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Abstract
This study aims to identify a method for classifying signals using their reduced sparse forms with a higher degree of

accuracy. Many signals, such as sonar, radar, or seismic signals, are either sparse or can be made sparse in the sense that

they have sparse or compressible representations when expressed in the appropriate basis. They have a convenient

transform domain in which a small number of sparse coefficients express them as linear sums of sinusoidals, wavelets, or

other bases. Although real-valued artificial neural networks (ANNs) have been frequently used in the classification of sonar

signals for a long time, complex-valued wavelet neural network (CVWANN) is used for these complex reduced sparse

forms of sonar signals in this study. Before the classification, the number of inputs was reduced to 1/3 dimension.

Complex-valued sparse coefficients (CVSCs) obtained from the reduced form were classified by CVWANN. The per-

formance of the proposed method is presented and compared to other classification methods. Our method, CVSCs ?

CVWANN, is very successful as 94.23% by tenfold cross-validation data selection and 95.19% by 50–50% training–testing

data selection.

Keywords Sonar detection � Sonar measurements � Target recognition � Neural networks � Neurons � Compressed sensing

1 Introduction

Sonar (sound navigation and ranging) is a technology using

sound propagation to detect the target information in

underwater navigation and communication. Various clas-

sification algorithms are useful to recognize the type of

surface from which the sonar waves are reflected. Artificial

neural networks (ANNs) have been employed and become

popular for the automatic identification of sonar targets.

[1, 2] are the first known papers studied by Gorman and

Sejnowski where neural networks (NN) were applied to the

sonar target dataset in [3]. Afterward, multi-layer percep-

tron (MLP) [1, 2, 4, 5], general regression neural networks

(GRNN) [6], radial basis function networks (RBFN) [7, 8],

probabilistic neural networks (PNN) [7], and conic section

function neural networks (CSFNN) [9] have also been used

for the classification of sonar signals. Besides, various

classification methods are available in [10–12].

A signal, which is not sparse in a given domain, can be

sparse in other domains. For example, a chirp signal is not

sparse in both time and Fourier domains. However, it can

be made sparse in the appropriate fractional Fourier

domain. A new approach is developed in this paper for

sparsity that regulates the input signals in reduced sparse

forms. All data signals [3] which seem complicated in time

domain are transformed into Fourier domain in order to

obtain more rare structures. When examining the first few

transformed signals in the data files, it is seen that the N/3

part of the signals is different from zero and the remaining

part is very close to zero. This N/3 part of transformed

signal is chosen to be an input to the classifier. This method

can be seen as a feature selection. The feature vector in this

study is the reduced form of the transformed signal so that

the signal can be sparsely expressed. In summary, sonar

target signals are decomposed by discrete Fourier
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transform (DFT) matrix to get complex-valued sparse

coefficients (CVSCs), and then complex-valued neural

network (CVANN) is applied to these CVSCs.

CVANN is a machine learning algorithm in which all

parameters are complex numbers. Having complex values

for CVANN’s parameters of input, output, weight,

threshold values, and activation functions provides many

advantages. These advantages can be listed as an increase

in the functionalities of both the single neuron and the

neural network (which is the combination of neurons), and

hence an increase in performance and decrease in training

time. CVANN’s advantages are not limited to these. High-

level functionality, better plasticity and more elasticity are

its other significant advantages. CVANNs learn faster and

generalize better [13]. Better plasticity and flexibility mean

faster learning, and a better generalization ability of the

network. The high functionality is related to the impact of

the neuron. Carrying out a job by a neuron that can be done

by more than one neuron indicates high functionality. Nitta

has solved XOR problem in two layers by using complex-

valued neural network with orthogonal decision boundaries

in [14]. As is well known, XOR problem cannot be solved

using two-layer real-valued neural networks (RVANN).

When classical neural networks are preferred, more layers

are needed for the solution of a linearly inseparable XOR

problem in the real plane. This study proves the high

functionality of the complex classifier. In the literature,

there are many studies that emphasize the advantages of

CVANN over real-valued neural networks (RVANN)

[14–18].

