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Abstract
Stress is one of the biggest problems in modern society. It may not be possible for people to perceive if they are under high stress
or not. It is important to detect stress early and unobtrusively. In this context, stress detection can be considered as a classification
problem. In this study, it was investigated the effects of stress by using accelerometer and gyroscope sensor data of the writing
behavior on a smartphone touchscreen panel. For this purpose, smartphone data including two states (stress and calm) were
collected from 46 participants. The obtained sensor signals were divided into 5, 10 and 15 s interval windows to create three
different data sets and 112 different features were defined from the raw data. To obtain more effective feature subsets, these
features were ranked by using Gain Ratio feature selection algorithm. Afterwards, writing behaviors were classified by C4.5
Decision Trees, Bayesian Networks and k-Nearest Neighbor methods. As a result of the experiments, 74.26%, 67.86%, and
87.56% accuracy classification results were obtained respectively.
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Introduction

Stress is a mental state in which everyone experiences in their
daily lives [1]. It is a rescue mechanism of the body at critical
periods. However, after exceeding a specific level, stress is no
longer healthy. Contrarily, it begins to harm an individual’s
health, emotional state, productivity and quality of life. If the
individual becomes highly stressed, this can cause serious
health problems [2]. However, there are several difficulties
in monitoring stress. Gjoreski et al. [3] identified three topics

that make it difficult to monitor stress of the people. The first
one is that stress is a subjective condition. While a stimulus
triggers stress in one person, it may not in another person. The
second one is the difficulty of defining the ground truth. For
this reason, monitoring of physiological data is performed or
the self-assessment method is used. The last one is that stress
can not be directlymonitored.While physiological data can be
monitored directly by sensors, behavioral and affective data
can not be directly monitored.

Over the past two decades, researchers have found an im-
portant relationship between an individual’s physical health
and emotional state [4]. They use the physical and physiolog-
ical symptoms of a person to detect existing emotions.
Feelings such as happy, angry, fear, sadness, disgust and sur-
prise are the most important basic emotional states [5]. Stress
has been added to this set of basic feelings that can be detected
recently. Stress is an important problem in modern society.
Early detection of stress reduces damage and precludes it from
becoming ingrained. The harms of stress on human health are
known by researchers, and a considerable effort has been
made recently to develop an automated stress detection system
using smart devices and various computational algorithms.
Automated stress detection systems can be used in various
areas such as vehicle drivers, workplaces, passengers with
the phobia, and patients [2].
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In this study, by using the data of smartphone’s touchscreen
panel, accelerometer and gyroscope sensors, identification of
whether the user stressful or not is realized through the writing
behaviors on the smartphone’s keyboard. To the best of au-
thors’ knowledge, this is the first stress detection study per-
formed by examining with the machine learning methods of
smartphone’s motion sensors and keyboard usage behaviors.
In this respect, this research would lead to new studies in this
field. In addition, new and original data sets will be gained
into the literature and new feature vectors will be extracted.

In the second part of the study, the previous studies will be
mentioned. The created data sets, feature extraction and selec-
tion stages and smartphone sensors will be explained in
Chapter 3. In chapter 4, the machine learning methods used
will be mentioned and the experimental results will be
discussed. Finally, the study will be concluded in Chapter 5.

Related work

When the literature is examined, it is found that stress de-
tection studies use various data sources. The first one of
these data sources is physiological data. Gjoreski et al. [6]
proposed a 3-stage stress detection method with a wrist-
wearing device. Minguillon et al. [7] proposed a portable
system for real-time stress detection based on multiple bio-
signals. Gjoreski et al. [3] developed a method for stress
detection that can accurately, consistently and unobtrusive-
ly monitor psychological stress in real life. Padmaja et al.
[8] presented an effective method for determining stress
levels using data from a physical activity monitor. Pandey
[9] used the heart rate as one of the parameters to predict
stress. Choi et al. [10] developed a wearable sensor plat-
form to monitor a series of physiological correlations of
mental stress. Zenonos et al. [11] focused on working envi-
ronments and explored the possibility of using smartphones
and wearable devices for mood recognition. Mozos et al.
[12] realized machine learning based stress detection by
using physiological and social response information.
Egilmez et al. [13] analyzed the effects of different body
sensing platforms and their wrist-worn systems in stress
estimation. Navea et al. [14] proposed a method for deter-
mining stress when the person is in mobile communication
by using the galvanic skin response sensor.

