. There is a crucial point required to be examined and interpreted
in Fig. 8. While the second reference (r2(t)) signal is settled as 0.15 m, the first reference
signal (r1(t)) is gradually altered between 0−800 s in the style of staircase. The fluctuation
in tank 1 interacts with tank 2 through tank 3 [40]. Therefore, in order to keep the r2(t)
signal depending on incremental value of r1(t) and inherently u1(t), it is required to reduce
u2(t), which can be clearly observed in Fig. 8b, e. In a nutshell, it can be concluded that RK-
NNcontroller effectively copes with and supresses the coupling occurring between tank 1 and
2. The convergence and adjustments of the RK-NNcontroller parameters to their optimal values
depending on alternations on reference signals are given in Fig. 9. Thus, it can be patently
seen from Fig. 9 that RK-NNcontroller parameters are evolved in order to learn and attune the
consistently excited dynamics of the controlled system. As previously mentioned over Fig. 2,
the control signal (u

[
n
] = uRK-NN

[
n
] + δu

[
n
]
) has two significant parts where uRK-NN

[
n
]

is the control signal produced by RK-NNcontroller and δu
[
n
]
is the correction term. The duty
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Fig. 8 System outputs (a, d), control signals (b, e) and correction terms (c, f) of three tank system for the
nominal case with no measurement noise and parametric uncertainty(staircase reference inputs)

share of the RK-NNcontroller(uRK-NN
[
n
]
) and correction term(δu

[
n
]
) are illustrated in Fig. 10.

RK-NNcontroller carries out a large part of the control task. The tracking performance of the
RK-NNcontroller for sinusoidal reference signals is examined as illustrated in Fig. 11 and it
is observed that RK-NNcontroller ably tracks the sinusoidal reference inputs. The share of the
control task between RK-NNcontroller (uRK-NN

[
n
]
) and correction term(δu

[
n
]
) are depicted

in Fig. 12. As can be explicitly seen from Fig. 12, at the beginning of the control process, the
contribution of the correction term to control signal is 100%. As the controller parameters
are adjusted and controller parameters converge to their optimal values, the control task is
taken over by RK-NNcontroller.

5.1.2 Meaurement Noise Case

Due to themeasurement devices, it is an inevitable fact thatmeasurement noise has an effect on
the measured system dynamics. Therefore, control performance evaluation of adaptive con-
troller structures under measurement noise is crucial since the designed controller structures
are desired to be robust against the measurement noise conditions. Accordingly, in order to
evaluate the performance and robustness of the controller under the influence ofmeasurement
noise, additive zero mean Gaussian noises with standard deviations of σy1(t) = σy2(t) = 0.05
are added to the measured controlled outputs of the system (y1(t), y2(t)). The performance
of the controller for staircase reference input and control signals produced by RK-NNcontroller

are illustrated in Fig. 13. As can be seen from Fig. 13, in spite of measurement noise, the
controlled dynamics of the system can be successfully moved to the desired reference sig-
nals by only small transient and steady-state errors. The control task is mostly undertaken
by RK-NNcontroller as given in Fig. 14. Hence, it can be concluded that the RK-NNcontroller is
more dominant than the correction term.
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Fig. 9 Adaptation of RK-NNcontroller parameters for three tank system (staircase reference inputs)

5.1.3 Parametric Uncertainty in System Parameters

Since the parameters of RK-NNcontroller are optimized by taking into account K-step ahead
future behaviour of the controlled systemwhose dynamics are identified bymeans ofRKmodel,
control performance is excessively influenced by the identification accuracy of the RKmodel.
Therefore, in order to attain unknown RKmodel parameters, RKestimator subblock in RKmodel

is deployed to enhance the identification performance of RKmodel as can be seen from
Fig. 2. The tracking performance of the proposed adjustment mechanism when there is
an uncertainty in a system parameter and also model parameter estimation performance of
RKestimator subblock utilized in RKmodel are appraised in this subsection. For this purpose,
the desired reference signals are set to 0.25 and 0.2 m for tank 1 and tank 2, respectively.
The numerical value of the valve parameter between tank 1 and tank 3 (outflow parame-
ter az13(t)) is destinated as the time-varying uncertain system parameter, which varies as
az13(t) = 0.52 + 0.28 sin

( 2
150π t

)
. The tracking performance of the RK-NNcontroller for the
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Fig. 10 Duty share of the RK-NNcontroller (uRK-NN
[
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]
) and correction term (δu

[
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]
) for u1

(
t
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(a) and u2

(
t
)

(b) (the nominal case with no measurement noise and parametric uncertainty (staircase reference inputs))
(Three tank system)