This paper is organized as follows: Sect. 2 gives infor-

mation about the dataset and reduced sparsity method.

Section 3 describes the complex-valued wavelet neural

network (CVWANN) structure. In Sect. 4, the experi-

mental results are given and the comparative analysis of

these results is presented. Finally, Sect. 5 outlines the

conclusions.

2 Materials and methods

2.1 Dataset

The sonar data used in this study are available at UCI

Machine Learning Repository [3]. There are two files

which are labeled as ‘‘sonar.mines’’ and ‘‘sonar.rocks.’’

The file ‘‘sonar.mines’’ contains 111 patterns obtained by

bouncing sonar signals off a metal cylinder at various

angles and under various conditions. The file ‘‘sonar.rocks’’

contains 97 patterns obtained from rocks under similar

conditions. There are 208 patterns in total. Each pattern

contains 60 features with the values ranging from 0.0 to

1.0. These values represent the energy level at a particular

frequency range.

2.2 Reduced Sparse Forms of the Signals

A signal, which is not sparse in a given domain, can be

sparse in other domains. N-dimensional x signal can be

represented in terms of basis vectors. Using the NxN basis

matrix W ¼ fW1jW2 . . .j jWNg with the vectors Wif g as

columns, x can be expressed as:

x ¼
Xn

i¼1

siWi: ð1Þ

where s is the Nx1 column vector of weighting coefficients:

si ¼ xjWi: ð2Þ

Clearly, s and x are equivalent mathematical represen-

tations of the signal, with x in the time or space domain and

s in the W domain.

In this study, DFT matrix is used to decompose the

signal. After the Fourier coefficients of each signal are

extracted, it is seen that the N/3 part of the signals is dif-

ferent from zero and the remaining part is very close to

zero. Since this part characterizes the signal mostly and

information reduction is in a very small amount, the rest is

discarded for reduced sparsity form. Meanwhile, this N/3

part of the signal, which is selected for input, consists of

low-frequency components. As a result of CVSCs from the

frequency domain, CVANN is employed for the

classification.

CR036 in Fig. 1 is the first element of ‘‘sonar.rocks’’

training set. CM078 in Fig. 2 is the first element of

‘‘sonar.mines’’ training set. Preprocessing of input data

returned from the rock and mine is detailed in Figs. 1 and

2, respectively.

3 Complex-valued wavelet neural networks
(CVWANN)

CVANN is a machine learning algorithm in which all

parameters are complex numbers. Having complex values

for CVANN’s parameters of input, output, weight,

threshold values, and activation functions provides many

advantages. These advantages can be listed as an increase

in the functionalities of both the single neuron and the

neural network (which is the combination of neurons), and

hence an increase in performance and decrease in training

time. CVANN’s advantages are not limited to these. High-

level functionality, better plasticity and more flexibility are

its other significant advantages [13]. Better plasticity and

flexibility mean faster learning, and a better generalization
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ability of the network. The high functionality is related to

the impact of the neuron. Carrying out a job by a neuron

that can be done by more than one neuron indicates high

functionality. Nitta has solved XOR problem in two layers

by using complex-valued neural network with orthogonal

decision boundaries in [14]. As is well known, XOR

problem cannot be solved using two-layer RVANN. It can

be seen that XOR problem is solved using two-layer

CVANN in [14]. When classical neural networks are pre-

ferred, more layers are needed for the solution of a linearly

inseparable XOR problem in the real plane. This study

proves the high functionality of the complex classifier.

The number of input values is significantly reduced

through the sparse form structure proposed in this study;

since these input values are complex-valued, the idea of

using CVANN emerged. To extract features, the complex-

valued sparse form of the signal was obtained through a

simple and short transformation operation without the need

for parameters, and classification operation was performed.

The CVWANN whose activation functions are wavelet

functions was used as CVANN since it gives better results

in experiments [19–21]. Complex back propagation (CBP)

algorithm was preferred for training CVWANN [22]. The

architecture of a neuron used in CBP is given in Fig. 3.