The second one of used data sources in stress detection
studies is behavioral data. Sysoev et al. [15] aimed to de-
termine the level of stress to the greatest extent possible by
analyzing behavioral and contextual data with only a
smartphone. Lu et al. [16] proposed StressSense application
to recognize s t ress f rom human voice by us ing
smartphones. Wang et al. [17] evaluated the effects of
workload on stress, sleep, activity, mood, socialization,
mental health, and academic performance of students in a

single class using an Android phone with StudentLife ap-
plication. Bogomolov et al. [18] proposed an alternative
approach to recognize daily stress by the user’s cell phone
activity, additional indicators such as weather conditions,
and behavioral measures derived from personality traits.
Bauer and Lokowicz [19] investigated whether the differ-
ences between stressful and stress-free periods can easily be
found in the information on a smartphone, such as
Bluetooth devices and phone calls seen during the day.
Cho et al. [20] proposed DeepBreath, a deep learning model
that automatically recognizes people’s psychological stress
levels from breathing habits. Han et al. [21] proposed a
psychological stress perception algorithm based on deep
learning using speech signals. Kostopoulos et al. [22] pre-
sented a system aimed at detecting stress by analyzing
users’ behavior with their smartphones. The system offered
by Gimpel et al. [23] used 36 hardware and software sen-
sors to detect perceived stress levels of users. In the study
conducted by Raichur et al. [24], videos were taken without
interfering with the real-time user and it analyzed the facial
expression and determined a person’s emotional state.
Vildjionaite et al. [25] proposed a new method of unsuper-
vised stress detection using only smartphone data.

In addition, there are studies in which physiological and
behavioral data are used together. Maier et al. [26] de-
scribed the development of a mobile solution based on
smartphones and sensors for early recognition of stress.
Their solution was based on real-time capture and analysis
of vital data such as heart rate variability, as well as analysis
of contextual data such as activity, location and time.
Muaremi et al. [27] provided a solution to assess people’s
stress experiences using features derived from smartphones
and wearable chest belt. Sano and Picard [28] aimed to find
physiological and behavioral markers for stress.

This study deals with stress detection through keyboard
dynamics. There are various stress detection applications
related to keyboard dynamics in the literature. Kim and
Choi [29] investigated human behavior related to the touch
interface on a smartphone as a way to understand users’
emotional states. Lee et al. [30] aimed to recognize the
user’s emotions by unobtrusively collecting and analyzing
user-generated data from different types of sensors on the
smartphone. In the study conducted by Gao et al. [31],
during an iPod game, finger-strokes were extracted and
distinctive forces were analyzed. Lau [32] focused to de-
tect stress using dynamics based on keystrokes (analysis of
a user’s writing rhythms) and to detect changes in stress
with these rhythms. Ghosh et al. [33] worked on automatic
emotion detection by modeling spelling characteristics and
permanence of emotions together. Ghosh et al. [34] used
the text input scheme to monitor multiple emotions.
Exposito et al. [35] investigated the use of pressure sensing
when typing to detect the stress of smartphone users.
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Materials and methods

Data collection

Sample data were collected from the motion sensors and
touchscreen panel to determine the stressful or non-stressful
situation according to the behavior of the smartphone key-
board typing. The motion sensors used in the study and their
brief descriptions are as follows:

Accelerometer This sensor measures the acceleration applied
to the device. The accelerometer reports the acceleration
values of the X, Y and Z axes of the device shown in
Fig. 1a. This value is expressed in G. G is equal to the grav-
itational force exerted by the gravitational field (9.81 m / s2).
The calculated values include the gravitational force in addi-
tion to the linear acceleration of the device [36].

