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ABSTRACT
Model selection is an important and challenging problem in statis-
tics. The model selection is inevitable in a large number of applica-
tions including life sciences, social sciences, business, or economics.
In this article, we propose a resampling-based information criterion
called paired bootstrap criterion (PBC) for model selection. The pro-
posed criterion is based on minimizing the conditional expected pre-
diction loss for selecting the best subset of variables. We estimate
the conditional expected prediction loss by using the out-of-bag
(OOB) bootstrap approach. Other classical criteria for model selection
such as AIC, BIC are also presented for comparison purpose. We
demonstrate that the proposed paired bootstrap model selection cri-
terion is effective in selecting accurate models via real and simulated
data examples. The results confirm the satisfactory behavior of the
proposed model selection criterion to select parsimonious models
that fit the data well. We apply the proposed methodology to a real
data example.
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1. Introduction

Regression analysis is the most generally used procedure to demonstrate the relationship
between a response variable and a set of predictors. When performing a linear regres-
sion on a set of observations, usually p predictor variables are available for predicting a
response variable y, and one has the desire to select the best subset of these predictor
variables. This selected model may contain all possible p explanatory variables or may
contain only a subset pa where a 2 A and A is the set of all possible models being
examined. Working with the largest number of explanatory variables that explains the
most variability in the observations does not automatically produce the best model. We
should instead use a systematic process for model selection to determine which model
best explains the data. Model selection is a basic issue in statistics which helps to iden-
tify the set of significant predictors which explain the response variable well.
Several model selection procedures have been suggested for the least squares linear

regression model. The most widely used selection procedures are forward, backward,
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stepwise, and best subsets regression. Selection criteria for these procedures are often
based on R2, adjusted-R2, F test statistics (F-to-enter and F-to-remove), Mallow’s Cp cri-
terion (Mallows 1973), and the final prediction error (FPE) (Akaike 1970; Shibata
1984). Unfortunately, all of these selection criteria are biased and are, therefore, not rec-
ommended for variable selection by researchers, for example, (see Breiman 1995; Davison
and Hinkley 1997; Miller 1990; Shao 1993; Wisnowski et al. 2003; Zhang 1992). Direct
minimization of these criteria leads to models that have too many significant variables, sug-
gesting that the dimension of the active variable set (< p) is too large. Shao (1993, 1996)
and Breiman (1995) proposed different resampling procedures to address the limitations of
the traditional methods for least-squares subset model selection. These authors used the
resampling procedures such as the bootstrap and crossvalidation to estimate the prediction
error. A model having a minimum value for prediction error is considered as the correct
one. Some other good overviews based on the resampling techniques to model selection are
Sauerbrei (1999), Sauerbrei, Boulesteix, and Binder (2011), Lee, Babu, and Rao (2012), Babu
(2011), Arlot (2009), De Bin et al. (2016).

Shao (1996) bootstrap procedure in its original form is an n-out-of-n bootstrap, the first
n refers to the number of observations to take out as a bootstrap sample and the second n
refers to the number of original observations. Shao (1996) procedure is asymptotically
equivalent to the Akaike Information Criterion (AIC) (Akaike 1974), Mallows Cp criterion,
and leave-one-out crossvalidation selection technique. These all tools share the same prop-
erty of being asymptotically inconsistent. The bootstrap selection technique is inconsistent
in the sense that the probability of selecting the optimal subset of variables does not con-
verge to 1 asn ! 1: To obtain asymptotic consistency, Shao (1996) treats the issue
through an m-out-of-n bootstrap for an appropriately chosen m< n (where m refers to the
bootstrap sample and n refers to number of original observations).
The Shao (1996) bootstrap procedure for model selection is strongly depends on boot-

strap sample m. So, the key strength driving this research is to improve the Shao (1996) cri-
terion which is less dependent on m. We pursue the investigation in Shao (1996) and make
some refinements, by utilizing the concept of out-of-bag (OOB) bootstrap. The OOB obser-
vations are those which are not a part of the bootstrap sample. These OOB observations
can be used for estimating the prediction error, yielding the so-called OOB error. This type
of error is often claimed to be an unbiased estimator for the true error rate (Breiman 2001;
Zhang, Zhang, and Zhang 2010). We believe that our proposal will provide a consistent
procedure to be used for model selection in linear regression problems.
This article is organized as follows. Section 2 considers the linear relationship between x

and y, bootstrapping in the regression model and the two distinctive methods for generat-
ing bootstrap samples: residuals bootstrapping and pairs bootstrapping. Section 3 discusses
the Bootstrap estimate of the expected prediction loss. Section 4 illustrates the existing boot-
strap model selection criterion. Section 5 presents the proposed paired bootstrap criterion
for model selection. Section 6 discusses our simulation results. Section 7 demonstrates the
data example. Finally, Section 8 summarizes our conclusion.