Yn is the active value of the neuron n and can be cal-

culated as:

Yn ¼
X

m

WnmXm þ Vn ð3Þ

Here, Wnm is the complex-valued connection weight, Xm

presents the complex-valued input signal, and Vn presents

the complex-valued threshold of n neuron. In the next
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Fig. 1 a Compressible Fourier coefficients of a sonar signal marked as CR036, b shifted form of a, c compressed form of b, d reduced sparse

form of c
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stage, Yn value is transformed into two components that are

the imaginary and real parts.

Yn ¼ xþ iy ¼ z ð4Þ

Here, i represents the value
ffiffiffiffiffiffiffi
�1

p
. The output function is

calculated as shown in Eq. (5).

fc zð Þ ¼ fR xð Þ þ i � fR yð Þ ð5Þ

Here, fR uð Þ is the activation function of the neural network.

In the literature, there are different activation functions

proposed for CVWANN. In this study, complex-valued

Haar wavelet and complex-valued Mexican hat wavelet

functions were used as activation functions. The real and

imaginary parts of an output of a neuron mean the com-

plex-valued Haar and complex-valued Mexican functions

of the real part x and imaginary part y of the net input z to

the neuron, respectively. These functions can be defined as

in Eqs. (6) and (7).

f zð Þ ¼ wHaar

¼ 1� Re z½ �ð Þe�ðRe½z�=2Þ þ i 1� Im z½ �ð Þe�ðIm z½ �=2Þ ð6Þ

f zð Þ ¼ wMexhat

¼ 1� a Re½z2�
� �

e�bRe½z2� þ i 1� a Re½z2�
� �

e�bRe½z2�

ð7Þ
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Fig. 2 a Compressible Fourier coefficients of a sonar signal marked as CM078, b shifted form of a, c compressed form of b, d reduced sparse

form of c

Fig. 3 A simple neuron model used in CBP
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Here, Re z½ � and Im z½ � are the real and imaginary parts,

respectively. These wavelet functions are complex-valued

versions of the real-valued wavelet functions and most

widely used in the literature. As the complex-valued ver-

sions of these functions are available, it provides a great

convenience while performing our analysis.

In this study, a CVWANN with two layers as shown in

Fig. 4 was used.

Here, Wlm denotes the weight value between the hidden

layer and the input layer neurons, Vmn denotes the weight

value between the output layer neuron and the hidden layer

neuron, hm denotes the threshold value for the neuron m,

and cn denotes the threshold value for the neuron n. Hm, Il,

On denote the hidden layer neuron m, the input layer

neuron l, the output layer neuron n, respectively. Sn and Um

are the active values of the output layer neuron m and the

input layer neuron n, respectively. The mathematical model

of CVWANNs is given below [18, 22].

Um ¼
X

l

WmlIl þ hm ð8Þ

Sn ¼
X

m

VnmHm þ cn ð9Þ

Hm ¼ fc Umð Þ ð10Þ
On ¼ fc Snð Þ ð11Þ

During the evaluation and comparison stage of the current

study, square error function was used as the error function.

Square error for pattern p is calculated using Eq. (12).

CVWANN calculates the error using Eq. (12) based on the

obtained output On and the target output values Tn.

Ep ¼ 1=2

� �XN

n¼1

Tn � Onj j2¼ 1=2

� �XN

n¼1

dnj j2 ð12Þ

Here, N is the number or neurons in the output layer.

(dn ¼ Tn � OnÞ is the error between the On and Tn. The

learning rule for CBP model is defined to minimize the

square error Ep in the following equations [22]. The

arrangement of weights and threshold values is adjusted

according to Eqs. 13–16 (where g[ 0, g is a small learn-

ing constant):

DVnm ¼ �g � oEp

oRe Vnm½ � � i � g oEp

oIm Vnm½ � ð13Þ

Dcn ¼ �g � oEp

oRe cn½ � � i � g oEp

oIm cn½ � ð14Þ

DWml ¼ �g � oEp

oRe Wml½ � � i � g oEp

oIm Wml½ � ð15Þ

Dhm ¼ �g � oEp

oRe hm½ � � i � g oEp

oIm hm½ � ð16Þ

Expressions given in Eqs. (13) to (16) can be rewritten

as follows:

DVnm ¼ HmDkn ð17Þ

Dkn ¼ g Re dn½ � 1� Re On½ �ð ÞRe On½ �ð
þ i:Im dn½ � 1� Im On½ �ð ÞIm On½ �Þ

ð18Þ

DWml ¼ IlDhm ð19Þ

Dhm ¼ g

1� Re Hm½ �ð ÞRe Hm½ �

x
P
n

Re dn½ � 1� Re On½ �ð Þ
Re On½ �Re Vnm½ �

þIm dn½ � 1� Im On½ �ð Þ
Im On½ �Im Vnm½ �Þ

0
BBBB@

1
CCCCA

2

6666664

3

7777775

� ig

1� Im Hm½ �ð ÞIm Hm½ �

x
P
n

Re dn½ � 1� Re On½ �ð Þ
Re On½ �Im Vnm½ �

�Im dn½ � 1� Im On½ �ð Þ
Im On½ �Re Vnm½ �

0
BBBB@

1
CCCCA

2
6666664

3
7777775

ð20Þ

CVWANN is updating weights and thresholds by using the

formulas in Eqs. (17)–(20) until the minimum error.

3.1 The proposed hybrid method:
CVSCs 1 CVWANN

This study proposes a novel approach for automatic

recognition of sonar targets. The block schema of the

proposed method is presented in Fig. 5. Initially, Min–Max

method, which provides normalization of the data between

0 and 1, was applied. Equation (21) was used to reduce the

data to 0–1 range with this method.

y0 ¼ yi � ymin

ymax � ymin
ð21Þ

Fig. 4 A two-layer complex-valued wavelet neural network
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In this equation, y0 denotes the normalized data. yi denotes

the input value, ymin denotes the minimum number in the

input set, and ymax denotes the maximum number in the

input set. In the next step, complex-valued features were

extracted from the dataset. Sonar echo signals are made

complex by transferring them to the Fourier domain, and

the dense part is taken by taking advantage of the sparsity

property. In the next step, these complex-valued input

values are classified by CVWANN.

4 Experimental results and discussion

In this study, a hybrid method for classification of sonar

echo signals in their sparse forms is proposed. In the

experiments, data distribution was made according to

50–50% training–testing data selection and tenfold cross-

validation (CV) methods. For fairness of the comparisons

made with studies in the literature, experiments were per-

formed with both of these methods because tenfold CV

method was used in some studies in the literature, while

50–50% training–testing data selection method was used in

some other studies. Experiments were repeated 10 times for

reliability of the results and to determine their stability.

Because the tenfold cross-validation method was used, a

total of 100 experiments (10 repeat 9 tenfold) were per-

formed, and averages of the obtained values were

calculated.

Parameter values were determined through experiments

made on training data, and these parameter values were

used during the test stage. Multiple combinations have

been tested in parameters detection, and parameter values

that give best results were determined. Accordingly,

detection of the parameters with following ranges has been

targeted: for hidden layer neuron number 5, 10, 15,…, 100,

for learning coefficient, 0.1, 0.2,…, 0.9, for the number of

iterations, 100, 200,…, 1000. A total of 100 experiments

have been carried out with different combinations of these

parameters, and the combination with the best result has

been determined with these experiments. Optimal network

structure (input-hidden-output) was found to be (21–15–2)

according to the tenfold CV method. Learning ratio was

determined as 0.5, and Eq. (12) was used as the stopping

criterion. Optimal network structure (input-hidden-output)

was found to be (21–20–2) according to 50–50% training–

testing data selection. Learning ratio was determined as

0.5, and Eq. (12) was used as the stopping criterion.

Complex-valued Mexican hat wavelet was used as activa-

tion function for the hidden layer according to both data

selection methods because it gave good results in the

experiments performed. Complex sigmoid function was

used as an activation function for the output layer. The

success performance of the proposed system was tested

according to the performance of the evaluation metrics

below.

