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Abstract
In this paper, a novel adaptive sliding mode controller (SMC) based on support vector regression (SVR) is introduced for
nonlinear systems. The closed-loop margin notion introduced for self-tuning regulators is rearranged in order to optimize the
parameters of SMC. The proposed adjustment mechanism consists of an online SVR to identify the forward dynamics of the
controlled system and SMC parameter estimators realized by separate online SVRs to approximate each tunable controller
parameter. The performance of the proposed control architecture has been evaluated by simulations performed on a nonlinear
continuously stirred tank reactor system, and the obtained results indicate that the SMC based on SVR provides robust and
stable closed-loop performance.

Keywords Sliding mode control · Stability analysis · Support vector regression · SVR-based parameter estimator · SVR-based
SMC

1 Introduction

Nonlinearity and uncertainty are the main inevitable com-
plexities in identification of system dynamics. Due to the
inadequacy of linear methods in control of nonlinear systems
and discrepancies between dynamics of the actual systemand
mathematical model of the controlled systems, it is necessary
to deploy adaptive nonlinear robust controller structures to
successfully identify and control nonlinear systems.

Sliding mode control (SMC), the main idea of which is
based on variable structure control (VSC), is one of the most
notable nonlinear deterministic control techniques owing
to its implementation simplicity, high robustness to strong
nonlinearities, tolerance to modelling and system parame-
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ter inaccuracies and order reduction features (Feng et al.
2014; Sabanovic 2011; Utkin 1992; Tokat et al. 2003). Basi-
cally, in SMC, the aim is to compel the system dynamics to
a predefined sliding surface that subsumes the desired sta-
ble dynamics (Tokat et al. 2003). Then, using the merits of
Lyapunov’s stability theory, system dynamics are retained
on this sliding surface and shifted to the origin of the phase
plane, resulting in a simultaneous shift of the error dynamics
towards the origin (Efe MÖ et al. 2001b). Thus, the design
of a SMC consists of two main phases, namely a reaching
phase and a sliding phase.

In reaching phase, a control law carrying the states of the
system from initial conditions to the desired sliding surface
is derived using the approximated dynamics of the controlled
system. Therefore, the reaching time of the system states to
sliding surface depends on the accuracy of the system model
and slope of the sliding surface. In sliding phase, the con-
trol law (equivalent control law) holding the system states on
the sliding surface (Liu andWang 2012) and ensuring stabil-
ity and convergence is attained. Since the sliding surface is
constituted via Lyapunov’s stability theory, robust tracking
is ensured once system states arrive at the sliding surface,
whereas robustness is not guaranteed during the reaching
phase (Bartoszewicz 1996). SMC consists of continuous and
discontinuous parts when examined in terms of reaching and
sliding phases. Because of the discontinuous nature of the
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switching mechanism, chattering phenomenon emerges and
the unmodelled high-frequency dynamics of the controlled
systemmay be stimulated. Hence, the control signal becomes
more sensitive to measurement noise and fragility of the
controller against measurement noise increases. Therefore,
various solutions to restrain the chattering phenomenon in
SMC have been proposed and enhanced since the precessor
form of SMC called as variable structure control (VSC) was
first proposed in Emelyanov’s first monograph on variable
structure systems (VSS) in Soviet Union/Moscow in 1967
(de la Parte et al. 2002; Emelyanov 1967; Emel’yanov 2007;
Utkin 1977). Various SMC structures have been introduced
such as integral SMC(ISMC) in order to eliminate the draw-
backs resulting from reaching phase (Pan et al. 2018).

There are several factors affecting the performance of
SMC. These factors can bemainly examined under two head-
ings:

– Optimal selection of several parameters utilized in the
design of SMC (such as slope of sliding surface, gain of
switching function and parameters of saturation etc.).

– Accurate estimation of system dynamics required to
design the controller (estimation of system dynamics).

Since pure SMC suffers from chattering and is vulnerable
to measurement noise (Kaynak et al. 2001) and also a good
mathematical model of the system is required to compute
the equivalent control law, artificial intelligence (AI)-based
solutions have been proposed to improve the performance
of SMC and to overcome its drawbacks (Al-Duwaish and
Al-Hamouz 2011; Guo et al. 2006; Baric et al. 2005; Sun
et al. 2011; Ertugrul and Kaynak 2000; Fei and Ding 2012;
Kim and Lee 1995; Ngo et al. 2017; Al-Holou et al. 2002;
Hušek 2016;Roopaei and Jahromi 2009;Yau andChen 2006;
Hung and Chung 2007; Lin and Shen 2006; Lin et al. 2001;
Li et al. 2008a, b; Li and Li 2008a, b; Tokat et al. 2009a, b;
Tokat 2006).

The parameter selection of SMC includes the optimiza-
tion of sliding surface parameters such as slope, gain and
tunable parameter of saturation or switching function. Also,
these parameters must be adaptive to deal with time-varying
effects of the system, the changing reference signal, dis-
turbances, noise, etc. Duwaish and Hamouz proposed to
deploy an NN structure to identify the dynamics between
operating points and SMC parameters in order to enhance
the control performance under different operation conditions
(Al-Duwaish and Al-Hamouz 2011). The training data pairs
are gathered using genetic algorithms, and a radial basis
function (RBF)-NN structure is trained in offline manner.
Even if fuzzy structures have no learning ability, they can be
deployed in SMC to approximate the switching control law.
Kim and Lee have proposed a fuzzy controller with fuzzy
sliding surface for nonlinear systems (Kim and Lee 1995).

This fuzzy controller has single input and output different
from conventional fuzzy controllers. The input of the fuzzy
controller is the sliding function, and output is switching
control signal. The fuzzy rule base of the controller is con-
structed via fuzzy sliding surface. Both Mamdani (Kim and
Lee 1995;Ngo et al. 2017;Al-Holou et al. 2002;Hušek 2016)
and Sugeno-type structures (Roopaei and Jahromi 2009; Yau
and Chen 2006) have been deployed. In adaptive control, a
major problem is parameter convergence and the input sig-
nal to the system must satisfy the persistent excitation (PE)
condition. Pan and Yu proposed a method called composite
learning (Pan and Yu 2016) where recorded and instanta-
neous data are used to generate prediction errors which are
in turn used together with tracking errors to update esti-
mates of parameters. This technique guarantees parameter
convergencewithout the PE condition. Also, Pan et al. (2017)
have developed a backstepping-based strategy for a class of
strict-feedback nonlinear systems with functional uncertain-
ties using composite learning concept (NNCLC).

The second crucial factor is accurate estimation of dynam-
ics of the system to be controlled. Guo et al. (2006) have
introduced anRBF-SMC for a chaotic system to approximate
the control signal where the adjustment rules for weights of
the NN structure are derived depending on the reaching con-
dition in SMC. Baric et al. (2005) employed an MLP-NN
to identify the uncertainties in system dynamics. Thus, by
taking the uncertainties into account, the convenient SMC
is designed for the controlled system. Sun et al. (2011)
proposed to use a NN to identify the required system dynam-
ics to design equivalent controller part of SMC. Fei and
Ding (2012) have proposed an RBF-based adaptive SMC
to combine adaptive sliding mode control and the nonlinear
approximation ability of NN which is employed to adap-
tively identify model uncertainties and external disturbances
to restrain the chattering of sliding modes. By combining
the learning ability of NN and powerful sides of FL, ANFIS-
based SMCstructures have also been developed for nonlinear
systems (Hung andChung2007;Lin andShen2006;Lin et al.
2001). Ertugrul and Kaynak (2000) deployed two NN struc-
tures to estimate both the equivalent and switching control
signals.