2. Linear regression model

Suppose that we have a vector of n responses y ¼ ðy1, y2, :::, ynÞT : Also, we have p
explanatory variables for each observed response contained in a vector Xi: Let X be an
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n� p matrix with full rank, and let b be a vector of p unknown regression parameters.
Then the linear regression model between Y and X is

yi ¼ XTbþ e (1)

where e is an n-dimensional vector of location zero and scale one errors. Moreover, X

and e ¼ ðe1, e2, :::, enÞT are independent of each other.

2.1. Bootstrapping in regression model

The bootstrap procedures can be easily extended to linear regression models. There are
many articles and books available describing the procedure and its application. In par-
ticular, applying the bootstrap to regression models is covered in Freedman (1981),
Bunke and Droge (1984), and Shao (1996). Two different approaches are used for gen-
erating the bootstrap sample observations in linear regression models, including residual
bootstrap (Efron 1979) and paired bootstrap (Efron 1982). We present brief details of
these procedures in the following subsections.

2.1.1. Residual bootstrapping

Let Ŷ ¼ XT b̂ is the fitted values and b̂ is the least squares regression coefficients.
Suppose ei ¼ yi � ŷi is the ith residual calculated from an original sample. Generate
bootstrap observations y�i by using y�i ¼ ŷi þ e�i for i ¼ 1, 2, :::, n where e�i are the boot-
strap residuals selected from ei: The residual bootstrap samples are fðxi, y�i Þ, where i ¼
1, 2, :::, ng: The bootstrap estimate of b̂ is given by

b̂
� ¼ ðXTXÞ�1XTy�

where Y� ¼ ðy�1, y�2, :::, y�nÞ: The residual bootstrap is generally used when the explana-
tory variables xi are deterministic. In this case, they are assumed to be fixed and non-
random, and so the only variability in yi is attributed to the bootstrapped errors e�i :

2.1.2. Paired bootstrap
In the paired bootstrap, we produce the pairs (response, explanatory variable) bootstrap
samples by sampling n observations from ðy1, x1Þ, ðy2, x2Þ, :::, ðyn, xnÞ

� �
with replacement

and having equal selection probability. Then, the bootstrap sample is ðy�i , x�i Þ for i ¼
1, 2, :::, n: The bootstrap estimate of b̂ is given by

b̂
� ¼ ðX�TX�Þ�1X�Ty�

where y� ¼ ðy�1, y�2, :::, y�nÞ and X� ¼ ðx�1, x�2, :::, x�nÞ: A paired bootstrap is often used
when the explanatory variables xi are considered to be random, although the method
can also be used when xi are deterministic.

3. Bootstrap estimate of the expected prediction loss

Suppose that we have a response vector y ¼ ðy1, y2, :::, ynÞT and X be an n� p matrix. Let a
denote any subset of size pa from f1, 2, :::, pg, ba is the subvector of b, and let Xa denote
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the n� pa matrix that contains n observations (rows) and only the pa explanatory variables
(columns). Let xTai denote the ith row vector of the matrix Xa: Then model a is given by

yi ¼ xTaiba þ eai, i ¼ 1, 2, :::, n (2)

where eai’s are mean-zero and scale one errors. Moreover, Xa and ea ¼ ðea1, ea2, :::, eanÞT
are independent of each other.
To fit model (2), the least squares procedure is used. The least squares estimate of ba is

b̂a ¼ ðXT
a XaÞ�1XT

a y

Note that model (2) is said to be correct model if Eðyi=xiaÞ ¼ xT
ia
ba, i.e., ba contains all non-

zero components of b: However, if a model with parameter ba is not a correct model, then

Eðyi=xiaÞ 6¼ xT
ia
ba, since Eðb̂aÞ will not be the same as the non-zero components of b: We can

measure the dissimilarity of the model a and the full model by the loss which is given by

lðaÞ ¼ 1
n

Xn
i¼1

ðxT
i
b� xT

ia
b̂aÞ2 (3)

Suppose, we have n future responses zi that are independent of the past responses, yi
but with the same explanatory variables Xi for i ¼ 1, 2, :::, n: Then the average condi-
tional expected prediction loss (EPL) is