ACC ¼ TPþ TN

TPþ FPþ FNþ TN
� 100% ð22Þ

Sensitivity ¼ TP

TPþ FN
� 100% ð23Þ

Specificity ¼ TN

FPþ TN
� 100% ð24Þ

Recall ¼ TP

TPþ FN
ð25Þ

Precision ¼ TP

TPþ FP
ð26Þ

f -measure ¼ 2� Precision� Recall

Precisionþ Recall
ð27Þ

Here, TN, TP, FN and FP are the true negative, true pos-

itive, false negative, and false positive, respectively. Pre-

cision and Recall values are not sufficient by themselves

for us to obtain a meaningful comparison result. Evaluating

both metrics together yields better results. For this,

f-measure was defined. The f-measure is the harmonic

mean of Recall and Precision. This metric assumes values

in the 0–1 range. In a classification with a high perfor-

mance, f-measure is expected to assume a value close to

one. Kappa statistic value (KV) is another metric fre-

quently used as a performance evaluation criterion. KV is a

significant method used in calculating the agreement

between the evaluations made by two or more evaluators.

This value is computed as seen in Eq. (28).

KV ¼ X0 � Xc

1� Xc

ð28Þ

Fig. 5 The method applied for automatic recognition of sonar targets: Sonar echo signals are made complex by decomposing them into the

Fourier domain. In the next step, the few complex-valued input values are classified by CVWANN
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where X0 is the classification accuracy and Xc is the clas-

sification accuracy value obtained through random pre-

diction on the dataset. The kappa value takes values

between - 1 and 1. A value of - 1 indicates that a com-

pletely false classification was made. A value of 1, on the

other hand, shows that a completely true classification was

made.

In this study, receiver operation characteristic (ROC)

curves were also used to measure the success of the pro-

posed method. A ROC curve is a technique used for

selecting classifiers based on their performances and

organizing and visualizing them. ROC curves are usually

used at decision making stage; recently, they are being

used increasingly more in machine learning and data

mining research. A ROC curve explains the visual rela-

tionship between true positives and false positives. The

area that remains under the ROC for a detection test is

called area under curve (AUC). AUC assumes values

between 0.50 and 1.00. Bigger the AUC, better the per-

formance of the classifier.

Results obtained with the proposed system are given in

Table 1. Results obtained with real-valued ANN are also

shared in the table. The results are shown as a ± b. Herein,

a is the accuracy ratio and b is the standard deviation.

Accordingly, 94.23% classification accuracy was achieved

by CVSCs ? CVWANN method according to the tenfold

CV method. 93.26% accuracy was obtained by applying

CVSCs ? CVANN method. Accuracy obtained by apply-

ing ANN method to the original dataset is 81.25%. For

50–50% distribution, while 95.19% accuracy was achieved

by CVSCs ? CVWANN method, 93.75% classification

accuracy was achieved by CVSCs ? CVANN method.

Accuracy obtained by applying ANN method to the

original dataset is 86.53%. CVSCs ? CVWANN method

is observed to yield good results in kappa statistic and

f-measure values, as well. As the results demonstrate,

performance achieved by complex-valued neural networks

was higher than that achieved by the real-valued neural

network. It is also observed that CVWANN method yields

better results for this problem than CVANN. Standard

deviation of CVSCs ? CVWANN method was smaller.

This shows that the proposed method is more robust and

reliable.

In the ROC curves used for success performance of the

proposed system, a comparison of CVSCs ? CVWANN,

CVSCs ? CVANN and original dataset ? real-valued

ANN methods according to tenfold CV and 50–50%

training–testing data selection methods is presented. ROC

curve obtained according to tenfold CV is presented in

Fig. 6. As can be seen in the ROC graphic, there is an

important difference between the areas computed for

complex-valued classifiers and the real-valued classifier

(AUC = 0.968 for CVSCs ? CVWANN, AUC = 0.965

for CVSCs ? CVWANN and AUC = 0.88 for original

features ? ANN). ROC curve obtained according to

50–50% training–testing data selection method is presented

in Fig. 7. As can be seen in the ROC graphic, there is an

important difference between the areas computed for

complex-valued classifiers and the real-valued classifier

(AUC = 0.981 for CVSCs ? CVWANN, AUC = 0.969

for CVSCs ? CVWANN and AUC = 0.929 for original

features ? ANN).

