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A Mobile Solution Based on Soft
Computing for Fall Detection
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Abstract Falling is an important health risk, especially for the elderly people.
This situation prevents individuals from living independently. Automatic and high-
accuracy detection of the falls will contribute in preventing the negative situations
that may occur. In this study, a mobile solution with a new architecture for the
detection of falls is presented. For this purpose, motion sensor data have been
collected simultaneously from smartwatch and smartphone with Android operating
system. Data sets for both smartwatch and smartphone have been created by labeling
the falls and actions which are not falling in the data. The performances of Decision
Tree, Naive Bayes, and k-Nearest Neighbor (kNN) methods have been tested on
these data sets, and the kNN method has given the best result on two data sets.
Accordingly, the kNN method is used for classification in the developed Android-
based mobile solution. In addition, it is aimed to detect and prevent actions that
could lead to bad results by monitoring the heart rate of the user with the built-in
heart rate monitor on the smartwatch.

14.1 Introduction

Falling is the cause of hospitalization in elders, which can result in injury [1]. A
low-cost, high-efficiency mechanism for detecting falls is also important for many
health and safety applications, including elderly care [2]. There are numerous deadly
injuries due to falls. It is important to establish an automatic fall detection system,
including the home environment, as reduction of the rescue period after the fall
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Fig. 14.1 Classification of fall detection methods [5]

detection may increase the overall survival rate of the aged person to an extreme
extent [3]. Automatic fall detection helps people stay at home safely by reducing
the negative consequences of falls in elders by encouraging independent living [4].
The methods used for automatic fall detection are classified in Fig. 14.1.

Thanks to wearable technology, many products such as watches, shoes, glasses,
and clothes we use in everyday life have more features than normal [6]. With these
devices, various information about the user can be obtained and evaluated. When
falling detection is considered, most systems that have been described till today
include threshold-based algorithms; machine learning-based fall detections carried
out in recent years provide increased accuracy [1]. There are studies in the literature
that provide mobile solutions for falling by using machine learning methods and
wearable detectors.

Gibson et al. [7] have presented and evaluated an accelerometer-based multiclas-
sifier fall detection and diagnostic system for remote health control. Kwolek and
Kepski [8] have presented a new approach for reliable fall detection. In their study,
the moment of the collision has been determined using the acceleration data; thus,
it has been possible to calculate the time exposure transitions. Srinivasan et al. [9]
have developed a wireless sensor network system for automatic fall detection. To
detect falls, they used a combination of motion detectors placed in the field of view
and a three-axis accelerometer attached to the body. Amin and Zhang [10] have
described the signal processing algorithms and techniques involved in detecting the
fall of the elders with radar signals. Radar signals have a nonstationary structure
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and play a fundamental role in defining the motion, including determining and
classifying falling features. Wang et al. [3] have investigated correlations between
different types of radio signals and their activities by analyzing the radio propagation
model. In this context, they have proposed a fall detection system that is named
WiFall. Skubic et al. [11] have described two studies in which fall detection sensor
technology has been tested. Bourke et al. [4] have extracted 12 different features
from the data set which includes 89 fallings and 368 days of action. Machine
learning method has been applied to the extracted features, and a number of
algorithms based on different feature combinations have been created. Chen et al.
[2] have proposed an accurate, over-sourced, adaptive fall detection approach by
using smart devices with integrated wireless connectivity and sensors. Hsieh et al.
[12] have proposed a machine learning-based fall detection algorithm using multiple
Support Vector Machine (SVM) and k-Nearest Neighbor (kNN) classifiers with
linear, quadratic, or polynomial kernel functions. Aziz et al. [1] have compared the
accuracy of machine learning-based and threshold-based fall detection approaches
in the fall data set obtained from ten young participants. Cola et al. [13] have
investigated the use of a barometer (e.g., embedded in a pair of eyewear) placed
in the wearer’s head as a means to develop existing wearable sensor-based fall
detection methods.