Fig. 11 System outputs (a, d), control signals (b, e) and correction terms(c, f) of three tank system for the
nominal case with no measurement noise and parametric uncertainty (sinusoidal reference inputs)

uncertainty in system parameter case is shown in Fig. 15. Also, as can be seen from Fig. 15
(e), RKestimator subblock precisely approximates the correct values of the uncertain system
parameter in a timely manner and then maintains it in the long run [39]. For uncertainty in
system parameter case, the control task is again mostly undertaken by RK-NNcontroller as
illustrated in Fig. 16 as in nominal and measurement noise cases.
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Fig. 12 Duty share of the
RK-NNcontroller (uRK-NN

[
n
]
)
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[
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]
) for
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Fig. 13 System outputs (a, d), control signals (b, e) and correction terms (c,f) of three tank system for the
case with measurement noise (staircase reference inputs)

5.2 Van deVusse Chemical Reaction

The second nonlinear MIMO system deployed to execute the performance evaluation of
the proposed RK-NNcontroller is Van de Vusse chemical reaction. Since the system is a non-
isothermal system influenced by thermal effect, and the resulting system exhibits strictly non-
minimum-phase behavior [39],Van deVusse chemical reaction has been frequently employed
to evaluate the control performance of the developed adaptive control methodologies in
adaptive nonlinear control theory. The system is required to be controlled actively so as to
cope with the occurring divergent behaviours since the system comprises severe nonlinearity
with strong coupling between its dynamics. The chemical reaction mechanism attributed to
Van de Vuse is expressed via the following reaction scheme.
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Fig. 14 Duty share of the
RK-NNcontroller (uRK-NN
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Fig. 15 System outputs (a,c), control signals (b,d) and uncertain outflow parameter (az13
(
t
)
) (e) and its

estimation for the case with parametric uncertainty (Three tank system)

A
k1−→ B

k2−→ C

2A
k3−→ D

(79)

whereA denotes the inlet reactant,B stands for the desired product,C andD are unwanted by
products and ki ’s denote the reaction rates [65–69]. It is aimed to produce the cyclopentenol
(B) from cyclopentadiene (A) by acid-catalysed electrophilic addition of water in dilute
solution in the considered chemical reaction given in (79) [40,66]. When cyclopentadiene
(A) and cyclopentenol (B) go under reaction, dicyclopentadiene (D) is produced as a side
product, and cyclopentanediol (C) is a consecutive product by addition of another water
molecule [66]. The detailed chemical reaction scheme is given as
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C5H6
Cyclopentadiene(A)

+H2O(k1)−→ C5H7OH
Cyclopentenol(B)

+H2O(k2)−→ C5H8
(
OH

)
2

Cyclopentanediol(C)

2C5H6
Cyclopentadiene(A)

k3−→ C10H12
Dicyclopentadiene(D)

(80)

The system dynamics describing the mole balances for species A and B, and the energy
balance for the reactor given to realize the chemical reaction scheme in (79–80) can be
described via the following differential equations:

ĊA
(
t
) = F

V

(
CA0 − CA

(
t
)) − k10e

−E1
T CA

(
t
) − k30e

−E3
T C2

A

(
t
)

ĊB
(
t
) = − F

V
CB

(
t
) + k10e

−E1
T CA

(
t
) − k20e

−E2
T CB

(
t
)

Ṫ
(
t
) = 1

ρCp

[
k10e

−E1
T CA

(
t
)( − ΔH1

) + k20e
−E2
T CB

(
t
)( − ΔH2

) + k30e
−E3
T C2

A

(
t
)( − ΔH3

)]

+ F

V

(
T0 − T

(
t
)) + Q

ρCp
(81)

where CA and CB stand for the molar concentrations of A and B, T denotes the reactor
temperature, F/V represents the dilution rate and Q is the rate of the heat added or removed
per unit volume, Cp and ρ symbolise the heat capacity and density of the reacting mixture,
respectively, ΔHi emblematise the heats of the reaction and E are activation energies [39,
67,70,71]. The descriptions and values of the physical and chemical parameters are tabulated
in Table 2 [39,65,70,71]. In the closed-loop MIMO control system, the aim is to control
the molar concentration of B (y1 = CB ) and the temperature of the reactor (y2 = T ) by
regulating the dilution rate (u1 = F/V ) and the rate of heat added or removed per unit
volume (u2 = Q) within allowed intervals [39,70]. In the simulations, sampling time is
chosen as Ts = 0.01 h and the lower and upper limits of the control signals are given as
u1 = [

0, 500
]
h−1 and u2 = [−1000, 0

]
kJ/l h [39]. The system is exposed to the computed

control signal during τ1min = τ2min = τ1max = τ2max = Ts = 0.01 h continuation period.
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Table 2 Physico-chemical parameters for Van de Vusse [39,65,71]

Description of parameter Symbol Value of parameter

Collision factor for reaction k1 k10 1.287x1012
[
h−1]

Collision factor for reaction k2 k20 1.287x1012
[
h−1]