To evaluate the performance of the proposed method

during the analysis stage, experiments were performed with

different classification algorithms, as well. SVM, naive

Bayes, Random Forest, C4.5 Decision Tree and Radial

Basis Function (RBF) network, which are often preferred

Table 1 The results obtained

from performance evaluation

criteria

Method Statistical measures Tenfold CV 50–50% training–testing

Original features ? ANN Accuracy 81.25 ± 5.96 86.53 ± 4.45

Sensitivity 79.40 ± 6.05 87.23 ± 3.88

Specificity 82.91 ± 5.12 86.47 ± 3.52

f-measure 0.812 0.866

Kappa 0.623 0.729

CVSCs ? CVANN Accuracy 93.26 ± 3.85 93.75 ± 3.26

Sensitivity 89.60 ± 4.05 91.50 ± 4.10

Specificity 97.10 ± 3.12 96.10 ± 2.95

f-measure 0.933 0.937

Kappa 0.865 0.875

CVSCs ? CVWANN Accuracy 94.23 ± 3.05 95.19 ± 2.25

Sensitivity 91.50 ± 3.56 92.50 ± 3.18

Specificity 97.10 ± 2.95 98.00 ± 1.93

f-measure 0.942 0.952

Kappa 0.884 0.903

Neural Computing and Applications (2020) 32:2231–2241 2237
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in the literature, were chosen as a classification algorithm.

Parameter values of SVM algorithm have been determined

as follows. RBF kernel function which is commonly used

in the SVM applications was preferred as the kernel

function. Parameter values of algorithm have been found

by using tenfold cross-validation on grid search mechanism

and training dataset. Grid search mechanism is one of the

most widely used methods for determining kernel param-

eter c and regularization parameter C. In the grid search,

the regularization parameter C was explored on

C ¼ 2�5; 2�4; . . .; 215. The kernel parameter c was explored
on c ¼ 2�15; 2�14; . . .; 23. Effective parameter values for

other algorithms have been tested with multiple combina-

tions, and determination of parameters with good results

has been provided. C4.5 algorithm was used as Decision

Tree. Number of trees was determined as 100 in Random

Forest algorithm. Experiments were performed according

to 50–50% training–testing data selection method. Results

obtained for the same problem by using these algorithms

are presented in Fig. 8.

When Fig. 8 is examined, it can be seen that the pro-

posed CVSCs ? CVWANN method yields better results.

Random Forest algorithm gives the best result after this

method. The lowest classification accuracy is obtained with

naive Bayes algorithm. In Table 2, comparative analysis of

the results obtained by the proposed method with studies

previously performed on the same dataset is presented. The

results obtained in previous studies are the results that the

authors reported in their work. For a fair comparison, all

methods must be performed on the same computer and

with the same parameter values. However, in many studies

on the table, no information is given about the parameter

values used. As can be seen in the table, the proposed

method yielded better results than the methods proposed in

previous studies. While accuracy values varying in the

range 70%-93% are generally obtained in the literature, a

classification accuracy of 95.19% was reached with the

proposed method. Therefore, it is apparent that the pro-

posed study will have a significant contribution to this field.

In Fig. 9, the accuracy level can be observed according

to the sparsity in other words according to the N, the

number of inputs. In the figure, the AWGN is additive

white Gaussian noise. In general, good results are obtained

with the help of the proposed method.