SVR proposed by Vapnik is one of the most effective
regression techniques in recent years. Owing to their supe-
rior generalization performances, SVR-based structures have
frequently been proposed for SMC of nonlinear systems (Li
et al. 2008a, b; Li and Li 2008a, b; Tokat et al. 2009a, b;
Tokat 2006). Li et al. (2008a) have developed a chattering-
free SMC based on LS-SVM for uncertain discrete systems
with input saturation. LS-SVM structure is deployed in place
of the sign function of reaching law in conventional SMC to
obtain switching control law. Li and Li (2008a, b) and Li et al.
(2008b) have developed chattering-free SMC architectures
which combine linear matrix inequality (LMI) approach and
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Fig. 1 Support vector regression

SVR for uncertain time delay systems. Tokat et al. (2009a)
and Tokat (2006) proposed an SVR-based SMC where the
parameters of the time-varying sliding surface are approxi-
mated viaSVRstructure. Tokat et al. (2009b) have introduced
an output feedback sliding mode control based on SMC
where it is assumed that the mathematical functions of the
subdynamics of the system are known and SVR is deployed
to identify the known subdynamics of the controlled system.
Since, in practice, it is difficult to acquire the mathemati-
cal model of the subdynamics, it is identified without the
mathematical function representing the behaviour between
input–output of the subdynamics in Tokat et al. (2009b).

In this paper, a novel adaptive SMC based on online SVR
has been introduced for nonlinear dynamical systems. The
proposed method brings forward three main novelties for
SMC design.

– The parameters of the sliding surface, which are required
to drag the system dynamics to the sliding surface and
also the parameter of the switching function so as to pal-
liate the chattering, are approximated via separate SVR
structures.

– “Online SVR” is utilized to approximate the optimal
parameter values of the SMC. For this purpose, the
“closed-loopmargin” notion proposed inUçak andGünel
(2016) and Uçak and Günel (2017a) has been expanded
to optimize SMC parameters.

– The main distinguishing feature of the proposed method
with respect to previous studies combining SVR with
SMCsummarized above is the utilization of SVRdirectly
to approximate the SMC parameters.

The performance of the proposed SMChas been evaluated
on a nonlinear continuously stirred tank reactor (CSTR) sys-
tem. The results show that the proposed novel SMC structure
with online SVR model attains good modelling and closed-
loop control performances.

The organization of the paper is presented as follows:
Sect. 2 describes the basic principles of online SVR. Con-

stitution of regression and optimization problem in order to
deploy SVR directly as a parameter estimator and the pro-
posed SMC architecture are detailed in Sect. 3. In Sect. 4,
the simulation results to evaluate the performance of the pro-
posed SMC adjustment mechanism are given. The study is
briefly concluded in Sect. 5.

2 Online support vector regression

Support vector regression, first asserted byCortes andVapnik
(1995), Drucker et al. (1997) and Vapnik et al. (1997), is
one of the most effective data sampled regression methods
among machine learning algorithms. In SVR, the aim is to
obtain a regression function which optimally represents the
given samples. Let us consider a training sample data set (T)
illustrated in Fig. 1a and given as follows:

T = {xi, yi }Ni=1 xi ∈ X ⊆ Rn, yi ∈ R (1)

where xi are the input instances, yi are the corresponding out-
put samples, n is the dimension of the input sample and N is
the number of the training data pairs. The linearly distributed
samples can be represented using a linear SVR. However,
linear SVRs remain incapable of modelling nonlinearly dis-
tributed samples. Therefore, nonlinearly distributed samples
in input space (I) are mapped via kernel functions to high-
dimensional feature space (F) where training samples can
be linearly represented and can be separated by using linear
SVR algorithm. The samples in (1) given in input space I can
be modelled via SVR function in feature space F as follows:

yi = f (xi) = wT�(xi) + b, i = 1, 2, . . . , N (2)

where w denotes the weights of the SVR, �(xi) is the image
of input data in feature space and b is the bias of the regressor.
Since SVR is constructed upon support vector classification
(SVC) problem, it aims to obtain the optimal separator as in
SVC. In SVC, the optimization problem is based on the max-
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imization of the margin between two different classes and
design of the optimal separator between these two classes.
As in SVC, the objective of SVR is to obtain the optimal sep-
arator. However, SVR cannot be a margin as in SVC, from
the nature of the problem, so an artificial margin is defined
using a predefined ε tube. Thus, the optimization problem is
transformed to obtain an optimal separator in ε tube which
represents all samples with at most ε precision. The samples
which deviate from the ε tube as illustrated in Fig. 1b can be
represented using slack variables (ξi , ξ�

i ). Thus, the primal
form of the optimization problem for SVR can be expressed
as follows (Iplikci 2006; Smola and Schölkopf 2004):

min
w,b,ξ,ξ�

1

2
‖w‖2 + C

N∑

i=1

(ξi + ξ�
i ) (3)

subject to

yi − wT�(xi) − b ≤ ε + ξi

wT�(xi) + b − yi ≤ ε + ξ�
i

ξi , ξ
�
i ≥ 0 , i = 1, 2, . . . N (4)

where ε stands for the maximum tolerable error and ξ ’s
and ξ�’s are the slack variables representing the deviations
from ε tube (Iplikci 2006; Smola and Schölkopf 2004). The
primal form of the problem is non-convex. Therefore, in
order to convert the optimization problem to a convex one,
a Lagrangian function is attained using the objective func-
tion and corresponding constraints of the problem in (4).
Thus, Lagrangian function can be derived as follows using
Lagrange multiplier method:

L =1

2
‖w‖2 + C

N∑

i=1

(ξi + ξ�
i )

−
N∑

i=1

βi (ε + ξi − yi + wT�(xi) + b)

−
N∑

i=1

β�
i (ε + ξ�

i + yi − wT�(xi) − b) −
N∑

i=1

(ηiξi + η�
i ξ

�
i )

(5)

where β, β�, η and η� denote Lagrange multipliers (Uçak
and Günel 2016; Iplikci 2006; Smola and Schölkopf 2004).
According to optimization theory, the first-order optimality
conditions can be derived via (5) as (Uçak and Günel 2016;
Iplikci 2006; Smola and Schölkopf 2004)

∂L p

∂w
= 0 −→ w −

N∑

i=1

βiwT�(xi) = 0 (6)

∂L p

∂b
= 0 −→

N∑

i=1

(βi − β�
i ) = 0 (7)

∂L p

∂ξi
= 0 −→ C − βi − ηi = 0 , i = 1, 2, . . . N (8)

∂L p

∂ξ�
i

= 0 −→ C − β�
i − η�

i = 0 , i = 1, 2, . . . N (9)

By substituting optimality conditions (6–9) in (5), dual
representation of the optimization problem in (3,4) can be
formulated in (10)–(11):

D = 1

2

N∑

i=1

N∑

j=1

(βi − β�
i )(β j − β�

j )Ki j + ε

N∑

i=1

(βi + β�
i )

