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Abstract
Complementary exponential geometric distribution has many applications in survival 
and reliability analysis. Due to its importance, in this study, we are aiming to estimate the 
parameters of this model based on progressive type-II censored observations. To do this, 
we applied the stochastic expectation maximization method and Newton–Raphson tech-
niques for obtaining the maximum likelihood estimates. We also considered the estimation 
based on Bayesian method using several approximate: MCMC samples, Lindely approxi-
mation and Metropolis–Hasting algorithm. In addition, we considered the shrinkage esti-
mators based on Bayesian and maximum likelihood estimators. Then, the HPD intervals 
for the parameters are constructed based on the posterior samples from the Metropolis–
Hasting algorithm. In the sequel, we obtained the performance of different estimators in 
terms of biases, estimated risks and Pitman closeness via Monte Carlo simulation study. 
This paper will be ended up with a real data set example for illustration of our purpose.

Keywords Bayesian analysis · Complementary exponential geometric (CEG) 
distribution · Progressive type-II censoring · Maximum likelihood estimators · SEM 
algorithm · Shrinkage estimator
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1 Introduction

Complementary risk (CR) problems arise naturally in a number of context, especially 
in problem of survival analysis, actuarial science, demography and industrial reliability 
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[6]. In the classical complementary risk scenarios, the event of interest is related to 
causes which are not completely observed. Therefore, the lifetime of the event of 
interest is modeled as function of the available information, which is only the maximum 
ordered lifetime value among all causes. In the presence of CR in survival analysis, 
the risks are latent in the sense that there is no information about which factor was 
responsible for component failure, we observe only the maximum lifetime value among 
all risks. For example, when studying death on dialysis, receiving a kidney transplant 
is an event that competes with the event of interest such as heart failure, pulmonary 
embolism and stroke. In reliability, it observed only the maximum component lifetime 
of a parallel system, that is, the observable quantities for each component are the 
maximum lifetime value to failure among all risks and the cause of failure. For instance, 
in industrial applications, the failure of a device can be caused by several competing 
causes such as the failure of a component, contamination from dirt, an assembly error, 
harsh working environments, among others. For more literature on complementary risk 
problems, we refer the reader to Cox and Oakes [10], Crowder et al. [9], Goetghebeur 
and Ryan [14], Reiser et al. [34], Lawless [22] and Lu and Tsiatis [27, 28].

The complementary exponential geometric (CEG) model is derived as follows. 
Let M be a random variable denoting the number of failure causes, m = 1, 2,… , and 
considering M with geometrical distribution of probability given by

Let us consider xi, i = 1, 2,… , realizations of random variable denoting the failure 
times, i.e., the time to event due to the i th complementary risk, with Xi has an exponen-
tial distribution with probability index � , given by

In the latent complementary risk scenario, the number of causes M and the lifetime 
xi associated with a particular cause are not observable (latent variables), and only the 
maximum lifetime X among all causes is usually observed. So, it is only observed that 
the random variable is given by

The CEG distribution, proposed recently by Louzada et al. [26] is useful model for 
modeling lifetime data. This distribution, with increasing failure rate, is complementary 
to the exponential geometric model given by Adamidis and Loukas [1]. Louzada et al. 
[26] showed that the probability distribution function of the two-parameter CEG ran-
dom variables X is given by

where x > 0, 𝜆 > 0 and 0 < 𝜃 < 1 . Here � and � are the scale and shape parameters, 
respectively. It is denoted as X ∼ CEG(�, �) . The cumulative distribution function 
(CDF) and survival function of the CEG(�, �) are given by

P(M = m) = 𝜃(1 − 𝜃)m−1, 0 < 𝜃 < 1, M = 1, 2,… .

f
(
xi;�

)
= � exp

{
−�xi

}
.

X = max
{
Xi, 1 ≤ i ≤ M

}
.

(1.1)f (x;�, �) =
��e−�x[

e−�x(1 − �) + �
]2 ,

(1.2)F(x;�, �) = 1 −
e−�x[

e−�x(1 − �) + �
] ,
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respectively.
Where the lifetime associated with a particular risk is not observable, and it 

observed only the maximum lifetime value among all risks, then this distribution is 
used in latent complementary risks scenarios. Louzada et al. [26] discussed many 
properties of this model. But, they did not study about the estimation of the param-
eters based on censored data and prediction of future-order statistics. So, in this 
paper, we are aiming to cover these.

The rest of the paper is as follows: In Sect. 2, we discuss the maximum likelihood 
estimators of the parameters based on an expectation maximization (EM) and sto-
chastic EM (SEM) algorithm. Section 3 deals with Bayes and shrinkage Bayes esti-
mations assuming the Gamma and Beta priors. Prediction intervals for the survival 
time of future observation are also given in this section. Simulation studies as well 
as an illustrative example are the content of Sect. 4, and we gave our conclusion and 
the results in Sect. 5.