Gyroscope The gyroscope sensor gives the angular velocity of
the smartphone on the X, Y and Z axes. Axes trajectories are
shown in Fig. 1b. The raw data collected from the gyroscope
sensor reports the rotation of the smartphone about the three
physical axes in rad/s (radians/s) [36, 37].

For this purpose, an application that can work on mobile
phones with Android operating system was developed. This
application consists of 4 stages. These stages are:

1. Data collection phase for non-stressful state (CALM)
2. Stressor task
3. Data collection in case of stress (STRESS)
4. Ground truth survey

In the 1st and 3rd stages of the mobile application, sensor
data were collected. The developed application is set to collect
20 samples per second. The collected data is stored in the
internal memory of the smartphone in a CSV format. The
information gaining process is shown in Fig. 2.

Before proceeding to the data collection phase, the user is
recorded with a nickname or a number given by the tester and
age and gender information are taken. Screenshot of this in-
formation is shown in Fig. 3.

At the beginning of the data collection phase, the partici-
pant is asked to write only the desired texts using the
smartphone’s keyboard. The participant does not know that
stress-related information is collected until the test is
completed.

Non-stressful state (CALM) data collection phase

At this stage, the participants are asked to write the text
displayed on the screen without any time limitation. Each text
has a particular writing period, but the user is not informed
about this period. 5 different texts of various lengths, includ-
ing the letters on the keyboard, are entered into the system by
the participants. Meanwhile, the smartphone accelerometer
and gyroscope sensors collect data at 20 samples per second
and store the data in the internal memory of the phone with the
label “calm”. The screenshot of collecting non-stressful data is
shown in Fig. 4.

As soon as the user begins to write the text, the sensors are
activated. If the entire sentence is entered correctly or the

Fig. 1 Accelerometer and
Gyroscope sensor axes [38]

Fig. 2 Data collection stages
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time’s up, the keyboard automatically closes and the next sen-
tence is displayed.

Stressor task

Specific tasks are applied to the participant to measure the
differences in interactions between non-stressful and stressful
states. Several articles in the literature address the problem of
triggering stress in humans [39, 40]. The main stressor
methods used by Ciman et al. [1] are listed as follows:

& Cognitive stress factor:Memory and mathematical tests,
e.g. beginning from a large prime or odd number and
falling 13, 7 or 17 with mind calculation.

& Social pressure: Evaluation of an individual’s perfor-
mance, especially by an external person, for example,
public speaking.

& Timing pressure:Give a time limit to realize the mission.
& Random events: Creation of random events that may dis-

turb the main user’s mission, i.e. unexpected results, sim-
ulation of errors, and so on.

A stage with all the stressors mentioned above is added to
the application. At this stage, the participants are asked to
perform mathematical and arithmetic operations from the
mind. It is desirable to subtract odd numbers such as 21, 13,
7 from a random 4-digit number and enter the result obtained.
Each result found correct is +1 and each result found incorrect
is −1 point. An annoying sound is played if the answer is
wrong. The participant is asked to reach 7 points within 60 s
(Cognitive stress factor & Timing pressure). The screenshot of
the mobile application for the stressor task is presented in
Fig. 5.

Then, the Stroop Color-Word Test (SCWT) is then per-
formed. SCWT is one of the most commonly used and oldest
stress induction tests [41]. Different variations of the test are
established by changing the number of sub-tasks, number and
type of stimuli, scoring procedures or task times [42]. In the
regular version of the test, the participant is asked to read the
name of the colored words. This sub-task is named “word
reading”. Following sub-task is to name the color of the ink
[2].

At the SCWT stage of the study, color texts in different
color fonts that change every 2 s are asked to confirm the font
colors by pressing the color buttons on the screen. When the
time given to the participant expires, the second phase of the
SCWT begins. At this stage, the participant has to confirm the
written color on the screen by pressing the buttons. The

Fig. 5 Screenshot of stressor taskFig. 4 Screenshot of non-stressful data collection

Fig. 3 Screenshot where participant information is saved
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participants are asked to score more than 25 points in total.
The highest total score is 30 (Timing pressure & Random
events). An example screenshot of the SCWT test is shown
in Fig. 6.