−
N∑

i=1

yi
(
βi − β�

i

)
(10)

subject to

0 ≤ βi ≤ C , 0 ≤ β�
i ≤ C

N∑

i=1

(βi − β�
i ) = 0 , i = 1, 2, . . . N (11)

where Ki j = �(xi)T�(xj) (Uçak and Günel 2016; Iplikci
2006). As can be seen from (10) and (11), the dual form has
a convex objective function with linear constraints, which
ensures the global minimum. The quadratic programming
(QP) problem in (10) and (11) can be solved using any QP
solver. Thus, using obtained Lagrange values (βi , β�

i ) in (2)
and (6), the regression function can be rewritten as (Uçak
and Günel 2016, 2017a)

ŷ(x) =
N∑

i=1

λi K (xi , x) + b , λi = βi − β�
i (12)

As can be seen in Fig. 1b, the samples have different char-
acteristics depending on their locations with respect to the ε

tube. Let us define an error margin function h(xi) for the i th
sample xi as (Uçak and Günel 2016, 2017a; Ma et al. 2003;
Wang et al. 2009):

h(xi) = f (xi) − yi =
N∑

j=1

λ j Ki j + b − yi (13)

Thus, the samples in Fig. 1b can be classified into three
subsets, namely error support vectors (E), margin support
vectors (S) and remaining samples (R), according to their
Lagrangemultipliers and error margin function values (Uçak
and Günel 2016, 2017a; Ma et al. 2003; Wang et al. 2009) as

E = {i | |λi | = C, |h(xi)| ≥ ε}
S = {i | 0 < |λi | < C, |h(xi)| = ε}
R = {i | |λi | = 0, |h(xi)| ≤ ε}

(14)
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The optimization problem formulated in (10) and (11) is
convenient for offline training. In online learning, when a
new training instance is received, the distribution of all sam-
ples changes. Therefore, it is required to adjust all Lagrange
parameters of the SVR. Depending on this adjustment, the
slope [in other words the weight vector (w)] and bias of the
regressor alternate. As a result of this alternation, some sam-
ples may immigrate to other classes as depicted in Fig. 2.
Therefore, when a new sample is learned by the regressor,
the value of the corresponding Lagrange variable for this new
sample is determined by taking into consideration all possi-

ble immigrations among classes. Let us assume that the error
margin function at time index n is

hold(xi) = f old(xi) − yi =
N∑

j=1

λoldj Ki j + bold − yi (15)

When a new sample is introduced, a newLagrange parameter
(λnewc ) is assigned to the new corresponding sample. Thus,
the error margin function values of all samples including the
last one are expressed as

hnew(xi) = f new(xi) − yi = Kic (λoldc + Δλc)︸ ︷︷ ︸
λnewc

+
N∑

j=1

(λoldj + Δλ j )︸ ︷︷ ︸
λnewj

Ki j + (bold + Δb)︸ ︷︷ ︸
bnew

−yi

(16)
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Fig. 2 Migrations among subsets E, R and S

Thus, the alternation in error margin values can be acquired
as

Δh(xi) = hnew(xi) − hold(xi)

= KicΔλc +
N∑

j=1

Ki jΔλ j + Δb

Δλc = λnewc − λoldc ,

Δλ j = λnewj − λoldj , Δb = bnew − bold

(17)

As a result of the inclusion of the new sample, the dual con-
straints of the problem are given as

KKT Condition (Step n) :
N∑
j=1

λoldj = 0

KKT Condition (Step n + 1) : (λoldc + Δλc)︸ ︷︷ ︸
λnewc

+
N∑
j=1

(λoldj + Δλ j )︸ ︷︷ ︸
λnewj

= 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Δλc +
N∑

j=1

λ j = 0 (18)

Thus, the rule derived fromdual constraints of the problem
can be obtained with respect to the Lagrange parameter of
the new sample as

λc +
N∑

j=1

λ j = 0 (19)

As can be clearly seen from (14), if any vector related to
previous or new data is an element of the subset E or R,
the corresponding value of the Lagrange multiplier (λc) is
set to “0” or “C”. The alternation of error margin function of
samples in S isΔh(xi) = 0 (Ma et al. 2003;Wang et al. 2009;
Martin 2002).By isolating theΔλc term inEqs. (17) and (19),
the update rule for the data in subset S can be easily derived
with respect to obtained Δλc as follows (Martin 2002):

N∑

j=1

Ki jΔλ j + Δb = −KicΔλc

∑

j∈SV
Δλ j = −Δλc

(20)

The summation terms in (20) can be given in matrix form as
(Uçak and Günel 2016, 2017a; Ma et al. 2003)

⎡

⎢⎢⎢⎣

0 1 · · · 1
1 Ks1s1 · · · Ks1sk
...

...
. . .

...

1 Ksks1 · · · Ksksk

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

Δb
Δλs1

...

Δλsk

⎤

⎥⎥⎥⎦ = −

⎡

⎢⎢⎢⎣

1
Ks1c

...

Kskc

⎤

⎥⎥⎥⎦Δλc

(21)
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Thus, the update rule Δλ can be rewritten as

Δλ =

⎡

⎢⎢⎢⎣

Δb
Δλs1

...

Δλsk

⎤

⎥⎥⎥⎦ = βΔλc (22)

where

β =

⎡

⎢⎢⎢⎣

β

βs1
...

βsk

⎤

⎥⎥⎥⎦ = −�

⎡

⎢⎢⎢⎣

1
Ks1c

...

Kskc

⎤

⎥⎥⎥⎦ , � =

⎡

⎢⎢⎢⎣

0 1 · · · 1
1 Ks1s1 · · · Ks1sk
...

...
. . .

...

1 Ksks1 · · · Ksksk

⎤

⎥⎥⎥⎦

−1

(23)

as given in Uçak and Günel (2016, 2017a) and Ma et al.
(2003). The alternation in error margin values for non-
support samples (E and R) can be computed with respect
to the Lagrange parameter of the new sample as follows:

⎡

⎢⎢⎢⎣

Δh(xz1 )
Δh(xz2 )

.

.

.

Δh(xzm )

⎤

⎥⎥⎥⎦ = γΔλc, γ =

⎡

⎢⎢⎢⎣

Kz1c

Kz2c
.
.
.

Kzmc

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

1 Kz1s1 · · · Kz1sl
1 Kz2s1 · · · Kz2sl
.
.
.

.

.

.
. . .

.

.

.

1 Kzms1 · · · Kzmsl

⎤

⎥⎥⎥⎦ β

(24)

where z1, z2, . . . , zm are the indices of non-support samples,
γ are margin sensitivities and γi = 0 for samples in S (Uçak
and Günel 2016, 2017a; Ma et al. 2003). Thus, the update
rules given for support set samples (S) and non-support sam-
ples (E and R) enable us to adjust all λi and h(xi) via given
Δλc (Ma et al. 2003). The Δλc term is obtained by consid-
ering all possible immigrations. The bookkeeping procedure
to trace the immigrations of the all samples is detailed in Ma
et al. (2003), Wang et al. (2009) and Martin (2002).