2  Maximum Likelihood Estimation

In this section, we determined the maximum likelihood estimates (MLEs) of the 
parameters of CEG distribution based on progressive type-II censored samples.

Suppose that n independent units are put on a test and that the lifetime distri-
bution of each unit is given by f

(
xj;�, �

)
 . Now consider the problem, the ordered 

m failures are observed under the progressively type-II censoring scheme plan 
R =

(
R1,… ,Rm

)
 , where each Rj ≥ 0 , 

∑m

j=1
Rj + m = n . If the ordered m failures are 

denoted by X1∶m∶n < X2∶m∶n < … < Xm∶m∶n , then the likelihood function based on 
the observed sample X =

(
X1∶m∶n,X2∶m∶n,… ,Xm∶m∶n

)
 is given by

where c = n
�
n − 1 − R1

��
n − 2 − R1 − R2

�
…

�
n −

∑m−1

j=1
Rj − m + 1

�
 . For simplic-

ity, we denoted xj∶m∶n by xj , j = 1,… ,m . Then, from Eqs. (1.1), (1.2) and (2.1), we 
can write the log-likelihood function of � and � based on progressive type-II cen-
sored observed sample x as:

(1.3)S(x;�, �) =
e−�x[

e−�x(1 − �) + �
] ,

(2.1)L(x;�, �) = c

m∏
j=1

f
(
xj;�, �

)[
1 − F

(
xj;�, �

)]Rj ,

(2.2)

l(x;�, �) ∝ m ln (�) + m ln (�) − �

m∑
j=1

xj

− 2

m∑
j=1

ln
[
e−�xj (1 − �) + �

]
+

m∑
j=1

Rj ln

[
e−�xj

e−�xj(1 − �) + �

]
.
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MLEs of the parameters � and � can be obtained by solving two nonlinear equations 
simultaneously. In most cases, the estimators do not admit explicit. They have to be 
obtained by solving a two-dimensional optimization problem. It is observed that 
the standard Newton–Raphson (NR) algorithm has some problems such as does not 
converge in certain cases, a biased procedure, very sensitive to the initial values and 
also if the missing data are large then it is not convergent [31]. Little and Rubin [25] 
demonstrated that the estimation and maximization (EM) algorithm though converges 
slowly but is reasonably more reliable compared to the Newton–Raphson method, 
particularly when the missing data are relatively large. Here, we suggest using the EM 
algorithm to compute the desired MLEs.

2.1  EM and SEM Algorithm

The EM algorithm, originally proposed by Dempster et  al. [12], is a very power-
ful tool in handling the incomplete data problem. The EM algorithm has two steps, 
E-step and M-step. For the E-step, one needs to compute the pseudo-log-likelihood 
function. It can be emerged from �(w;�, �) by substituting any function of zjk say g

(
zjk
)
 

with E
[
g
(
zjk
)|zjk > xj

]
 . And in the M-step, E(log �(w;�, �)) is maximized by taking 

the derivatives with respect to the parameters. McLachlan and Krishnan [30] gave a 
detailed discussion on EM algorithm and its applications.

We treat this problem as a missing value problem similarly as in Ng et al. [31]. The 
progressive type-II censoring can be viewed as an incomplete data set, and therefore, 
an EM algorithm is a good alternative to the NR method for numerically finding the 
MLEs. First, let us consider the observed and the censored data by 
X =

(
X1∶m∶n,… ,Xm∶m∶n

)
 and Z =

(
Z1,… , Zm

)
 , respectively, where each Zj is 1 × Rj 

vector with Zj =
(
Zj1,… , ZjRj

)
 for j = 1,… ,m, and they are not observable. The cen-

sored data vector Z can be thought of as missing data. The combination of W = (X,Z) 
forms the complete data set. The log-likelihood (LL) function based on the complete 
data is

The MLEs of the parameters � and � for complete sample w can be obtained by 
deriving the log-likelihood function in Eq. (2.3) with respect to � and � and equating 
the normal equations to 0 as follows:

(2.3)

LL(w;�, �) ∝ n ln � + n ln � − �

m∑
j=1

xj − 2

m∑
j=1

ln
[
e−�xj (1 − �) + �

]

− �

m∑
j=1

Rj∑
k=1

zjk2

m∑
j=1

Rj∑
k=1

ln
[
e−�zjk (1 − �) + �

]
.
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In the E-step, the pseudo-log-likelihood function becomes,

We need the following result in sequel.