Data collection in case of stress (STRESS)

In the third and final stage of the data collection, participants
are asked to write the texts they wrote during the “calm” phase
under extra timing pressure. Although there is a time limit for
participants to write the texts during the “calm” stage, the
participants are not aware of this. At this stage, the time re-
maining in red color is shown just above the text to attract the
attention of the participants (Fig. 7). In addition to the time
pressure, when this stage is started, tensionmusic starts to play
in the background. Furthermore, what the user wrote is
followed by the people around her/him (Social pressure). In
case of mistakes, the participant is notified about the errors. At
this stage, the developed application records the information
with the “stress” label.

Ground truth survey

The stress level of the participant before and after the experi-
ment is obtained by self-assessment. The questionnaire in
Fig. 8 is presented to the participant in order to express how
she/he felt before the experiment started and at the end of the
experiment. Participants report their mental status with this 5-
point Likert scale [43]. Five stars for all emotions states that
the feeling is very intense.

The scores obtained as a result of the surveys are recorded
in the internal memory of the smartphone. The first thing
analyzed is that the stressor task achieves its goal. In other
words, it increases the perceived stress of the participants.

In addition, it is investigated whether there is a significant
difference between the work done in calm and stress situa-
tions. Participants are required to complete a questionnaire at
the beginning and end of the application. The average values
and standard deviations of all participants are reported in
Table 1.

Fig. 8 The questionnaire presented to the participant

Fig. 7 Stressfulness data collection screen

Fig. 6 SCWT test sample
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Participants

An Android application is developed to collect data. If users’
own phones have the desired sensors to collect data, it is
provided to use their own phones. For users who do not have
a phone with an Android operating system or whose phone is
not eligible for data collection, one of the smartphones
Samsung Android S6, Xiaomi Mi A2 Lite or Xiaomi Redmi
Note 4 is provided. Orientation is limited in portrait mode. In
addition, phone holding habits (such as one-handed or two-
handed holding) are interfered because they are part of the
writing behavior. However, since the new generation phones
have a large and widescreen, it is observed that none of the
participants held the phone with one hand. However, although
very rare, the presence of participants using a single finger
keyboard is noteworthy. The phones’ default typing key-
boards are used and automatic corrections and suggestions
are turned off. For the purpose of preventing bias, participants
are not stated that data is collected for stress detection. When
the data collection process is completed, the purpose of the
study is explained in detail. Information on the study popula-
tion is presented in Table 2 and the age distribution of the
participants is shown in Fig. 9.

Creating dataset

The data collected within the scope of the study are labeled
with the developed mobile application and the self-evaluation
applied to the participants. Raw data from all participants are
combined in a single file. Then, this information is divided
into 5, 10 and 15 s interval windows and three different data
sets are created. Since the data collection mobile application is
set up to collect 20 samples of data per second, the data com-
piled into a single file is set to be 100, 200 and 300 (5 × 20 =
100, 10 × 20 = 200, 15 × 20 = 300) common multiple, and the
excess data is cleared. In the remainder of the study, the data
sets are expressed as DS-A (5 s), DS-B (10 s), and DS-C

(15 s). The numerical information about the data sets is pre-
sented in Table 3.

# mean: number of.

Feature extraction

In addition to the smartphone sensors during the data collec-
tion phase, the number of times the user touched the screen
and the number of times the backspace key pressed while
writing the text are also recorded. The number of taps and
deletions on the screen are added to the data sets as features.
In addition, the age and gender of the participants are used as
features.

For the data obtained from the sensor signals, 14 statistical
measures are used in the feature extraction stage. In addition, a
total of 18 features are extracted with zero crossings, mean
energy, mean curve length, and mean teager energy. Brief
descriptions of these features are given in Table 4.

Gain ratio feature selection algorithm

Gain Ratio is a different version of Information Gain (IG) [44]
that reduces bias [45]. Gain Ratio aims to prevent the increase
in the number of nodes. This is important when data is spread
evenly and small when all data on a single branch [46].