3 Slidingmode controller structure based on
SVR

3.1 An overview of slidingmode control

Sliding mode control (SMC) is a robust control technique
which is based on forcing system states onto a predefined
sliding surface and keeping the states on this surface there-
after. Once on the sliding surface, the system is said to be in
sliding mode and the dynamics of the system are represented
by the equation of the sliding surface (Liu and Wang 2012;
Slotine and Li 1991). The graphical illustration of SMC is
presented in Fig. 3. The behaviour of SMC can be examined
in twomodes: reaching and slidingmodes. In reachingmode,

reaching mode

reaching mode
sliding mode

sliding mode

origin

sliding surface
s=0

e

e

Fig. 3 Graphical interpretation of SMC (Tsai et al. 2004)

the states of the system are wafted to the sliding surface from
any arbitrary point. As can be explicitly seen from Fig. 3, the
reaching time of the system states to sliding surface depends
on the slope of the sliding surface and the accuracy of the
system model since the system model is employed to derive
the control law. In slidingmode, the aim is to hold the dynam-
ics of the system on the predefined sliding surface in order
to force the error dynamics to origin. Because of the model
uncertainty or external disturbances, etc., the system states
tend to deviate from the sliding surface. Therefore, in slid-
ing mode, a switching control law is utilized to retract the
deviant states back to the sliding surface. Let us consider a
second-order nonlinear system in order to derive the control
laws for reaching and sliding modes

ẋ1
(
t
) = x2

(
t
)

ẋ2
(
t
) = − f

(
X

(
t
)) + g

(
X

(
t
))
u
(
t
) = ẍ1

(
t
)

y
(
t
) = x1

(
t
)

(25)

where u
(
t
)
denotes the control signal, y

(
t
)
is the controlled

output of the system, f
(
X

(
t
))

and g
(
X

(
t
))

are nonlinear
functions and X ∈ Rn is the state vector. It is required that
g
(
X

(
t
)) �= 0 for the system in (25) to be controllable (Hua

et al. 2015). The PD-type sliding surface can be defined as

s
(
t
) = ė

(
t
) + θe

(
t
)

(26)

where e
(
t
)
is tracking error given in (27), θ stands for the

slope of the PD-type sliding surface and θ > 0 must satisfy
Hurwitz condition (Liu and Wang 2012).

e
(
t
) = r

(
t
) − y

(
t
)

(27)

where r
(
t
)
represents the desired output of the system. In

order to derive the stable control law, the Lyapunov function
can be defined with respect to sliding surface (s

(
t
)
) as
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V
(
t
) = 1

2

[
s
(
t
)]2 (28)

For stability, the Lyapunov function must satisfy V
(
t
)

> 0
and V̇

(
t
)

< 0 for s
(
t
) �= 0 (Ertuğrul et al. 1995; Zribi and

Oteafy 2006; Derdiyok and Levent 2000). Thus, V̇
(
t
)
can be

acquired as

V̇
(
t
) = s

(
t
)
ṡ
(
t
)

< 0 (29)

The system must satisfy (29), and the signs of s
(
t
)
and ṡ

(
t
)

functions should be opposite to ensure finite time reaching
(Bandyopadhyay et al. 2009) and convergence to sliding sur-
face. For this purpose, the following conditions should be
satisfied (Bandyopadhyay et al. 2009)

lim
s→0+

ṡ
(
t
)

< 0

lim
s→0−

ṡ
(
t
)

> 0
(30)

Since the states of the system can be forced from an arbitrary
point to the sliding surface as long as (29) is satisfied, the con-
dition in (29) is called as reachability condition (Tsai et al.
2004; Bandyopadhyay et al. 2009). Condition (29) ensures
only asymptotic reaching to the sliding surface (Bandy-
opadhyay et al. 2009). A stronger condition for finite time
reaching, known as η-reachability condition, is given as fol-
lows:

s
(
t
)
ṡ
(
t
)

< −η|s(t)| (31)

where η > 0 (Bandyopadhyay et al. 2009). After the system
states are on the sliding surface, the alternation of the system
dynamics on sliding surface must be zero (ṡ

(
t
) = 0), so that

the system dynamics is held on the sliding surface. For this
purpose, the control signal maintaining the system states on
the sliding surfacewhich is called as equivalent control signal
(ueq) can be derived as

ṡ
(
t
) = ë

(
t
) + θ ė

(
t
) = r̈

(
t
) − ÿ

(
t
) + θ ė

(
t
) = r̈

(
t
)

+ f
(
X

(
t
)) − g

(
X

(
t
))
ueq

(
t
) + θ ė

(
t
) = 0

ueq
(
t
) = 1

g
(
X

(
t
))

[
r̈
(
t
) + f

(
X

(
t
)) + θ ė

(
t
)] (32)

Owing to the external disturbances or uncertainties in system
dynamics, the states of the system may digress from sliding
surface. Therefore, in order to retract system behaviour to
the sliding surface, a switching control function satisfying
the Lyapunov stability theory and reachability condition in
(29) can be derived as

usw
(
t
) = 1

g
(
X

(
t
))

[
μ sgn

(
s
(
t
))]

(33)

Thus, the control signal applied to the controlled system can
be acquired as the combination of equivalent control signal
(32) and switching control signal (33) as follows:

u
(
t
) = ueq

(
t
) + usw

(
t
)

= 1

g
(
X

(
t
))

[
r̈
(
t
) + f

(
X

(
t
)) + θ ė

(
t
) + μ sgn

(
s
(
t
))]

(34)

By substituting (34) in (29), the obtained control signal can
be evaluated as to whether reachability condition is satisfied
or not as follows

V̇
(
t
) = s

(
t
)[ − μ sgn

(
s
(
t
))]

= −μ s
(
t
)
sgn

(
s
(
t
))

< 0, μ > 0, s
(
t
) �= 0 (35)

The structure of the SMC is illustrated in Fig. 4 where ueq
(
t
)

is equivalent control signal, usw
(
t
)
represents the switching

control signal, r
(
t
)
denotes the reference signal system out-

put which is forced to track and y
(
t
)
stands for the system

output. As mentioned before, usw is utilized to ensure stabil-
ity of the closed-loop system and ueq forces the system states
to the origin on the sliding surface. Since the sliding surface
is constituted via Lyapunov’s stability theory, robust track-
ing is assured when system states are on the sliding surface,
whereas robustness is not guaranteed during the reaching
phase (Bartoszewicz 1996). Because of the discontinuity in
the sign function in usw, chattering phenomenon stimulating
the high-frequency unmodelled dynamics of the system is
generally observed on the sliding surface and the produced
control signal becomesmore sensitive tomeasurement noise;
also fragility of the controller against measurement noise
increases. Various solutions have been proposed to suppress
chattering by introducing continuous functions in place of
sign function in order to provide smooth transition. Several
functions utilized to overcome chattering are illustrated in
Fig. 5. Thus, the control signal in (34) can be rewritten as
follows:

u
(
t
) = ueq

(
t
) + usw

(
t
)

= 1

g
(
X

(
t
))

[
r̈
(
t
) + f

(
X

(
t
)) + θ ė

(
t
) + μ fsw

(
s
(
t
)
, ρ

(
t
))]

(36)

where fsw
(
s
(
t
)
, ρ

(
t
))

is the switching function and ρ
(
t
)
is

the parameter of the switching function. As can be explicity
seen from the control signal in (36), the closed-loop tracking
performance of the SMC depends on the parameters of the
control law in (36). Thus, the control law can be rewritten
with respect to adjustable parameters as follows:
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u
(
t
) = ueq

(
t
) + usw

(
t
) = 1

g
(
X

(
t
))

[
r̈
(
t
) + f

(
X

(
t
))

+θ
(
t
)
ė
(
t
) + μ

(
t
)
fsw

(
s
(
t
)
, ρ

(
t
))]

∼= 1

g

[
r̈ + f̂ + θ̂ ė + μ̂ fsw

(
s, ρ̂

)]
(37)

where θ
(
t
)
, μ

(
t
)
, ρ

(
t
)
are unknown tunable parameters, f̂

denotes the estimated system dynamics, and θ̂ , μ̂, ρ̂ are
approximated values.