Theorem  2.1 Given X1 = x1,… ,Xj = xj , the conditional distribution of Zjk , 
k = 1,… ,Rj , has form

where zj > xj and 0 otherwise.

Proof The proof is straight forward. For details, see Ng et  al. [31]. Using Theo-
rem 2.1, we can write

And,

�LL(w;�, �)

��
=

n

�
−

m∑
j=1

xj + 2

m∑
j=1

xje
−�xj (1 − �)

e−�xj (1 − �) + �
−

m∑
j=1

Rj∑
k=1

zjk + 2

m∑
j=1

Rj∑
k=1

zjke
−�zjk (1 − �)

e−�zjk (1 − �) + �
= 0,

�LL(w;�, �)

��
=

n

�
− 2

m∑
j=1

1 − e−�xj

e−�xj (1 − �) + �
− 2

m∑
j=1

Rj∑
k=1

1 − e−�zjk

e−�zjk (1 − �) + �
= 0.

(2.4)

𝜕LL(w;𝜆, 𝜃)

𝜕𝜆
=

n

𝜆
−

m∑
j=1

xj + 2

m∑
j=1

xje
−𝜆xj (1 − 𝜃)

e−𝜆xj (1 − 𝜃) + 𝜃
−

m∑
j=1

Rj∑
k=1

E[zjk|zjk > xj]

+ 2

m∑
j=1

Rj∑
k=1

E

[
zjke

−𝜆zjk (1 − 𝜃)

e−𝜆zjk (1 − 𝜃) + 𝜃
|zjk > xj

]
= 0,

(2.5)

𝜕LL(w;𝜆, 𝜃)

𝜕𝜃
=

n

𝜃
− 2

m∑
j=1

1 − e−𝜆xj

e−𝜆xj (1 − 𝜃) + 𝜃
− 2

m∑
j=1

Rj∑
k=1

E

[
1 − e−𝜆zjk

e−𝜆zjk (1 − 𝜃) + 𝜃
|zjk > xj

]
= 0.

(2.6)fZ|X
(
zj|X1 = x1,… ,Xj = xj

)
= fZ|X

(
zj|Xj = xj

)
=

f (zj|�, �)
[1 − F(xj|�, �)] ,

(2.7)

E1 = E
[
Zjk|Zjk > xj

]
=

𝜆𝜃

1 − F(xj|𝜆, 𝜃) × ∫
∞

xj

zjke
−𝜆zj

[
e−𝜆zj(1 − 𝜃) + 𝜃

]−2
dzj.

E2 = E

[
zjke

−𝜆zjk (1 − 𝜃)

e−𝜆zjk (1 − 𝜃) + 𝜃
|Zjk > xj

]
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And,

Thus, in the M-step of the (k + 1) th nonlinear iteration of the EM algorithm, the 
value of �(k+1) is first obtained by solving the following equation:

Once �(k+1) is obtained, then �(k+1) is obtained by solving the equation

(
�(k+1), �(k+1)

)
 is then used as the new value of (�, �) in the subsequent iteration. Now 

the desired maximum likelihood estimates of � and � can be obtained using an itera-
tive procedure which continues until ||𝜆(k+1) − 𝜆(k)|| + ||𝜃(k+1) − 𝜃(k)|| < 𝜀 , for some k , 
and a prespecified small value of �.

A typical EM algorithm iteratively applies two steps; it is often having a simple 
closed form. However, in particular with high-dimensional data or increasing 
complexity for censored and lifetime models, one of the biggest disadvantages of EM 
algorithm is that it is only a local optimization procedure and can easily get stuck in 
a saddle point [40]. A possible solution to overcome the computational inefficiencies 
is to invoke stochastic EM algorithm suggested by Celeux and Diebolt [7], Nielsen 
[32] and Arabi Belaghi et al. [4]. It can be seen that the above EM expressions do not 
turn out to have closed form and therefore one needs to compute these expressions 
numerically. So, we used SEM algorithm to obtain maximum likelihood estimators.

The SEM algorithm is a two-step approach: the stochastic imputation step 
(S-step) and the maximization step (M-step). The main idea of the SEM algorithms 
is to replace the E-step by a stochastic step where the missing data Z are imputed 
with a single draw from the distribution of the missing data conditional on the 

(2.8)E2 =
��

1 − F(xj|�, �) × ∫
∞

xj

zjke
−�zjk (1 − �)[

e−�zjk (1 − �) + �
] e−�zj[

e−�zj(1 − �) + �
]2 dzj.