A decision tree is a simple structure in which non-terminal
nodes symbolize tests on one or more features and the termi-
nal nodes reflect the final results. IG measurement is used to
choose the test feature in each node of the decision tree and
prefers to select attributes with multiple values. The decision
tree uses information acquisition, known as the rate of gain, to
overcome bias [47]. And it also uses the rate of gain that
applies normalization for the acquisition of information using
a value defined as in Eq. 19.

SplitInfoA Sð Þ ¼ − ∑
v

i¼1
jSij=jSjð Þlog2 jSij=jSjð Þ ð19Þ

Table 1 Average values ± standard deviations of the questionnaire presented to the participants at the beginning and at the end of the application

Tired Happy Stress Energy Angry Interested

At the beginning of the application 2.50 ± 1.46 3.50 ± 1.41 1.88 ± 0.78 3.68 ± 1.15 1.56 ± 0.70 3.44 ± 1.22

At the end of the application 2.69 ± 1.21 2.94 ± 1.30 3.38 ± 1.05 3.62 ± 1.17 2.62 ± 1.41 3.31 ± 1.53

Table 2 Information on the study
population Variable Value

Population size 46

Age (minimum, maximum, average, standard deviation) 18, 39, 24.35, 6.10

Number of female participants 11

Number of male participants 35
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Gain ratio subordinates knowledge gain values to division
information and normalizes them [48]. The gain ratio is de-
fined as shown in Eq. 20.

Gain Ratio Að Þ ¼ Gain Að Þ=SplitInfoA Sð Þ ð20Þ

Gain ratio feature selection algorithm is applied for each
data set and the ranks of the features are calculated. New
feature subsets are created using ranked features.

Tenfold cross validation

Ten-fold cross-validation technique is used to evaluate the
classifier models. Cross-validation provides that each folding
accurately represents class values on each fold. In this way, it
helps to decrease variance in the prediction. Throughout this
process, the samples are randomly divided into 10 (equal size)
sub-samples. One of 10 sub-sample is held for testing and the
remaining 9 sub-samples are used for training. This procedure
is repeated 10 times in total. In this case, each of the 10 sub-
samples is used one time as verification data. Then, obtained
10 results are averaged and a sole estimate is generated. This
has the advantage that all samples are used for both validation
and training [49, 50].

Experimental results and discussion

In the study, obtained data from smartphone’s touchscreen and
motion sensors are evaluated with k-nearest neighbors (kNN),
Bayesian Networks (BN) and C4.5 Decision Trees methods.
Weka toolkit [51] and Java programming language are used.
When comparing the outputs of the models, various perfor-
mance evaluation measures are taken. These are classification
performance including Precision, Recall, Classification accu-
racy (CA), Root Mean Square Error (RMSE), and F-Measure.
These are given in Eq. 21–25, respectively. Where CE is the

number of correctly estimated samples and N is the total num-
ber of samples.

Precision ¼ True Positive
True Positiveþ False Positive

ð21Þ

Recall ¼ True Positive
True Positiveþ False Negative

ð22Þ

CA ¼ 100*CE
N

ð23Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1

xi−xtrue
xtrue

� �2
s

ð24Þ

F−Measure ¼ 2*Precision*Recall
Precisionþ Recall

ð25Þ

Experiments

When the related works are examined, it is seen that stress
detection is handled by various machine learning methods.
In this study, kNN, Decision Trees and Bayesian Networks
methods which are commonly seen in the literature are
applied.

kNN

kNN is a supervised classification algorithm used in the clas-
sification process. This algorithm works with the logic of de-
ciding which class a new sample belongs to by looking at a
neighbor as many k as defined by the user [52]. While mea-
suring the proximity value in this study, criteria such as
Manhattan, Euclidean and Minkowski are used. Euclidean
distance criterion is chosen as the most commonly used
Euclidean distance criterion [38]. Furthermore, the problem
is tested with different k neighborhood values and the most
appropriate k value is found to be 1. Visualization of the fea-
tures that have the highest three ranks for DS-C is given in
Fig. 10. Figure 10 shows that the data is decomposed to some
extent, even in only three dimensions.