3.2 Slidingmode control input derivation based on
SVR

The adjustable parameters of the SMC in (37) can be opti-
mized using artificial intelligence (AI)-based models. The

superior generalization capability of SVR makes it a very
good candidate to solve regression problems among other
intelligent techniques. Therefore, in this paper, we employ
SVR models to identify both the dynamics of the controlled
system and the adjustable parameters of the SMC law. The
overall architecture of the proposed SMC based on SVR is
depictured in Fig. 6. The adjustmentmechanism is composed
of two separate online trained SVR structures: SVRestimator

to identify the adjustable parameters of the SMC in (37) and
SVRmodel which approximates the future behaviour of the
controlled system in response to the adjustments in control
law.Owing to themulti-input single-output (MISO) structure
of SVR, a separate SVRestimator is employed for each approx-
imated component of the SMC (Uçak and Günel 2017a).
Therefore, the regression functions in SVRestimator structure
are given as follows:
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f̂ =
∑

k∈SV f

αfkKf
(
�fk,�fc

) + bf

θ̂ =
∑

k∈SVθ

αθk Kθ

(
�θk,�θc

) + bθ

μ̂ =
∑

k∈SVμ

αμk Kμ

(
�μk,�μc

) + bμ

ρ̂ =
∑

k∈SVρ

αρk Kρ

(
�ρk,�ρc

) + bρ (38)

where α f k , αθk , αμk , αρk denote the kth Lagrange param-
eters, � f k , �θk , �μk , �ρk are the corresponding support
vectors, � f c, �θc, �μc, �ρc stand for the current input fea-
ture vectors of estimators, K f

(
,
)
, Kθ

(
,
)
, Kμ

(
,
)
, Kρ

(
,
)
are

the kernel function, and b f , bθ , bμ, bρ represent the bias of
the regressors. Thus, the control signal produced by SMC
can be expressed as:

u
(
t
) = ueq

(
t
) + usw

(
t
) = 1

g
(
X

(
t
))

[
r̈
(
t
) + f̂

(
� f c

)

+θ̂
(
�θc

)
ė
(
t
) + μ̂

(
�μc

)
fsw

(
s
(
t
)
, ρ̂

(
�ρc

))]
(39)

SVRmodel is employed to predict the effects of adjustment
in control parameters on system dynamics in advance. The
output of SVRmodel is calculated as

ŷn+1 = fmodel
(
Mc

) =
∑

j∈SVmodel

λ j Kmodel
(
M j ,Mc

)+bmodel

(40)

where λ j ’s and M j ’s denote the Lagrange parameters and
corresponding support vectors, respectively,Mc is the current
input, bmodel is the bias of the regressor and Kmodel

(
,
)
is the

kernel function (Uçak and Günel 2016, 2017a). SVRestimator

and SVRmodel are both deployed online to perform learn-
ing, prediction and control consecutively (Uçak and Günel
2016, 2017a). Both SVRestimator and SVRmodel have two
phases: prediction and training(learning) phases. In training
phase of SVRestimator, SVRmodel is employed in prediction
phase and vice versa. The adjustment mechanism can be
briefly summarized as follows: Firstly, in training phase of
the SVRestimator, using the previously calculated parameters
of the SVRestimator, SMC parameters are estimated and the
approximate control signal (un) is computed. In order to
observe the possible impact of the computed control sig-
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Fig. 7 Margins of controller parameter estimator − SVRestimator (a), adaptive sliding mode controller (b) and system model-SVRmodel (c)

nal (un) on system behaviour, the obtained control signal
is applied to the SVRmodel since ideally, during the course
of online working, it is expected that ŷn+1 will eventually
converge to yn+1 (Uçak and Günel 2017a). Then, utilizing
the approximated tracking error, the adjustable parameters
of the SVRestimator are optimized. Thus, the training phase
of the SVRestimator can be accomplished. In training phase
of SVRmodel, using the trained SVRestimator parameters, the
optimized control signal is applied to both the real system and
SVRmodel. Thus, the current input of system model Mc and
output yn+1 can be acquired for training phase of SVRmodel,
the prediction accuracy of the SVRmodel can be evaluated,
and the parameters of the SVRmodel can be adjusted using
modelling error. Hence, one cycle of the control algorithm
can be summarized as above. The pseudoalgorithm for the
SMC adjustment mechanism is detailed in Sect. 3.3. The
adjustment structure for SMC illustrated in Fig. 6 can be rep-
resented with respect to regression margins of SVRestimator

and SVRmodel as in Fig. 7. As can be seen from Fig. 7,
since the training data pairs (Mc, yn+1) for SVRmodel are
available during online operation, the training process is car-
ried out in a straightforward manner as explained in Sect. 2
(Uçak and Günel 2017a). In training phase of the SVRmodel,
the output of the SVRmodel (ŷn+1) is forced to track actual
system output, so (Mc, yn+1) is utilized as training data
pair (Uçak and Günel 2016, 2017a). However, training of
SVRestimator presents some difficulties. Whereas the input
data (�Ψ c, Ψ ∈ { f̂ , θ̂ , μ̂, ρ̂}) for SVRestimator are procur-
able, the desired outputs of the SVRestimator, namely the
SMC parameters (Ψ ∈ { f̂ , θ̂ , μ̂, ρ̂} ), are not known by the
designer in advance (Uçak and Günel 2016, 2017a). There-
fore, the parameters of the SVRestimator can be optimized
without the explicit information of desired output training
data, using the closed-loop margin notion proposed in Uçak
and Günel (2016, 2017a). In closed-loop system, the aim of
the controller is to compel the output of the system (yn+1)
to track reference signal (rn+1). Therefore, (�Ψ c, rn+1) data

pair is deployed as training data for SVRestimator. Thus, the
proposed parameter estimator inUçak andGünel (2017a) can
be deployed to approximate the parameters of the SMC. The
constitution of the closed-loop margin is detailed in Uçak
and Günel (2016, 2017a).