LðaÞ ¼ E
1
n

Xn
i¼1

ðzi � xT
ia
b̂aÞ2jY ,X

" #
(4)

LðaÞ ¼ E
1
n

Xn
i¼1

½ðzi�xT
i
bÞ þ ðxT

i
b� xT

ia
b̂aÞ�2

" #

LðaÞ ¼ r2 þ lðaÞ (5)

where varðzi=xiÞ ¼ r2:
Initially, the bootstrap estimate of the Expected Prediction Loss (EPL) is derived by

Efron (1982, 1983) using n-out-of-n bootstrap procedure. The suggested bootstrap esti-
mate of LðaÞ in (4) is given by

L�ðaÞ ¼ kY � Xab̂ak2
n

þ e�nðaÞ (6)

where e�nðaÞ is the bootstrap estimate of expected excess error for model a given by

e�nðaÞ ¼ E�
kY � Xab̂

�
ak2

n
� kY� � X�

ab̂
�
ak2

n

" #
(7)

where E� is the expectation with respect to the bootstrap sample and b̂
�
a is the bootstrap esti-

mator of b̂a: Almost this estimator L�nðaÞ is unbiased, but a straightforward n-out-of-n boot-
strap is asymptotically inconsistent for regression models (Shao 1996). A simple modification
by Shao (1996) to an m-out-of-n selection procedure rectified this consistency condition.
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4. Existing bootstrap model selection criterion

In this section, we discuss the existing model selection procedure based on expected

prediction loss. Consider a vector of n responses yi ¼ ðy1, y2, :::, ynÞT and the design

matrix X ¼ ðx1, x2, :::, xnÞT :
Shao (1996) estimated the average conditional expected prediction loss [defined in

(4)] by using an m-out-of-n bootstrap. In bootstrapping pairs, obtaining a consistent
estimate is a simple matter of using m pairs of observations ðyi, xiÞ for i ¼ 1, 2, :::,m

selected from the full set of n observations. The m-out-of-n bootstrap estimate of b̂a

based on the model a is given by

b̂
�
a,m ¼

Xm
i¼1

x�iax�
T
ia

" #�1 Xm
i¼1

xiay
�
ia (8)

The corresponding bootstrap estimate of the expected prediction loss proposed by
Shao (1996) is given by

L�nðaÞ ¼ E�
kY � XT

a b̂
�
a,mk2

n

" #
(9)

where E� is the expectation with respect to the bootstrap sample and b̂
�
a,m is the bootstrap

estimator of b̂a: Here, the focus is on the model âsn,m 2 A that minimizes L�nðaÞ i.e.,
âsm, n ¼ argmin

a2A
L�nðaÞ (10)

5. The proposed model selection criterion

In this section, we present a paired bootstrap model selection criterion based on modi-
fied expected prediction loss. To estimate the modified expected prediction loss we
make some refinements in Shao (1996), by utilizing the concept of out-of-bag bootstrap.
Following Shao (1996), we use an m-out-of-n bootstrapping method rather than trad-
itional methods to obtain asymptotic consistency. To estimate the modified expected
prediction loss, we proceed as follows:

(i) sample rows of (y, X) independently with replacement so that total bootstrap
sample is of size m (�n),

(ii) construct the estimator b̂
�
a,m from data obtained in step (i),

(iii) calculate the modified criterion function by using the out-of-bag bootstrap
expectation i.e., m observations used to obtain b̂

�
a,m, are not included when cal-

culating L��n ðaÞ,
(iv) repeat the steps (i) to (iii) K independent times and then estimate the modified

expected prediction loss by

L��n ðaÞ ¼ E�
kY �m½ � � XT

a �m½ �b̂
�
a,mk2

n�m

" #
(11)
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where E� denotes expectation with respect to the bootstrap distribution and m is the
number of distinct observations in the bootstrap sample, and ½�m� denotes the m
observations are excluded when calculating L��n ðaÞ: As in M€uller and Welsh (2005,
2009), we suggest to take the bootstrap sample size m in between 0.25 n to 0.50 n for
moderate n i.e., 50 to 200, but for large n, m can be smaller than 0.25 n. Moreover, m
satisfies the conditions given by

m ! 1 and
mffiffiffi
n

p ! 0 as n ! 1

In practice, the interest lies in all of the models that make L��n ðaÞ small. By using the modi-

fied bootstrap criterion function, we select a model âfm, n 2 A that minimizes L��n ðaÞ, i.e.,
âfm, n ¼ argmin

a2A
L��n ðaÞ (12)

Here, we prefer paired bootstrapping over residual bootstrapping because the former
can be used in both situations, i.e., either the explanatory variables Xi are random or
deterministic whereas the later can be used only when the explanatory variables Xi are
deterministic (Efron 1982).