In this study, an Android-based mobile solution has been developed in order to
minimize the injuries via notifying related persons or organizations by detecting
falls for elderly people. For this purpose, motion sensor data have been obtained
from smartwatches and smartphones with Android operating system, and these data
have been evaluated by machine learning method. With this mobile solution that
has a new architecture of using smartwatch and smartphone together, it is aimed to
minimize the problems that may arise as a result of falls. After the detection of the
fall, information about the patient or elderly (position, position changes, and actions)
is transferred to the necessary units (caregiver, hospital, etc.) in mobile environment.

Smart device sensors will be explained later in Sect 14.2. The method used in
experimental study and the findings will be discussed in Sect 14.3. After that, the
architecture of the developed Android-based mobile solution will be elaborated in
Sect 14.3.1. Finally, the study will end with the obtained results.

14.2 Sensors

In the scope of the study, gyroscope and accelerometer sensors have been used
to detect the fall. When fall detection is performed, the global positioning system
(GPS) sensor is used to determine the location of the fall. In addition, thanks to the
heart rate monitor, it is aimed to prevent the occurrence of a negative situation for
the person by detecting and monitoring the heart rate of the person during the day.
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14.2.1 Accelerometer

The built-in accelerometer sensor of smartphones and smartwatches measures the
acceleration affecting the smartphone and smartwatch in the direction of the axes
shown in Fig. 14.2. The raw sensor information is obtained from the accelerometer
in three axes in m/s2. The content of the raw accelerometer sensor data is given in
Eq. 14.1:

Acci =< xi, yi, zi >, i = (1, 2, 3, . . . ) (14.1)

Time information is also obtained in addition to the acceleration values. Most
existing accelerometers allow you to set (on the user interface) how many sample
data will be collected in seconds. Thanks to this, users can select the most
appropriate sample rate for his/her study [14].

Accelerometer is often used in smart device-based action recognition applica-
tions. This sensor’s popularity comes from the fact that the sensor can directly
calculate the physical movement of the device or user. For example, if the user
moves from walking to jumping state, accelerometer signals will change on the
vertical axis [14, 15]. According to Fig. 14.2, the X-axis gives information for the
side face of the device, the Y-axis for a vertical position, and the Z-axis for the flat
(supine) position [16]. For example, if the Z value is 0 or very close, it means that
the device is standing on one of its edges. When operating with an accelerometer,
it should be kept in mind that, the accelerometer calculates the linear acceleration
of the device, the numerical value obtained is the gravitational force affecting the
device, and if the device is in motion, it is the acceleration of the device and
gravitational force [17].

Fig. 14.2 Accelerometer sensor axes of smartphone and smartwatch
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14.2.2 Gyroscope

A gyroscope is a tool which is used to detect or measure direction. It is used to find
direction in aircrafts and ships in everyday life [17, 18].

The rotation of the Earth, shown in Fig. 14.3, also carries the characteristic
feature of a gyroscope. The Earth’s rotation on its axis creates a balancing effect
and allows it to rotate while showing the pole star. Rapidly rotating propeller, sphere,
ball, etc. are basically a gyroscope. As shown in Fig. 14.4, the gyroscope consists
of a rotor (disk) with free rotation and interconnected joints (gimbal joints) [19].

The gyroscope sensor on the smart devices gives the angular velocity that the
smart device has made on the x, y, and z axes. The gyroscope axis trajectories for
smartphones are shown in Fig. 14.5. The raw data obtained from the gyroscope
sensor report the rotation of the smart device around the three physical axes in rad/s.
The contents of raw gyroscope sensor data are given in Eq. 14.2:

Rotationi =< xi, yi, zi >, i = (1, 2, 3, . . . ) (14.2)

Fig. 14.3 The world’s
rotation movement [19]

Fig. 14.4 Structure of
gyroscope [20]
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Fig. 14.5 Sensor axes of
smartphone gyroscope

The gyroscope sensor is used in smartphone games with character orientation.
This sensor is used to perform direction determination in action recognition studies
[14, 15].

14.2.3 Global Positioning System (GPS)

GPS, which is shown in Fig. 14.6, is a satellite-based guidance system developed by
the US Department of Defense in the beginning of the 1970s. This system has been
developed primarily for military purposes, but personal usage has become possible
with time. GPS is a passive system that can provide location and time information
to unlimited persons anywhere in the world under any weather conditions. In other
words, users have position information by processing the signals coming from the
satellite [15, 21].