3.3 Adaptive control algorithm for the SMC based on
SVR

In this section, the step-by-step algorithm of the proposed
control procedure of SMC based on SVR illustrated in
Fig. 6 is presented. In the algorithm given below u−

n
represents the computed control signal using the SMC
controller parameters obtained at the previous step and
u+
n stands for the control signal calculated via trained

SMC controller parameters at the current step. The perfor-
mances of the regressors for both SVRmodel and SVRestimator

are closely related to the input features chosen to con-
struct input feature vectors. Since input and output samples
of controlled system are the features of open-loop sys-
tem, the input feature vector for SVRmodel is constructed
using input–output samples of the open-loop system as
Mc = [

un . . . un−nu , yn . . . yn−ny

]T where nu and ny denote
the number of the past instances of features. Similarly,
the input feature vector of the SVRestimator is consti-
tuted using closed-loop system features such as reference
signal, system output, control signal and tracking error.
Input feature vector of parameter estimator (�) should
contain convenient feature variables that can well repre-
sent the closed-loop system’s operating conditions (Uçak
and Günel 2017a). In the proposed SMC, mainly refer-
ence signal (r ) and system output (y) can be deployed
as input features. However, when they are inadequate in
closed-loop tracking performance, new variables that are
functions of reference and system output such as tracking
error, integral of tracking error and derivative of tracking
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error can be utilized in order to enhance SMC perfor-
mance (Uçak and Günel 2016, 2017a). Some examples
for parameter estimator feature vectors are given as �c =
[rn . . . rn−nr , yn . . . yn−ny ]T or �c = [Pn, In, Dn]T where
Pn = en − en−1,In = en , Dn = en − 2en−1 + en−2 and
en = rn − yn (Uçak and Günel 2016, 2017a). Combina-
tion of the reference signal, system output and controller
output can also be utilized in the feature vector as �c =
[ Pn, In, Dn, rn . . . rn−nr , yn . . . yn−ny , un−1 . . . un−nu ]T
where nr , ny and nu represent the number of the past
instances of features included in the feature vector (Uçak
and Günel 2016, 2017a).
Step 1 Initialization of SVRestimator and SVRmodel parame-
ters.

– SVRestimator(estimator) parameters : αΨ k = bΨ =
0, Ψ ∈ { f̂ , θ̂ , μ̂, ρ̂}

– SVRmodel (system model) parameters : λ j = bmodel = 0

Step 2 Prediction step for parameter estimator (Ψ − ∈
{ f̂ −, θ̂−, μ̂−, ρ̂−})

– Set time step n.
– Constitute feature vector for parameter estimator (�Ψ c).
– Calculate the approximated controller parameters Ψ − ∈

{ f̂ −, θ̂−, μ̂−, ρ̂−} by SVRestimator trained at previous
step (n − 1) via (38).

Step 3 Computation of control signal (u−
n ) and prediction

step for system model(ŷ−
n+1)

– Compute the control signal u−
n via (38) and (39).

– Constitute feature vector for SVRmodel (Mc).

Mc = [u−
n . . . un−nu , yn . . . yn−ny ]

– Apply u−
n to SVRmodel and calculate ŷ−

n+1 by (40).

Step 4 Training step for parameter estimator

– Calculate êtrn+1 = rn+1 − ŷ−
n+1

If |êtrn+1 | > εclosed-loop
Train SVRestimator parameters via êtrn+1 = rn+1 − ŷ−

n+1
else
Continue with SVRestimator parameters trained at previous
step
end
Step 5 Prediction step for trained parameter estimator (Ψ + ∈
{ f̂ +, θ̂+, μ̂+, ρ̂+}) and computation of control input by
trained estimator (u+

n )

– Calculate the controller parameters by trained
SVRestimator via (38).

– Calculate the control signalu+
n producedby the controller

using the parameters obtained by trained SVRestimator via
(38) and (39).

Step 6 Application of the control signal produced by SMC
controller

– Apply u+
n to system to calculate yn+1.

Step 7 Prediction and training step for SVRmodel (ŷ
+
n+1)

– Apply u+
n to SVRmodel and calculate ŷ+

n+1 via (40).
– Calculate emodeln+1 = yn+1 − ŷn+1

If |emodeln+1 | > εmodel

Train SVRmodel where emodeln+1 = yn+1 − ŷn+1

else
Continue with SVRmodel parameters obtained at previous
step
end

Step 8 Incrementation of time step

– Increment n = n + 1 and back to step 2.

3.4 Online support vector regression for parameter
estimator

As mentioned in Sect. 3.2, both SVRestimator utilized to
tune the controller parameters and SVRmodel used to iden-
tify the dynamics of the controlled system are deployed in
online manner. In this subsection, online tuning rules for
SVRestimator parameters are derived. Let us consider the train-
ing data set used for the closed-loop system:

T = {�Ψ i , ri+1}Ni=1 , �Ψ i ∈ � ⊆ Rn, ri+1 ∈ R

Ψ ∈ { f̂ , θ̂ , μ̂, ρ̂} (41)

where N and n denote the number of training samples and
dimension of the input samples, respectively, �Ψ i indicates
the input feature vector of corresponding parameter estimator
and ri+1 is the reference signal that system is forced to chase.
The closed-loop error margin function of the system for the
i th sample �Ψ i , Ψ ∈ { f̂ , θ̂ , μ̂, ρ̂} can be defined as

hclosed−loop

([
� f̂ i �

θ̂ i �μ̂i �ρ̂i

])
= ŷi+1 − ri+1

= fmodel(Mi ) − ri+1

(42)
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where

ŷi+1 = fmodel(Mi ) =
∑

j∈SVmodel

λ j Kmodel(M j ,Mi ) + bmodel

λ j = β j − β�
j

Mi = [ui . . . ui−nu , yi . . . yi−ny ]
ui = 1

g

[
r̈ + f̂

(
� f i

) + θ̂
(
�θ i

)
ė
(
t
)

+ μ̂
(
�μi

)
fsw

(
s
(
t
)
, ρ̂

(
�ρi

))]

f̂
(
� f i

) =
∑

k∈SV f

α f k K f
(
� f k, � f i

) + b f

θ̂
(
�θ i

) =
∑

k∈SVθ

αθk Kθ

(
�θk, �θ i

) + bθ

μ̂
(
�μi

) =
∑

k∈SVμ

αμk Kμ

(
�μk, �μi

) + bμ

ρ̂
(
�ρi

) =
∑

k∈SVρ

αρk Kρ

(
�ρk, �ρi

) + bρ

� f i = [ri . . . ri−nr f
, yi . . . yi−ny f

, ui−1 . . . ui−nu f
]T

�θ i = [ri . . . ri−nrθ
, yi . . . yi−nyθ

, ui−1 . . . ui−nuθ
]T

�μi = [ri . . . ri−nrμ , yi . . . yi−nyμ , ui−1 . . . ui−nuμ
]T

�ρi = [ri . . . ri−nrρ , yi . . . yi−nyρ , ui−1 . . . ui−nuρ
]T

(43)

Since SVRmodel and SVRestimator are deployed consecutively,
the parameters of the SVRmodel are fixed and known and the
sole unknown variables are the parameters of the SVRestimator

in the training phase of the SVRestimator (Uçak and Günel
2017a). Therefore, the closed-loop error margin function can
be expressed with respect to an input–output training data
pair of closed-loop system (�Ψ i , Ψ ∈ { f , θ, μ, ρ}, ri+1) as

hclosed-loop
([

� f̂ i �
θ̂ i �μ̂i �ρ̂i

])
= ŷi+1 − ri+1

= fclosed-loop
([

� f̂ i �
θ̂ i �μ̂i �ρ̂i

])
− ri+1 (44)

Then, using data pair (�Ψ i , Ψ ∈ { f , θ, μ, ρ}, ri+1)
and closed-loop margin given in (42,44), the incremen-
tal update rules for the parameters of the SVRestimator

can be derived. When the regressor is exposed to new
data (�Ψ c, Ψ ∈ { f , θ, μ, ρ}), a new Lagrange multi-
plier αΨ c corresponding to this new sample is assigned
and the coefficient αΨ c should be adjusted in a finite num-
ber of discrete steps until it meets the KKT conditions
while ensuring the existing samples in T continue to sat-
isfy the KKT conditions at each step (Ma et al. 2003).
During this learning phase, some samples may migrate to
other classes and there may be transitions between classes.