Bayesian networks (BN)

The variables of the BN nodes are graphical models used to
decide under uncertainty in which the arrows represent the
connection between these nodes. In a Bayesian network,
nodes represent random variables obtained from the environ-
ment and are connected to each other by directional arrows.
These arrows represent the dependency between nodes. The
strength of the connection between two discrete nodes is mea-
sured by the conditional probability between those two nodes.
Firstly, the interest between the variables is determined. This

Fig. 9 Age distribution of participants

Table 3 Numerical
information of data sets Dataset # Calm # Stress Total

DS-A 3866 3171 7037

DS-B 1888 1519 3407

DS-C 1218 969 2187
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determines what the nodes represent and which values they
take. The topology or structure of the network deals with the
qualitative relationship between variables. In particular, if two
nodes affect each other or cause one to occur, these two nodes
are shown in direct connection [53, 54]. One of the most
useful applications of the Bayesian rule is the Naive Bayes

classifier. The Naive Bayes model can be represented as a
Bayesian network that encodes conditional independence be-
tween attributes and the class variable. In this study, a
Bayesian network structure with independent attributes was
built as seen in Fig. 11. In Fig. 11, ZC represents the zero-
crossing values, MCL represents the mean curve length
values, MTE represents the mean teager energy values and
finally Std. Dev. represents the standard deviation values.
The title of the boxes indicates the source sensor of the values.

C4.5

The C4.5 algorithm constructs the decision tree from a training
set using the concept of knowledge entropy. The training set is
classified as examples of S = S1, S2,…, Sn data. Each S,sample
consists of a p-dimensional vector (X1, i, X2, i,…, Xp, i). Here Xj
represents the properties or properties of the examples. On each
node of the tree, C4.5 selects the attribute of the enriched data
in the subsets. The division criterion is the normalized informa-
tion gain. The attribute with the highest normalized information
gain is chosen for the decision. The C4.5 algorithm is then

Table 4 Brief description of the features

Feature name Formula

Minimum value (MinV) MinV =min[xi], i = 1, ... ,n (1)

Maximum value (MaxV) MaxV =max[xi], i = 1, ... ,n (2)

Standard deviation (S)
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

xi−AMð Þ2
n−1

r
(3)

Arithmetic mean (AM) AM ¼ 1
n ∑

n

i¼1
xi

(4)

Absolute arithmetic mean (AAM) AAM = ∣ AM∣ (5)

Geometric mean (GM) GM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1*x2*⋯*xnn

p
(6)

Harmonic mean (HM) HM ¼ n
1
x1
þ 1

x2
þ⋯þ 1

xn
(7)

Sum Sum = x1 + x2 +… + xn (8)

Q1 Q1 = x(i)[0.25(n + 1)] (9)

Median Median = x(i)[0.5(n + 1)] (10)

Q3 Q3 = x(i)[0.75(n + 1)] (11)

Variance (S2) S2 ¼ ∑
n

i¼1

xi−AMð Þ2
n−1

(12)

Skewness (SK)
SK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

xi−AMð Þ3
n−1ð Þ*S3

r
(13)

Kurtosis (K)
K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

xi−AMð Þ4
n−1ð Þ*S4

r
(14)

Zero Crossings (ZC) xi − 1 < 0 ve xi > 0 OR xi − 1 > 0 ve xi < 0 OR xi − 1 ≠ 0 ve xi = 0 (15)

Mean Energy (ME) ME ¼ 1
n ∑

n

i¼1
x2i

(16)

Mean Curve Length (MCL) MCL ¼ 1
n ∑

n

i¼2
jxi−xi−1j (17)

Mean Teager Energy (MTE) MTE ¼ 1
n ∑

n

i¼3
x2i−1−xixi−2
� � (18)

Fig. 10 Visualization of the features that have the highest three ranks for
DS-C
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withdrawn from smaller sub-lists [55, 56]. In the structure, the
size of the tree is 140 and the number of leaves is 279.