In previous studies, we have observed that CVANN

gives higher-accuracy dataset compared to traditional real-

valued ANN applied to the same problem and the same

dataset [34]. In particular for the systems which naturally

work with complex values, CVANN provides significantly

better prediction results [15, 35]. There are a number of

possible reasons behind the success of CVANN, such as

the following:

• Mapping capability of CVANN: A neuron has two main

functions to perform: an aggregation function and an

activation function. The aggregation function maps a

multidimensional input space into the neuron’s net

input space, which is one dimensional for a real-valued

network and two dimensional for a complex-valued

network [36]. The activation function allocates net

input space into discrete clusters which represent

different classes using a threshold operation on the

output provided by the activation function collector. In

the mapping by the aggregator, each input is multiplied

by a connection weight, and then the resulted weighted

inputs are added. If we consider =R as the set of all

possible mappings for a real-valued network and =C as

the set of all possible mappings for a complex-valued

networks, it can be seen that =R � =C. This is because

a complex multiplication scales and rotates an input

with any optional amount, whereas a real multiplication

does a scaling with an optional amount but a rotation of

only 0 or p [36]. In other words, the mapping
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capabilities of a complex-valued network are superior

to a real-valued network, and this may be one of the

main reasons for its superior performance.

• High functionality is the ability of a single neuron to

learn linearly inseparable input/output mappings.

Therefore, a neuron has the ability to learn these

mappings in the initial stage before producing a higher

level of input, and transforming to a higher dimensional

space, respectively. Studies showed that a single neuron

with complex-valued weights can solve linearly insep-

arable problems such as the exclusive or (XOR)

classification problem. This ability suggests that a

single CVANN has a higher functionality than a single

ANN [13].

• In ANNs, input variables are single values (i.e., real

numbers), while in CVANNs, input variables are

complex values (complex numbers consisting of real

and imaginary parts). Therefore, in CVANN, two-

Fig. 8 Comparison with

different classification

algorithms

Table 2 Comparative analysis with studies previously carried out on the same dataset

Study Method Data selection method Accuracy

(%)

Chen et al. [23] Robust support vector data description (eNR-SVDD) Training: 90% of the normal data and 10%

of the outliers

Testing: 10% of the normal data ? 90% of

the outliers

81.37

Chatterjee and

Raghavan [24]

Similarity graph neighborhoods ? support vector

machine (SGN ? SVM)

(60–40% training–testing) 86.27

Jiang et al. [25] Randomly selected naive Bayes Fivefold CV 83.64

Kheradpisheh et al.

[26]

Mixture of feature-specified experts Fivefold CV 72.34

Jiang [27] Random one-dependence estimators Tenfold CV 82.19

Koshiyama et al. [28] GPFIS-CLASS: A genetic fuzzy system based on genetic

programming

Tenfold CV 74.29

Li and Wang [29] A hybrid coevolutionary genetic algorithm (HCGA) Tenfold CV 74.43

Tahir and Smith [30] Ensemble 1NN classifier (DF-TS-1NN) Tenfold CV 90.7

Sreeja and Sankar [31] Pattern matching-based classification (PMC) Tenfold CV 90.87

Erkmen and Yildirim

[32]

General regression neural network ? PCA 50–50% training–testing 93.26

Our study CVSCs ? CVWANN Tenfold CV 94.23

Our study CVSCs ? CVWANN 50–50% training–testing 95.19
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dimensional data inputs are possible. As described in

Sect. 2.2, this multidimensional data representation and

complex multiplication operations may be among the

main factors that improve the accuracy and thus

increasing the popularity of CVANN.

In summary, the main reason for CVANN to achieve

better diagnosis performance than its traditional counter-

parts is its superior mapping capabilities coupled with

efficacy in high functionality.

5 Conclusion

In this study, a novel method for classification of sonar

echo signals in their sparse forms is proposed and its stages

are presented in detail. To determine the performance of

the proposed method, a well-known and frequently pre-

ferred dataset was used. Therefore, it was possible to make

comparisons with studies in the literature performed on the

same dataset. Sonar echo signals were made complex-

valued by transferring them to the DFT domain, and the

dense parts were utilized by taking advantage of the spar-

sity property [33]. Therefore, the number of inputs was

reduced. During the classification stage, CVWANN algo-

rithm, which has high functionality and good classification

ability, was preferred. CVSCs obtained from the sparse

form were classified by CVWANN [27]. Our method,

CVSCs ? CVWANN, is very successful as 94.23% by

tenfold CV data selection and 95.19% by 50–50% training–

testing data selection.
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