Therefore, the convergence of the samples and migrations
among classes can be traced via the following convergence
conditions (Uçak and Günel 2016; Iplikci 2006; Ma et al.
2003).

hclosed-loop
([

� f̂ i �
θ̂ i �μ̂i �ρ̂i

])

≥ εclosed-loop, αi = −Cclosed-loop

hclosed-loop
([

� f̂ i �
θ̂ i �μ̂i �ρ̂i

])

= εclosed-loop, −Cclosed-loop < αi < 0

− εclosed-loop ≤ hclosed-loop
([

� f̂ i �
θ̂ i �μ̂i �ρ̂i

])

≤ εclosed-loop, αi = 0

hclosed-loop
([

� f̂ i �
θ̂ i �μ̂i �ρ̂i

])

= −εclosed-loop, 0 < αi < Cclosed-loop

hclosed-loop
([

� f̂ i �
θ̂ i �μ̂i �ρ̂i

])

≤ −εclosed-loop, αi = Cclosed-loop (45)

By substituting αΨ , bestimatorΨ , hclosed-loop, εclosed-loop, �Ψ i

and KestimatorΨ in place of λ, b, h, ε, xi and K in (12–
24), the incremental learning algorithm can be derived for
SVRestimator. Thus, the parameters of the SVRestimator, αΨ k ,
bestimatorΨ can be optimized such that the maximum tolerable
training error will be equal to εclosed-loop. The update vector
(ΔαΨ ) for Lagrange multipliers of support set samples(S)
in SVRestimator can be acquired with respect to the Lagrange
multiplier of the current new sample (ΔαΨ c) as (Uçak and
Günel 2017a):

ΔαΨ =

⎡

⎢⎢⎢⎣

ΔbestimatorΨ
ΔαΨ s1

...

ΔαΨ sk

⎤

⎥⎥⎥⎦ = βΨ ΔαΨ c (46)

BFN

AFC

A B C⇔ →

V

, ,A B CC C C

F

BF

AF

N
u

FC
=

Fig. 8 CSTR system (Uçak and Günel 2017b, c; Kravaris and Palanki
1988)
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(a)

(b)

(c)

(d)

Fig. 9 System output (a), control signal (b), equivalent control (c) and switching control (d) for staircase input (without noise and parametric
uncertainty case)

where

βΨ =

⎡

⎢⎢⎢⎣

β

βΨ s1
...

βΨ sk

⎤

⎥⎥⎥⎦ = −�Ψ

⎡

⎢⎢⎢⎢⎣

1
KestimatorΨs1c

...

KestimatorΨsk c

⎤

⎥⎥⎥⎥⎦
,

�Ψ =

⎡

⎢⎢⎢⎢⎣

0 1 · · · 1
1 KestimatorΨs1s1

· · · KestimatorΨs1sk
...

...
. . .

...

1 KestimatorΨsk s1
· · · KestimatorΨsk sk

⎤

⎥⎥⎥⎥⎦

−1

(47)

The margin values of non-support samples can be derived in
terms of ΔαΨ c as follows:

⎡

⎢⎢⎢⎣

Δhclosed-loop(
[
�Ψ z1

]
)

Δhclosed-loop(
[
�Ψ z2

]
)

...

Δhclosed-loop(
[
�Ψ zr

]
)

⎤

⎥⎥⎥⎦ = γ Ψ ΔαΨ c ,

γ Ψ =

⎡

⎢⎢⎢⎢⎣

KestimatorΨz1c
KestimatorΨz2c

...

KestimatorΨzr c

⎤

⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎣

1 KestimatorΨz1s1
· · · KestimatorΨz1sl

1 KestimatorΨz2s1
· · · KestimatorΨz2sl

...
...

. . .
...

1 KestimatorΨzr s1
· · · KestimatorΨzr sl

⎤

⎥⎥⎥⎥⎦
βΨ (48)

where�Ψ zr = [
� f zr ,�θ zr ,�μzr ,�ρzr

]
, z1, z2, . . . , zr are

the indices of non-support samples, γ Ψ are margin sensitiv-
ities (Uçak and Günel 2016, 2017a).

4 Simulation results

The control performance evaluation of the proposed SMC
is carried out on a nonlinear CSTR system. CSTR is a
widely utilized chemical reactor system in industry, mainly
used to produce polymers, pharmaceuticals and other var-
ious chemical products (Uçak and Günel 2016, 2017b, c).
The schematic diagram of the CSTR system is illustrated in
Fig. 8 (Uçak andGünel 2017b, c; Kravaris and Palanki 1988).
In CSTR system, isothermal, liquid-phase, successive multi-
component chemical reactions can be performed (Kravaris
and Palanki 1988; Wu and Chou 1999). Let us consider that
a chemical reaction given as follows is carried out in CSTR:

A � B → C (49)

where A, B are the inlet reactants mixed in a vessel with
constant volume via an agitator and transume to the prod-
uct C (Uçak and Günel 2016, 2017b, c; Wu and Chou 1999;
Uçak and Günel 2019). The reaction in (49) is composed of
two sides: first is among A–B, and second one is between
B and C (Uçak and Günel 2016, 2017b, c, 2019). There-
fore, in CSTR, the aim is to control the concentration of
product C by adjusting the molar feed rate of reactant B
(Uçak and Günel 2016, 2017b, c; Kravaris and Palanki 1988;
Wu and Chou 1999; Uçak and Günel 2019). The differential
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(a)

(b)

(c)

(d)

Fig. 10 Adaptive sliding mode controller parameters for staircase input (without noise and parametric uncertainty case)
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equations describing the dynamical behaviour of the system,
proposed by Kravaris and Palanki (1988), are expressed as
follows:

ẋ1(t) = 1 − x1(t) − Da1x1(t) + Da2x
2
2 (t)

ẋ2(t) = −x2(t) + Da1x1(t) − Da2x
2
2 (t)

− Da3d2(t)x
2
2 (t) + u(t)