In smart devices, location can also be determined with the help of wireless
networks and associated base stations. However, if the device does not have a GPS
sensor, position detection can be performed with limited accuracy. The GPS signal
contains the following parameters [17, 22]:

• Latitude: Obtained in degree unit. Latitude positive values denote the north of
the equator, and negative values denote the south of the equator.

• Longitude: Measurements are according to zero meridian. It is obtained in degree
units. Positive values indicate eastern meridians, and negative values indicate
western meridians.
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Fig. 14.6 GPS satellites in orbit around the world

• Velocity: The device’s instantaneous velocity is calculated in meters/second. It
cannot be calculated if it does not receive a GPS signal. The velocities with a
negative value are invalid.

• Altitude: Altitude is calculated in meters. Positive values indicate the altitude of
the device from the sea level.

In addition, other features of GPS are as follows [17, 23, 24]:

• GPS devices are passive receivers. They do not give feedback to satellites.
• GPS satellites are synchronized using atomic clocks.
• Satellites periodically transmit signals containing current location and time

information. The distance between the receiver and the satellite can be calculated
according to the time of arrival of these signals to the receiver. Figure 14.7 shows
an example of positioning in two dimensions. If the satellite positions (S1, S2, S3)
and distances (ρ1, ρ2, ρ3) between the user and the satellites are known, the user
position indicated by U can be found. If two distance information is used, there
will be two candidates for the user’s position because the circles will have two
intersection points. With the third distance information, the user position can be
determined precisely [25].

• GPS does not work in an indoor environment.
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Fig. 14.7 Positioning in two
dimensions [25]

U
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p1 p2S1 S2

• GPS quickly consumes the battery life of the device.
• A position fix takes a very long time (30 s–12 min).
• The buildings reflect or block GPS signals. Due to this reason, the accuracy rate

decreases in settlements.

14.2.4 Heart Rate Monitor

The heart rate sensor transmits the information of how many times the user’s heart
beats in a minute. The accuracy rate reported by the sensor provides information
about the situation in which the pulse has been read [26]. Many wearable devices
with a heart rate sensor use a method called Photoplethysmography (PPG) to
calculate heart rate. PPG is a technical term that calculates the amount of light
scattered by blood flow by illuminating the skin. Thus, the change in heart rate
can be calculated. The structure of the heart rate sensor is shown in Fig. 14.8 [27].
PPG uses four technical components to calculate heart rate.

• Optical transmitter: Generally, it consists of at least two LED light sources for
transmitting light waves into the skin. This is because of differences in skin tones.

• Digital signal processor: The digital signal processor captures the light waves
broken from the user’s skin and calculates significant heart rate data between 1
and 0.

• Accelerometer: An accelerometer measures the motion, and it is used with digital
signal processor’s signals as input to motion-tolerant PPG algorithms.
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Fig. 14.8 Optical heart rate sensor structure [27]

• Algorithms: Information such as calories burned, heart rate variability, and heart
oxygen level can be calculated by the data from the digital signal processor and
accelerometer.

14.3 Methods

14.3.1 k-Nearest Neighbor (kNN)

The k-nearest neighbor method, which is a classification method, is an algorithm
that classifies based on distance. This method, which does not have a connection
between its features, is one of the controlled machine learning algorithms that is
simple to interpret and implement and easy to have results. kNN uses the nearest
neighbor samples to classify or estimate patterns in n-dimensional feature space. In
order to be able to classify in the kNN algorithm, the number of nearest neighbors
to be considered is expressed with a positive integer k. If k is 1, the pattern to be
classified will be included in the class where the nearest neighbor is located. This
method is also used for estimation.