Results

In the study, three different classification procedures are ap-
plied with raw sensor data obtained from the smartphone.
Whether the user of the smartphone is stressful or not is re-
vealed with high precision. Variation in classification accura-
cies for three data sets are shown in Fig. 12.

When Fig. 12 is examined, DS-B and DS-C classification
achievements are similar. However, the DS-Awith a window
interval of 5 s is insufficient for stress detection. The highest
accuracy is obtained from the DS-C by using kNNmethod. To
achieve this success, 43 features with the highest ranks are
used. The most successful classification results obtained by
data sets are presented in Table 5.

When Table 5 is examined, it is seen that the most success-
ful results are obtained with DS-C with window intervals of
15 s. The most successful of the three machine learning
methods used was kNN with 87.56% accuracy rate. This
method is followed by C4.5 with 74.26% and BN with
67.86% accuracy rates. Similar to accuracy; the highest
Recall, Precision and F-Measure values are also obtained from
kNN method. As a trustworthy evaluation parameter in ma-
chine learning, RMSE is a measure of the distinctions between
estimated and observed values. When the RMSE value ap-
proaches zero, there is an increase in the prediction capability
of the model [57]. RMSE values are calculated as 0.54, 0.45
and 0.31 for BN, C4.5 and kNN methods, respectively. The
confusion matrices of the most successful results obtained
from the three methods are presented in Table 6.

When the confusion matrix of kNN method is examined, it
is seen that 11.8% of calm samples are classified as stress. The
wrong classification of stress samples is 13%. On average,
87.56% accuracy is achieved. The F-measure is the harmonic
mean of the Recall and Precision values. This value is among
0 and 1. In an accomplished classification, the F-measure is
awaited to be close to 1 [58]. A balanced data set is used in the
study. The F-measure value is calculated as 0.876. In the C4.5
method, 23% of calm samples are stress and 29% of stress

Fig. 12 Variation in classification accuracies

Table 5 Classification results

DATASETA

CA RMSE Precision Recall F-Measure # feature

BN 67.86 0.5405 0,682 0,679 0,679 56

kNN 56.59 0.4941 0,585 0,566 0,465 1

C4.5 70.54 0.4697 0,706 0,705 0,706 28

DATASET B

CA RMSE Precision Recall F-Measure # feature

BN 66.22 0.5469 0,668 0,662 0,663 51

kNN 87.38 0.3551 0,874 0,874 0,874 45

C4.5 74.20 0.4932 0,742 0,742 0,742 112

DATASET C

CA RMSE Precision Recall F-Measure # feature

BN 67.26 0.5474 0,678 0,673 0,674 57

kNN 87.56 0.3102 0,876 0,876 0,876 43

C4.5 74.26 0.4591 0,743 0,743 0,743 31

Fig. 11 Bayesian network structure
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samples are mixed with calm samples. In Bayesian Networks,
these rates are 32.7% and 31%. Faulty classification in the
stress class is similarly higher in DS-B and DS-C than DS-A.

Discussion and comparison with other studies

It is not possible to compare the results in this study directly
with other studies because all previous studies have been tried
with different data sets and their approaches have been eval-
uated in different ways. Therefore, only stress detection stud-
ies which employ data obtained from the smartphone are
considered for discussion. Comparison of stress detection
studies carried out by smartphone is listed in Table 7. In the
study conducted by Ghosh et al. [33, 34], writing behavior
was examined and 78% and 84% accuracy were achieved in
the classification of four different mood states. Kim and Choi
[29] categorized seven different emotions with 0.82 F-score
using the information obtained from accelerometer, gyro-
scope and the touchscreen panel. Lee et al. [30] classified
the seven emotions with 67.5% accuracy using information
such as location, time, ambient brightness, and weather, in
addition to touch screen information. Ciman et al. [1] per-
formed two classes of stress detection with 0.92 F-score with