ẋ3(t) = −x3(t) + Da3d2(t)x
2
2 (t) (50)

where x1(t), x2(t) and x3(t) are states obtained from the con-
centrations of reactant A, middle reactant B and product C,

respectively, Da1 = 3, Da2 = 0.5, Da3 = 1, u(t) is the con-
trol signal, x3(t) is the controlled output of the system, d2(t)
is the time-varying parameter of the systemwhich represents
the activity of the reaction, the nominal value of which is
d2nominal(t) = 1 as given in Uçak and Günel (2016, 2017b, c,
2019), Iplikci (2006, 2010), Kravaris and Palanki (1988) and
Wu and Chou (1999). The limitation for control signal is
given as umin = 0 and umax = 1, and duration of control
signal is set as τmin = τmax = Ts = 0.1 seconds where Ts
is sampling time. The performance of the system has been
evaluated for three different cases: (1) nominal case: when
there is no noise and parametric uncertainty in the system. (2)
Measurement noise case: 30 dBGaussianmeasurement noise
is added to the output of the system. (3) Parametric uncer-
tainty: time-varying parameter is introduced to the system.
Mc = [

un−1 . . . un−nu , yn . . . yn−ny

]T is utilized as the input
feature vector for SVRmodel where nu = ny = 2 (Uçak and
Günel 2017b, c). For SVRestimator, since the control perfor-
mance is closely associated with the chosen features, it may
be essential to utilize various input feature vectors depend-
ing on the particulars of the system, whether there is noise,
disturbance, parametric uncertainty or not, etc. The input fea-
ture vectors for SVRestimator are chosen as � f n = �θn =
�ρn = [In In−1 . . . In−ni , un−1 . . . ui−nuu , yn . . . yn−ny ]T,
�μn = [e1n . . . e1n−ne1

, e2n . . . e2n−ne2
, sn . . . sn−ns ]T where

In = en , en = e1n = rn − yn , e2n = ˙e1n = ṙn − ẏn and
sn = θne1n + e2n . The number of the previous features is
assigned as ni = 10, nu = 1, ny = ne1 = ne2 = ns = 0
for staircase reference signals in nominal and measurement
noise cases. For all remaining cases and signals, ni = 5,
nu = 1, ny = ne1 = ne2 = ns = 0 is deployed.
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(a)

(b)

(c)

(d)

Fig. 12 System output (a), control signal (b), equivalent control (c) and switching control (d) for sinusoidal input (without noise and parametric
uncertainty case)

(a)

(b) (d)

(c)

Fig. 13 Adaptive sliding mode controller parameters for sinusoidal input (without noise and parametric uncertainty case)

4.1 Nominal case with no noise and parametric
uncertainty

The tracking performance of the closed-loop system in
response to staircase reference signal and control signal pro-
duced by SMC are given in Fig. 9. As can be seen from
tracking performance given Fig. 9a, the controlled system
successfully tracks the desired signal. In Fig. 9, equiva-
lent and switching control signals are depicted in Fig. 9c,
d. The approximation of SMC parameters via SVRestimator

is illustrated in Fig. 10. The estimation of the system

dynamics( f̂
(
t
)
) via SVRmodel and its actual value( f

(
t
)
)

obtained via differential equations in (50) are given in
Fig. 10a. It is expected that | f̂ − f | ≤ F since f is assumed to
be bounded by some known function F = F

(
x, ẋ

)
(Slotine

and Li 1991). The illustration of the system parameter con-
vergence to the desired sliding function (phase plane of the
errors) between 120.2 and 130s is shown in Fig. 11 where
spp

(
t
)
and epp

(
t
)
denote the sliding function and tracking

error phase plane. In adaptive schemes, exact approxima-
tion of uncertainties is a major issue; hence, the SVR-based
methodology proposed here can be combined with the meth-
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(a)

(b)

(c)

(d)

Fig. 14 System output (a), control signal (b), equivalent control (c) and switching control (d) for staircase input (measurement noise case)

(a)

(b)

(c)

(d)

Fig. 15 Adaptive sliding mode controller parameters for staircase input (measurement noise case)

ods suggested in Pan and Yu (2016) and Pan et al. (2017) in
future works to assure parametric convergence. The tracking
performance of the controller and SMC parameters for sinu-
soidal input signal is shown in Figs. 12 and 13, respectively.

4.2 Measurement noise

Since control systems are frequently exposed to measure-
ment noise generated by the measurement mechanism, the
performance evaluation of the controllerwith respect to noise
is crucial to design robust controllers. For this purpose, the
performance evaluation of the system is performed under 30

dB Gaussian measurement noise. The control performance
is illustrated in Fig. 14. The alternations of the SMC param-
eters are given in Fig. 15. The response of the closed-loop
system and SMC parameters for sinusoidal input is depic-
tured in Figs. 16 and 17, respectively. As can be seen from
Figs. 14 and 16, the system output can accurately track the
applied reference input signals.

4.3 Parametric uncertainty

The second important criterion for adaptive controllers is the
evaluation of the controller robustness in terms of parametric
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(a)

(b)

(c)

(d)

Fig. 16 System output (a), control signal (b), equivalent control (c) and switching control (d) for sinusoidal input (measurement noise case)

(a)

(b)

(c)

(d)

Fig. 17 Adaptive sliding mode controller parameters for sinusoidal input (measurement noise case)

uncertainty. In our simulations, the parameter which repre-
sents the activity of the reaction (d2(t)) is considered as the
time-varying parameter of the system. It is allowed to vary
slowly in the purlieu of its nominal value (d2nom (t) = 1) as
d2(t) = 1+0.1 sin(0.2π t) (Uçak and Günel 2016, 2017b, c,
2019). The tracking performance of the controller and con-
trol signal applied to the system for parametric uncertainty
case are depictured in Fig. 18. The convergence of SMC
parameters to their optimal values is illustrated in Fig. 19.
If the control signal produced for nominal system parame-
ters in Fig. 9 and for the time-varying parameter situation in
Fig. 18 is compared, it can be clearly observed how the con-
trol signal in Fig. 18 tries to reject the uncertainty resulting

from the time-varying system parameter. The response of the
closed-loop system and alternation of SMC parameters for
sinusoidal input are shown in Figs. 20 and 21, respectively.

5 Conclusion

In this paper, a novel SMC architecture based on SVR is
proposed for nonlinear dynamical systems. The closed-loop
margin notion proposed in Uçak and Günel (2016, 2017a)
has been expanded for SMC. The adjustment mechanism
is composed of two main SVR structures: SVRmodel identi-
fies the dynamics of the controlled system, and SVRestimator
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(a)

(b)

(c)

(e)

(d)

Fig. 18 System output (a), control signal (b), equivalent control (c), switching control (d) and time-varying system parameter (e) for staircase
input (parametric uncertainty case)

(a)

(b)

(c)

(d)

Fig. 19 Adaptive sliding mode controller parameters for staircase input (parametric uncertainty case)
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(a)

(b)

(c)

(d)

(e)

Fig. 20 System output (a), control signal (b), equivalent control (c), switching control (d) and time-varying system parameter (e) for sinusoidal
input (parametric uncertainty case)

(a)

(b)

(c)

(d)

Fig. 21 Adaptive sliding mode controller parameters for sinusoidal input (parametric uncertainty case)
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approximates the parameters of SMC. Themain contribution
of the paper is that SVR is directly deployed to identify the
parameters of SMC as opposed to existing works in technical
literature where SVRs are generally utilized for modelling to
approximate system Jacobians to adjust parameters of con-
ventional controller structures.

The performance of the SMC is examined on a nonlin-
ear continuously stirred tank reactor (CSTR) benchmark
system. The robustness of the SMC has been evaluated
for the noiseless case and when measurement noise and
parametric uncertainty are added. Simulations results prove
that proposed control architecture attains successful track-
ing performance, good noise rejection and high toleration
to parametric uncertainties. In future works, it is planned
to develop new adaptive control mechanisms for nonlinear
systems based on SVR by employing closed-loop margin
notions.
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