In the determination of the nearest neighbors, the distance between the selected
sample and the samples in the training set is measured. The distances between the
samples are sorted from least to the maximum; this sequence also shows the order
that is from the closest neighbor (from the selected sample) to the farthest neighbor
[28]. For distance calculation, Manhattan, Euclid, and Minkowski distance measures
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are used. The formulas for these criteria are presented in Eqs. 14.3, 14.4, and 14.5,
respectively:

d (i, j) = ∣
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14.3.2 Decision Tree (C4.5)

The C4.5 algorithm provides obtaining the classification trees of features with
categorical and numerical values. During the creation of the classification trees,
starting (from which feature) of branching is important. Uncovering all possible
tree structures by taking advantage of a training data set and selecting the most
suitable ones among these tree structures causes the repetition of many operations.
For this reason, the classification tree algorithms calculate the various values at the
beginning of the process and proceed to create the tree according to these values.
Entropy can be used for this purpose. Branching of the tree will take place according
to the entropy value.

Assume that the class attribute is divided to k class as {C1, C2, . . . , Ck} according
to the values class attribute will take. Class attribute is the probability distribution
of PT classes for (T) and calculated as shown in Eq. 14.6:

PT =
( |C1|

|T | ,
|C2|
|T | , . . . ,

|Ck|
|T |

)

(14.6)

|Ci| gives the number of elements in the Ci set. For example, p1 = |C1|/|T|
probability. Thus, PT = (p1, p2, . . . , pk). The average amount of information for
T is expressed in entropy using Eq. 14.7 [29]:

H(T ) = H (PT ) = −
k

∑

i=1

pi log2 (pi) (14.7)

14.3.3 Naïve Bayes

Naive Bayesian Classifier is a simple algorithm based on probability, with strong
attribute independence assumption. The Naive Bayesian Classifier performs learn-
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ing through the test data and includes the highest sample into the class. Assume
that C denotes a class. x〈x1, x2, x3, . . . , xm〉 values are the values of the observed
features. c denotes a known class label, and x〈x1, x2, x3, . . . , xm〉 denotes the values
of known and observed features. The Bayes Theorem calculates the probability to
estimate the class according to x test data:

p
(

C = cj | X = x
) = p

(

C = cj

)

p
(

X = x|C = cj

)

p (X = x)
(14.8)

After that, it estimates the class with the highest probability. In this example,
X = x X1 = x1 ˆ X2 = x2 ˆ X3 = x3 ˆ . . . ˆ Xm = xm. p(X = x) is ignored in cases
where it does not show any change between classes, and Eq. 14.8 is as follows:

p
(

C = cj | X = x
) = p

(

C = cj

)

p
(

X = x | C = cj

)

(14.9)

where (C = cj) and p(X = x| C = cj) are predicted from learning data. X1, X2,
X3, . . . , Xm features are conditionally independent from each other. In this case, Eq.
14.9 is as follows:

p
(

C = cj | X = x
) = p

(

C = cj

)
m

∏

i=1

p
(

Xi = xi |C = cj

)

(14.10)

Using the Naive Bayes equation given in Eq. 14.10, it is much easier to
calculate test samples and estimate from the learning data. The Naive Bayes
Classifier can handle both categorical and numeric features. For each discrete
feature, p(C = cj | X = x), which in Eq. 14.10 is modeled with real numbers between
0 and 1. Estimation probabilities are obtained by the frequency of samples in the
training data. In this approach, if xi is not among the training data then zero will be
obtained as a result of p(Xi = xi | C = cj) [30–32].

14.4 Experimental Results and Applications

14.4.1 Data Set and Feature Extraction

The data set has been created with motion sensor (accelerometer and gyroscope)
data simultaneously collected from smartwatch and smartphone. To this end,
Android and Android Wear-based mobile applications that work in sync with each
other have been developed. Among the obtained motion sensor data, the parts of
the fall action have been separated manually and the patterns of the FALL class
have obtained. As a result of examining the data, it has been deemed appropriate
to use a window interval of 0.7 s for FALL patterns. As in the previous studies [6,
15] carried out with smartwatches and smartphones, smart devices were set up to
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collect 50 sensor data in a second and patterns were generated with 0.7 × 50 = 35
sample data. Data samples of falls for smartwatches and smartphones are shown in
Fig. 14.9 (accelerometer) and Fig. 14.10 (gyroscope).