information such as tap, swipe, scroll and text input on the
phone screen. In the studies conducted by Sano and Picard
[28], Bogomolov et al. [18] and Vildjionaite et al. [25] 87.5%,
72.28%, and 70% accuracy were obtained in the classifica-
tions based on application usage logs, respectively. In the
studies such as Syoev et al. [15], Wang et al. [17], Muaremi
et al. [27], Gjoreski et al. [6], activities identified during the
day were used as features in addition to the application usage
logs. Lu et al. [16] performed two classes of stress detection
with sound signals with 81% accuracy. This study was carried
out using only smartphone data and high accuracy (87.56%
CA and 0.876 F-score) classification was performed in 2
classes. In this study, daily smartphone usage of the user
was not analyzed, only writing behaviors were examined.
Compared to other previous studies, the highest accuracy
was achieved in this study among stress detection studies
which employ smartphone sensor data.

This study employs an unused sensor and feature set in the
literature and performs 2 classes of stress detection with a suc-
cess rate of 87.56%. Since the sensor information is collected
only during the writing process with the keyboard, no battery
problem also occurs. In addition, there is no need for a long
period of time to reach a definitive decision for stress detection.

Table 7 Comparison of stress detection studies carried out by smartphone

Ref. Year Authors # Class Performance
measure

Success
rate

Data source Method

[1] 2015 Ciman et al. 2 F-score 0.92 Swipe, scroll and text input Decision Tree

[6] 2015 Gjoreski et al. 3 Accuracy 60 Accelerometer, sound, GPS, Wi-Fi,
call logs and light

Random Forest

[15] 2015 Sysoev et al. 2 Accuracy 77.5 Sound, light, gyroscope, accelerometer,
secren on/off

Simple Logistic

[16] 2012 Lu et al. 2 Accuracy 81 Sound GaussianMixture Models

[18] 2014 Bogomolov et al. 2 Accuracy 72.28 Call and SMS logs, bluetooth and
weather conditions

Random Forest

[25] 2018 Vildjionaite et al. 7 Accuracy 70 Phone usage data Hidden Markov Model

[27] 2013 Muaremi et al. 3 Accuracy 61 Heart rate, sound, accelerometer, GPS, Applications
(call, address book, calendar, battery)

Multinominal Lojistik
Regresyon

[28] 2013 Sano and Picard 2 Accuracy 87.5 Accelerometer, skin conductance and
mobile phone usage

PCA+ kNN

[29] 2012 Kim and Choi 7 F-score 0.82 Accelerometer, touch panel and gyroscope Decision Tree

[30] 2012 Lee et al. 7 Accuracy 67.52 Touchscreen, location, time, weather
conditions, ambient brightness

Bayessian Network

[33] 2019 Ghosh et al. 4 Accuracy 78 Typing characteristics Random Forest

[34] 2017 Ghosh et al. 4 Accuracy 84 Typing characteristics Random Forest

This study 2 Accuracy and
F-score

87.56, 0.876 Accelerometer, gyroscope and touch screen kNN

Table 6 Confusion matrices
kNN DS-C calm stress C4.5 DS-C calm stress BN DS-A calm stress

calm 1074 144 calm 936 282 calm 2598 1268

stress 128 841 stress 281 688 stress 994 2177
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Conclusion

In this study, keyboard typing behaviors and user stressfulness
were determined by using the touchscreen panel, gyroscope
and accelerometer sensors of smartphones. Owing to a sim-
plistic mobile interface, sensor data was collected from
smartphones with the Android operating system and a unique
data set was formed. Gain ratio feature selection and cross-
validation techniques were used to evaluate the accuracy of
classification. It was observed that standard machine learning
methods like Bayesian networks, kNN, and C4.5 decision
trees achieved successful results in stress detection. The most
successful classification was obtained by kNN method. The
results obtained in this study showed that it is possible to
determine whether the user is under stress or not by using
motion sensor data obtained from the smartphone. In future
studies, the stress detection application with the smartphone
can be improved in several ways: (i) other motion and position
sensors of the smartphones can be used. (ii) new and effective
feature extraction algorithms may be implemented. (iii) de-
vices with various internal sensors, such as a smartwatch,
which the user carries with him during the day can be utilized.
(iv) more efficient feature subsets can be extracted with vari-
ous dimension reduction and feature selection algorithms.
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