6. Simulation study

To perform simulations, we may use a real dataset with known explanatory variables
(in Simulation Setting 1) or we may generate our own hypothetical dataset with known
parameter coefficients (in Simulation Setting 2). In the following subsections, the finite-
sample performance of the proposed criterion is compared with existing model selection
procedures via MC simulation and real dataset.

6.1. Simulation setting 1

To compare the finite-sample performance of the proposed bootstrap model selection
criterion with the existent procedure suggested by Shao (1996), the classical AIC and
the BIC (Schwarz 1978), we use the solid waste data of Gunst and Mason (1980), as
used in Shao (1993, 1996, 1997); Wu (2001), Wisnowski et al. (2003), M€uller and Welsh
(2005), and Salibian-Barrera and Van Aelst (2008) in the context of model selection.
Consider the following model with p¼ 5 predictors and sample size n¼ 40,

Yi ¼ b1Xi1 þ b2Xi2 þ b3Xi3 þ b4Xi4 þ b5Xi5 þ ei, i ¼ 1, 2, :::, 40 (13)

where ei are iid standard normal errors. The first component of each Xi is 1 and the
values of other components of Xi are taken from the solid waste data example of Gunst
and Mason (1980). Following Shao (1996), we generate bootstrap samples from the
model given by Equation (9). We apply the two model selection procedures to choose a
model from a pre-specified list. To show a better performance for any model selection
procedure, the sample size n must be increased if the ratio of a component of b over
standard deviation r is too small (i.e., < 2) (Shao 1996). The estimated selection proba-
bilities, for the existing bootstrap estimator âsm, n[defined in Equation (10)] and the pro-

posed bootstrap estimator âfm, n[defined in Equation (12)] are computed for various m
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using L¼ 1000 Monte Carlo (MC) simulations with bootstrap replications of K¼ 100,
are tabulated in Table 1.
The results in Table 1 can be summarized as follows:

� The modified bootstrap selection procedure outperforms the existing bootstrap
selection procedure, the AIC and BIC. For example, for b ¼ ð2, 0, 0, 4, 0Þ we see
that âf15, 40 selects the optimal model 97.2% (sd0.972 ¼ 0.005), âs15, 40 selects the opti-
mal model 94.3% (sd0.943¼0.007), the AIC selects the optimal model 58.3% (sd0.583
¼ 0.016) and the BIC selects the optimal model 83.5% (sd0.835¼0.012).

� The modified bootstrap selection procedure clearly improves for smaller m. For
example, for b ¼ ð2, 0, 0, 4, 8Þ, we see that âf40, 40 selects the optimal model, 83.2%
of the time, which is much lesser than the 97.8% by using âf15, 40:

� Our modified criterion âfm, n is less dependent on a bootstrap sample of size m as
compared to the existing procedure âsm, n:

� If the optimal model is the full model, then the existing bootstrap model selection
procedure outperforms our modified bootstrap model selection procedure.

6.2. Simulation setting 2

To evaluate the performance of the proposed criterion on simulated data, the following
regression model with p¼ 5 and sample size n¼ 60 is considered

yi ¼ xTi bþ ei, i ¼ 1, 2, :::, n (14)

where ei is generated from standard normal distribution, the regression variables are
generated from Nð0, 1Þ, and adding an intercept column of 1’s to produce design matrix

Table 1. Selection probabilities of âsm, n and âfm, n based on simulation setting 1.
Trueb Model âs15, 40 â f15, 40 âs20, 40 â f20, 40 âs25, 40 â f25, 40 âs30, 40 â f30, 40 âs