104 FALL patterns have been obtained for smartwatch, and 115 FALL patterns
have been obtained for smartphone. Classes other than the fall class are completed
with the data (walking, descending a ladder, ascending a ladder, using stationary,
and using an elevator) used in the study [15] for smartphone, and data (brushing
teeth, writing, writing board, using keyboard, stationary, vacuuming, and walking
activities) used in the study [6] for smartwatch. However, these classes have
been evaluated as NOT_FALL. In other words, incorrect classifications between
NOT_FALL classes have not affected FALL classification. Features of the patterns
have been created by calculating the max, min, standard deviation, and mean values
of the data obtained from the triaxial accelerometer and gyroscope at 0.7 s. The
extracted features are presented in Table 14.1.

14.4.2 Classification

Classification of data sets created for smartwatch and smartphone has been carried
out with machine learning methods. At this stage, the kNN, Naive Bayes, and C4.5
algorithms have been used and their performances have been compared. In the
developed fall detection mobile application, the most successful method has been
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Fig. 14.9 The fall data obtained from accelerometer sensor
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Fig. 14.10 The fall data obtained from the gyroscope sensor

Table 14.1 Feature list

Feature
number

Sensor Description of features

1, 2, 3 Accelerometer Standard deviation of accelerometer (x, y, and z axes) sensor data
4, 5, 6 Accelerometer Mean of accelerometer (x, y, and z axes) sensor data
7, 8, 9,
10, 11, 12

Accelerometer Maximum and minimum values of accelerometer (x, y, and z
axes) sensor data

13, 14, 15 Gyroscope Standard deviation of gyroscope (x, y, and z axes) sensor data
16, 17, 18 Gyroscope Mean of gyroscope (x, y, and z axes) sensor data
19, 20,
21, 22,
23, 24

Gyroscope Maximum and minimum values of gyroscope (x, y, and z axes)
sensor data

chosen. Numerical results of the experiments (classification accuracy, Root Mean
Square Error (RMSE), area under Curve (AUC), and F-measure) are given in Table
14.2. Tests have been conducted using the ten-fold cross validation method which
is a reliable and frequently preferred data selection method.

When Table 14.2 is examined, it is seen that classification has been carried out
with an accuracy of over 97% in all of the tests performed with the smartwatch.
In accordance with the accuracy rates, the lowest quadratic error is 0.0523, AUC
0.997, and 0.986 is the highest F-measure obtained with the kNN method. In the
tests performed with the smartwatch, the most successful result has been obtained
from the kNN method as in the smartphone. With this method, 0.1172 RMSE, 0.989
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Table 14.2 The result
obtained with smartwatch and
smartphone

Method CA RMSE AUC F-Measure

Smartwatch

Naive Bayes 97.6 0.0752 0.997 0.976
kNN (k = 5) 98.55 0.0523 0.997 0.986
C4.5 98.44 0.0594 0.996 0.984
Smartphone

Naive Bayes 91.74 0.164 0.982 0.915
kNN (k = 5) 94.78 0.1172 0.989 0.948
C4.5 91.3 0.1628 0.951 0.913

Table 14.3 Confusion
matrices obtained from the
kNN method

Smartphone
Classified as FALL (%) NOT_FALL (%)
FALL 93.9 6.1
NOT_FALL 0 100
Smartwatch
Classified as FALL NOT_FALL
FALL 97.1 2.9
NOT_FALL 0 100

AUC, and 0.948 F-Measure values have been obtained. In the developed mobile
applications, the kNN method has been used in the direction of the experiments
performed. The confusion matrix obtained with the kNN method is presented in
Table 14.3.

When the confusion matrices are examined, it is seen that NOT_FALL actions
are classified with 100% accuracy in both devices. FALL action is classified with
approximately 94% by smartphone and approximately 97% with smartwatch.

14.4.3 Mobile Solution for Fall Detection

Within the scope of the study, falls have been determined by using the data together
obtained from smartwatch and smartphone. The data obtained from both devices are
classified within itself, and if both devices decide FALL, then the system decides
that the person falls. ListenerService, whose codes have been shared in Fig. 14.11,
has been used in the communication between the smartphone and smartwatch. The
fall detection algorithm is shown in Fig. 14.13.