Collision factor for reaction k3 k30 9.043x109
[
h−1l/mol

]

Activation energy for reaction k1 E1 9758.3
[
K

]

Activation energy for reaction k2 E2 9758.3
[
K

]

Activation energy for reaction k3 E3 8560.0
[
K

]

Enthalpies of reaction k1 ΔH1 4.2
[
kJ/mol

]

Enthalpies of reaction k2 ΔH2 − 11
[
kJ/mol

]

Enthalpies of reaction k3 ΔH3 − 41.85
[
kJ/mol

]

The concentration of A in the feed stream CA0 5.0
[
mol/l

]

Feed temperature T0 403.15
[
K

]

Density ρ 0.9342
[
kg/l

]

Heat capacity Cp 3.01
[
kJ/kgK

]

Reactor volume V 10.0
[
l
]

The performance evaluation of the closed-loop system has been carried out for three separate
cases:

(1) Nominal case with no measurement noise and parametric uncertainty.
(2) Measurement noise case (the measured output of the system is subjected to measure-

ment noise).
(3) Parametric uncertainty case in a system parameter.

For all cases, the number of the neurons inRBF networks (S) is settled as “2” and input feature

vectors of RK-NNcontroller are designated asC
[
n
] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

u1
[
n − 1

]

u2
[
n − 1

]

y1
[
n
]

y2
[
n
]

e1
[
n
] − e1

[
n − 1

]

e1
[
n
]

e1
[
n
] − 2e1

[
n − 1

] + e1
[
n − 2

]

e2
[
n
] − e2

[
n − 1

]

e2
[
n
]

e2
[
n
] − 2e2

[
n − 1

] + e2
[
n − 2

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

[
u
[
n − 1

]

�
[
n
]

]
. The prediction horizon ofmodel predictive(MP) structure is assigned as K = 5.

5.2.1 Nominal Case with NoMeasurement Noise and Parametric Uncertainty

The control performance of the RK-NNcontroller for the nominal case is illustrated in
Fig. 17a, d for staircase reference signals. The controlled system outputs closely track the
reference signals with very small steady-state errors except for transient states arising as a
consequence of the abrupt alternations in reference signals. The control signals produced
by RK-NNcontroller and control signal correction terms are also depicted in Fig. 17b, c, e,
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Fig. 17 System outputs (a, d), control signals (b, e) and correction terms (c, f) of Van de Vusse system for
the nominal case with no measurement noise and parametric uncertainty(staircase reference inputs)
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f. If it is focused on the behaviour of the system outputs at [10, 20] h and [30,40] h, it is
observed that the RK-NNcontroller successfully attunes and also tolerates the occurring strong
coupling between CB and reactor temperature (T ). The duty share of the RK-NNcontroller

(uRK-NN
[
n
]
) and correction term(δu

[
n
]
) are given in Fig. 18. As can be seen from Fig. 18,

RK-NNcontroller has undertaken almost all control task except the first moments since it takes
some time until the weights of RK-NNcontroller converge their optimal values. The tracking
performance of the RK-NNcontroller for sinusoidal type reference inputs is also evaluated as
given in Fig. 19.Whereas the reactor temperature is assigned as constant during control,CB is
compelled to alter sinusoidally as illustrated in Fig. 19. The control signals and corresponding
corrections terms are illustrated in Fig. 19b, c, e, f. The control duty share of the RK-
NNcontroller (uRK-NN

[
n
]
) and correction term(δu

[
n
]
) parts are illustrated in Fig. 20.
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Fig. 19 System outputs (a, d), control signals (b, e) and correction terms (c, f) of Van de Vusse system for
the nominal case with no measurement noise and parametric uncertainty (sinusoidal reference input)
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5.2.2 Meaurement Noise Case

Since nonlinearMIMO systems can generally be exposed to noise resulting frommeasure-
ment devices, the robustness and control performance of the RK-NNcontroller with respect to
measurement noise is evaluated. For this purpose, additive zero mean Gaussian noises with
standard deviations of σCB (t) = 0.01, σT (t) = 0.001 for CB and for T are supplemented
to the measured outputs of the system (y1(t), y2(t)). The performance of the controller for
staircase reference input and control signals produced by RK-NNcontroller for the case when
measurement noise is added are illustrated in Fig. 21. As given in Fig. 22, the correction
is only effective when the controller parameters are not optimal initially. In the rest of the
control process, RK-NNcontroller has undertaken almost all control task.
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Fig. 21 System outputs (a, d), control signals (b, e) and correction terms (c, f) of Van de Vusse system for
the case with measurement noise(staircase reference inputs)
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5.2.3 Parametric Uncertainty in System Parameters