40, 40 â f40, 40 AIC BIC

(2,0,0,4,0) 1,4* 0.943 0.972 0.875 0.943 0.770 0.903 0.673 0.864 0.479 0.799 0.583 0.835
1,4,5 0.010 0.006 0.024 0.014 0.042 0.023 0.054 0.036 0.084 0.046 0.106 0.046
1,3,4 0.019 0.010 0.050 0.014 0.100 0.038 0.138 0.049 0.190 0.080 0.105 0.046
1,2,4 0.028 0.012 0.046 0.029 0.069 0.034 0.090 0.043 0.128 0.060 0.107 0.057
1,3,4,5 0.000 0.000 0.001 0.000 0.005 0.001 0.016 0.002 0.034 0.004 0.027 0.004
1,2,4,5 0.000 0.000 0.001 0.000 0.004 0.000 0.009 0.002 0.022 0.002 0.027 0.009
1,2,3,4 0.000 0.000 0.003 0.000 0.008 0.001 0.016 0.004 0.041 0.009 0.024 0.003
1,2,3,4,5 0.000 0.000 0.000 0.000 0.002 0.000 0.004 0.000 0.022 0.000 0.021 0.000

(2,0,0,4,8) 1,4,5* 0.965 0.978 0.907 0.948 0.838 0.910 0.765 0.888 0.607 0.832 0.694 0.877
1,3,4,5 0.013 0.007 0.043 0.019 0.077 0.041 0.119 0.052 0.199 0.080 0.124 0.054
1,2,4,5 0.022 0.015 0.048 0.031 0.071 0.045 0.094 0.055 0.135 0.073 0.135 0.063
1,2,3,4,5 0.000 0.000 0.002 0.002 0.014 0.004 0.022 0.005 0.059 0.015 0.047 0.006

(2,9,0,4,8) 1,4,5 0.013 0.022 0.002 0.012 0.000 0.000 0.000 0.007 0.000 0.003 0.000 0.000
1,2,5 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1,3,4,5 0.001 0.003 0.004 0.005 0.004 0.005 0.002 0.004 0.002 0.006 0.000 0.001
1,2,4,5* 0.976 0.966 0.956 0.966 0.916 0.942 0.872 0.928 0.778 0.902 0.827 0.934
1,2,3,4,5 0.009 0.007 0.038 0.017 0.080 0.044 0.126 0.061 0.220 0.089 0.173 0.065

(2, 4, 6, 8, 9) 1,3,4,5 0.071 0.097 0.015 0.032 0.008 0.018 0.003 0.013 0.002 0.012 0.000 0.001
1,2,4,5 0.010 0.020 0.000 0.003 0.001 0.003 0.000 0.001 0.000 0.000 0.000 0.000
1,2,3,5 0.011 0.014 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,2,3,4,5* 0.908 0.869 0.985 0.964 0.991 0.979 0.997 0.986 0.998 0.988 1.000 0.999

Note: (�) denote the optimal model.
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X: To generate the response variables yi, we use Equation (14). The estimated selection
probabilities for the existing bootstrap estimator âsm, n and our proposed bootstrap estimator

âfm, n are calculated for m¼ 16, 24, 32, 40, and 60, using L¼ 1000 Monte–Carlo (MC) sim-
ulations with bootstrap replications of K¼ 100 and are tabulated in Table 2.
The simulation results presented in Table 2, confirm the satisfactory behavior of our

modified bootstrap model selection criterion. For m � 0:25n, the modified bootstrap
criterion selects the optimal models with high probability. Moreover, it is obvious from
the results that the modified model selection criterion performs very well as compared
to the existence criterion suggested by Shao (1996), the AIC and BIC for m < 0:50n:
The estimated selection probabilities based on Table 2 are plotted in Figures 1 and 2.

The four different models are:

� M1 shows that the optimal model has one non-zero predictor, i.e., b1 ¼ ð1, 0, 0, 1, 0Þ,
� M2 shows that the optimal model has two non-zero predictors, i.e., b2 ¼ ð1, 0, 0, 1, 1Þ,
� M3 indicates that the model has three non-zero predictors, i.e., b3 ¼ ð1, 1, 0, 1, 1Þ, and
� M4 indicates that the optimal model is the full model, i.e., b4 ¼ ð1, 1, 1, 1, 1Þ:

Furthermore, F shows the selection probabilities plotted for our modified criterion

âfm, n and S indicates the selection probabilities plotted for Shao (1996) criterion âsm, n:

In Figure 1, the estimated selection probabilities are plotted against M1, M2, M3, and
M4 for m¼ 16, 24, 32, and 40, whereas in Figure 2, the selection probabilities are plot-
ted against m values for M1, M2, and M3.
From Figures 1 and 2, we observe that:

� for m � 0:25n, the modified bootstrap criterion selects the optimal models with
high probability,

� if bootstrap sample size m is less than 50% of the original sample size n, i.e., m <

0:50n then our modified bootstrap criterion outperforms the existence criterion, the
AIC, and BIC,