In the developed mobile solution, the smartwatch only gathers the motion sensor
data and transmits to the smartphone. In the same time frame, the smartphone
also acquires sensor data. The extraction of the features from the raw data and the
classification of them by the kNN method are performed by smartphone. In order
for the system to operate at the same time, the user sends a “BEGIN” signal to the
phone by pressing the “BEGIN” button (Fig. 14.14a) in the smartwatch interface
and this button becomes “END” button (Fig. 14.14b). The smartphone receiving the
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Fig. 14.11 ListenerService codes

Fig. 14.12 Codes for activating sensors

“BEGIN” signal changes its state from “WAITING” (Fig. 14.20a) to “ACTIVE”
(Fig. 14.20b) and starts collecting the sensor data. The sample code block needed to
collect the sensor data is as shown in Fig. 14.12.

With this process, the watch and the phone start collecting sensor data at the
same time, and patterns are generated every 0.7 sec. These patterns are classified
by the kNN method and are added to circular queue structures separately for the
smartphone and smartwatch (Fig. 14.15). These queue structures are set to consist
of three elements. This method has been applied with the purpose of preventing the
possible error caused by the time elapsed between the communication of smartwatch
and smartphone.

If FALL action is found in both of the queues when both of the circular queues
reach at three elements, the system decides that the FALL action is performed and
the smartphone sends a “FALL” signal to the smartwatch. The system that decides
the FALL action gives the user 3 s to cancel this decision. The “END” button
on the smartwatch turns into the “CANCEL” button (Fig. 14.14c), and the screen
background turns into red as an alert and the smartwatch vibrates. After 3 s, if the
user does not cancel this decision, the final fall decision is made and the “CANCEL”
button turns into the “FALL” button (Fig. 14.14d). Then, the “FALL” signal is sent
to the smartphone. A 3-sec waiting period for canceling the detected fall is provided
by the codes presented in Fig. 14.16.

After the smartphone receives the “FALL” signal, the system stops (Fig. 14.20c)
and the location of the fall is sent to the predefined phone number via SMS (Fig.
14.20d). The use of the SMS library is as shown in Fig. 14.17:
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Fig. 14.13 Fall detection algorithm

Fig. 14.14 Smartwatch mobile application screenshots

For location detection, sending SMS, and using the heart rate sensor on devices
with Android operating system, the lines in Fig. 14.18 should be added to the
AndroidManifest.xml file.
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Fig. 14.15 Circular queue structure

Fig. 14.16 Codes for cancellable waiting process

Fig. 14.17 Use of SMS library

Fig. 14.18 Permission list for using sending SMS, accessing GPS, and heart rate sensor

Fig. 14.19 Codes for location detection with GPS

The code lines required for location detection with GPS are shown in Fig. 14.19.
At the time when the falls are detected, the smartwatch can also check the

user’s pulse. With a specified threshold point, it is possible to detect situations that
may be dangerous. Thus, if an individual is an elderly one, it is possible for the
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Fig. 14.20 Smartphone mobile application screenshots

Fig. 14.21 Warning SMS at
high heart rate

elderly person’s relative to take precaution by being informed (Fig. 14.21) when the
followed heart rate signals show an active movement in a harmful level (for instance,
running).

In the study, heart rate is determined by the smartwatch, and when the upper limit
is exceeded, information is sent by SMS.

14.5 Conclusion

In this study, a new architecture that uses smartwatch and smartphone together has
been developed to perform the fall detection more accurately. The features have
been extracted from the data obtained from both the smartwatch and smartphone
motion sensors. It has been observed that very sharp transitions have occurred in the
motion sensor when the falls are occurred. But these transitions can also occur when
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the user shakes his/her hand hardly or when he/she hits an object on the ground with
his/her foot. Thanks to the developed system, it is required to detect the fall for two
devices at the same time, so that false fall detections are avoided. Classifications
have been carried out by machine learning methods, and over 90% accuracy rate
has been obtained. In addition to this, it is aimed to prevent the unwanted situations
by following the heart rate information of the user.
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