The performance of the RK-NNcontroller mostly depends on the identification accuracy
of the RKmodel. For this purpose, in order to approximate the unknown system parameters,
RKestimator subblock is introduced in RKmodel. In order to peruse robustness of the RK-
NNcontroller for parametric uncertainty case and evaluate parameter estimation performance
of RKestimator subblock, CA0(t) parameter, which varies as CA0(t) = 5 + 0.5 sin

( 2
10π t

)
,

is chosen as an uncertain time-varying parameter while the desired reference signals are
assigned as 0.95 and 407.25 for CB(t) and T . The tracking performance of the proposed
RK-NNcontroller adjustment mechanism and also model parameter estimation performance
of RKestimator subblock are illustrated in Fig. 23a, b, c, d and Fig. 23e. It is observed in
Fig. 23e that the proposed Runge–Kutta based model parameter estimation block(RKestimator
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subblock) estimates the correct values of the uncertain parameter precisely and in a timely
manner and then maintains it in the long run [39]. As illustrated in Fig. 24, for uncertain
system parameter case, the RK-NNcontroller(uRK-NN

[
n
]
) takes over the control process.

5.3 Execution Time of RK-NNcontroller Algorithm

In order to assess the applicability potential of the proposedmechanism in real time, execution
time of each operation in the control algorithm have been registered for each case during
every sampling period, then the maximum response times of the each operation have been
listed in Table 3. When the execution times of the control algorithm for both systems for all
cases are analyzed, it is observed that the maximum response times for RK-NNcontroller are
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Table 3 Computation times [ms] for proposed controller (RK-NNcontroller)

Systems Three tank sytem Van de Vusse

Operations Noiseless Noisy Uncertain Noiseless Noisy Uncertain

EKF state estimation 2.2313 0.84626 2.0881 1.1238 1.4159 1.1308

K-step prediction 2.8704 1.6491 3.9 1.5451 1.8898 1.616

RK-NNcontroller training (LM) 4.8839 5.3537 11.5364 8.5867 10.456 4.5233

Controller law 2.1776 1.7051 0.99181 0.58594 3.1592 0.55235

RK based model parameter estimator
training

– – 1.4984 – – 0.99741

Miscellaneous tasks 0.4325 0.16515 0.31956 0.44692 0.47771 0.26218

Total loop time 10.5583 8.6814 16.2589 10.9897 16.1442 8.644

less than 17 ms. In comparison to the sampling times of the systems, the execution time is
fairly small and it can be predicated that RK-NNcontroller can be readily utilized in real time
applications of nonlinearMIMOsystems. Furthermore, it is possible to enhance the execution
time by optimizing the control algorithm and implementing it on effective hardwares such as
FPGA. In simulations, a PC with 2.2 GHz core i7 CPU and 8 GB RAM has been deployed
to implement the control algorithm and codes are not optimized.

6 Conclusion

In this paper, a novel model predictive nonlinear control architecture is proposed in which
Runge–Kutta integration method is utilized both in the controller and system identifica-
tion blocks. The main novelty of this paper is that the dynamics of the control signals can
be identified as mathematical expressions for nonlinear systems and RK-NN is directly
deployed as controller structure for nonlinear MIMO systems. In addition, Runge–Kutta
Integration method is utilized in both controller and system identification blocks. Since RBF
Neural Network is deployed in Runge–Kutta Neural Network, the fast learning and conver-
gence speed of RBF neural network and the accurate integration capability of Runge–Kutta
method are combined in a Runge–Kutta RBF neural network controller architecture for non-
linear MIMO systems. The adaptation mechanism is composed of two main blocks based on
Runge–Kutta method: RK-NNcontroller to identify and compute the control signal dynamics
and RKmodel to approximate the K-step ahead future dynamical behaviour of the controlled
system. RK-NNcontroller embodies the powerful characteristics of RBF neural network struc-
ture and Runge- Kutta integration method. The network parameters of RK-NNcontroller are
optimized via Levenberg–Marquardt learning rule. RKmodel is composed of three main sub-
blocks: RK raw systemmodel utilized to derive gradient informations necessary for Jacobian
calculation; RK based model parameter estimator deployed for online estimation of time-
varying and uncertain parameters of the system and RK based EKF used to approximate the
unmeasurable states of the controlled system.

The performance evaluation of the proposed nonlinear controller is performed on non-
linear three tank system and Van de Vusse benchmark system. The robustnesses of the
controller have also been scrutinised for the nominal, measurement noise and parametric
uncertainty cases. The obtained results demonstrate that the proposed RK-NNcontroller for
nonlinear MIMO systems introduces prosperous tracking performance as well as good noise
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rejection and high toleration to parametric uncertainties. In future works, it is aimed to deploy
Runge–Kutta numerical integration method to enhance new Runge–Kutta type adaptive con-
troller architectures and system identification techniques for nonlinear MIMO systems. It
is also possible to extend the introduced adaptive architecture for finite-time control, finite
time stabilization of switched systems, synchronization of complex networks and switching
systems problems.
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