Table 2. Selection Probabilities of âsm, n and âfm, n based on simulation setting 2.
True b Model âs16, 60 â f16, 60 âs24, 60 â f24, 60 âs32, 60 â f32, 60 âs40, 60 â f40, 60 âs60, 60 â f60, 60 AIC BIC

(1,0,0,1,0) 1,4* 0.893 0.951 0.730 0.889 0.586 0.836 0.480 0.789 0.314 0.739 0.587 0.853
1,4,5 0.037 0.020 0.091 0.042 0.124 0.055 0.136 0.072 0.161 0.084 0.086 0.045
1,3,4 0.038 0.015 0.081 0.037 0.115 0.052 0.127 0.065 0.145 0.076 0.100 0.042
1,2,4 0.030 0.014 0.079 0.030 0.106 0.046 0.132 0.060 0.143 0.077 0.136 0.048
1,3,4,5 0.001 0.000 0.006 0.001 0.019 0.004 0.034 0.004 0.064 0.007 0.022 0.001
1,2,4,5 0.000 0.000 0.006 0.000 0.022 0.005 0.040 0.007 0.068 0.009 0.034 0.005
1,2,3,4 0.001 0.000 0.005 0.001 0.021 0.002 0.036 0.003 0.069 0.005 0.025 0.005
1,2,3,4,5 0.000 0.000 0.002 0.000 0.007 0.000 0.015 0.000 0.036 0.003 0.010 0.001

(1,0,0,1,1) 1,4,5* 0.948 0.976 0.833 0.936 0.722 0.895 0.635 0.866 0.478 0.827 0.672 0.902
1,3,4,5 0.028 0.012 0.084 0.034 0.131 0.055 0.162 0.067 0.209 0.081 0.120 0.044
1,2,4,5 0.024 0.012 0.080 0.030 0.125 0.050 0.157 0.063 0.215 0.085 0.171 0.048
1,2,3,4,5 0.000 0.000 0.003 0.000 0.022 0.000 0.046 0.004 0.098 0.007 0.037 0.006

(1,1,0,1,1) 1,2,4,5* 0.976 0.988 0.916 0.965 0.861 0.942 0.799 0.927 0.697 0.911 0.842 0.949
1,2,3,4,5 0.024 0.012 0.084 0.035 0.139 0.058 0.201 0.073 0.303 0.089 0.158 0.051

(1,1,1,1,1) 1,2,3,4,5* 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: (�) denote the optimal model.
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� if bootstrap sample size m is nearly half of the original sample size n (m � 0:50n),
then the performance of our modified criterion and the BIC is almost the same,
whereas the performance of Shao (1996) criterion is similar to the AIC,

� for m > 0:50n, then the performance of the BIC is better than our modi-
fied criterion.

� with the substantial increase in the value of m, the estimated selection probabilities
may decline,

� all selection criteria select the full optimal model with probability 1,
� our modified criterion is more stable and less dependent on m as compared to the

existing criterion.

7. Real data example (body density data)

In this section, we analyze the body density data of Johnson (1996). This dataset con-
sists of thirteen explanatory variables. The response variable is the Body fat observed on

Figure 1. The selection probabilities for various m plotted against different models.

Figure 2. The selection probabilities for various models plotted against different values of m.
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n¼ 128 individuals. The explanatory variables are age, weight, height, neck, chest, abdo-
men, hip, thigh, knee, ankle, biceps, forearm, and wrist. A summary of selected best
models is presented in Table 3.

Table 3 presents a summary of selected best models. We calculate âfm, n and âsm, n with
the same specifications as in the simulation study using m¼ 35� 0.27 n. According to
our criterion, the variables included in the final selected model are weight, neck,
and abdomen.

8. Conclusion

We proposed a paired bootstrap criterion (PBC) for model selection in linear regression.
The criterion is a modification to the bootstrap model selection method proposed by
Shao (1996). The results of our study reveal that the performance of the bootstrap
model selection procedure is improved when using the OOB error. The simulations
study confirms the satisfactory behavior of the modified bootstrap model selection cri-
terion for finite samples to select parsimonious models that fit the data well. The paired
bootstrap criterion results in a consistent model selection in the sense that the probabil-
ity of selecting the optimal model can be improved as n increases. Moreover, there is an
indication that our paired bootstrap criterion is less dependent on m than the existing
approach. In conclusion, our proposed criterion is superior to the existing criterion sug-
gested by Shao (1996), the AIC and the BIC.
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