(2.9)

E3 = E

[
1 − e−𝜆zjk

e−𝜆zjk (1 − 𝜃) + 𝜃
|Zjk > xj

]
=

𝜆𝜃

1 − F(xj|𝜆, 𝜃) × ∫
∞

xj

(
1 − e−𝜆zjk

)
[
e−𝜆zjk (1 − 𝜃) + 𝜃

]

×
e−𝜆zj[

e−𝜆zj(1 − 𝜃) + 𝜃
]2 dzj.

�LL(w;�, �)

��
=

n

�(k+1)
−

m∑
j=1

xj + 2

m∑
j=1

xje
−�(k+1)xj

(
1 − �(k)

)

e−�
(k+1)xj

(
1 − �(k)

)
+ �(k)

−

m∑
j=1

RjE1

(
xj;�

(k), �(k)
)
+ 2

m∑
j=1

RjE2

(
xj;�

(k), �(k)
)
= 0.

�LL(w;�, �)

��
=

n

�(k+1)
− 2

m∑
j=1

1 − e−�
(k+1)xj

e−�
(k+1)xj

(
1 − �(k+1)

)
+ �(k+1)

− 2

m∑
j=1

RjE3

(
xj;�

(k+1), �(k)
)
= 0,
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observed X. The Z is then substituted to (2.3) to form the pseudo �(w;�, �) function, 
which is the optimized in the M-step to obtain 

(
�k+1, �k+1

)
 for the next cycle. These 

two steps are repeated iteratively until a stationary distribution is reached for each 
parameter. The mean of this stationary distribution is considered as an estimator for 
the parameters. More formally, given the parameter estimate 

(
�k, �k

)
 at the kth SEM 

cycle, (k + 1)st cycle of the SEM algorithm evolves as follows:
S-Step Given the current 

(
�k, �k

)
 , simulate 

(
Rj

)
 independent values from the con-

ditional distribution fZ|X
(
xj∶m∶n;�, �

)
 , respectively, for j = 1,… ,m to form a realiza-

tion of Z.

M-Step Maximize the pseudo �(w;�, �) function given (X, Z) to obtain (
�k+1, �k+1

)
. □

2.2  Fisher Information Matrix

In this section, we present the observed Fisher information matrix obtained using the 
missing value principle of Louis [29]. The observed Fisher information matrix can be 
used to construct the asymptotic confidence intervals. The idea of missing information 
principle is as follows:

Let us use the following notation (regardless of denoting by bold notation): 
� = (�, �) , X : the observed data, W : the complete data, IW (�) : the complete 
information, IX(�) : the observed information and IW|X(�) : the missing information. 
Then, they can be expressed as follows:

The complete information IW (�) is given by

The Fisher information matrix of the censored observations can be written as

fZ|X
(
xj∶m∶n;�, �

)
=

f
(
zjk;�, �

)

1 − F
(
xj∶m∶n;�, �

) or fZ|X
(
xj∶m∶n;�, �

)
=

F
(
zjk;�, �

)
− F

(
xj∶m∶n;�, �

)

1 − F
(
xj∶m∶n;�, �

)

(2.10)Observed information = Complete information −Missing information.

(2.11)IX(�) = IW (�) − IW|X(�).

IW (�) = −E

[
�2�(W;�)

��2

]
.

I
(j)

W|X(�) = −EZj|Xj

[
�2 ln fZj(zj|Xj, �)

��2

]
,

IW|X(�) =
m∑
j=1

RjI
(j)

W|X(�).
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So we obtain the observed information as

And naturally, the asymptotic variance covariance matrix of �̂� can be obtained by 
inverting IX(�̂�) . The elements of matrices for IW (�) and IW|X(�) are denoted by aij(�, �) 
and bij(�, �).They are as follows:

Now we provide IW|X(�) . Since

In which,

Note that, we use the plug-in method of MLEs of � and � in finding the above val-
ues. Consequently the variance–covariance matrix of parameter � can be obtained by

Observe that we still need to obtain the integrations which may be cumbersome task. 
Next, we use the SEM algorithm to compute observed information matrix. We first 
generate the censored observations zij using Monte Carlo simulation from the condi-
tional density as discussed in before. Subsequently the asymptotic variance–covariance 
matrix of the MLEs of the parameters can be obtained. Therefore, an approximate 
(1 − �)100% confidence interval for � and � is obtained as �̂� ± z𝛼∕2

√
V̂
(
�̂�
)
 and 

IX(�) = IW (�) − IW|X(�).

a11 =
n

�2
+ 2n��2(1 − �)∫

∞

0

x2e−2�x[
e−�x(1 − �) + �

]4 dx.

a22 =
n

�2
− 2n�� ∫

∞

0

e−�x
[
1 − e−�x

]2
[
e−�x(1 − �) + �

]4 dx.

a12 = a21 = 2n�� ∫
∞

0

xe−2�x[
e−�x(1 − �) + �

]4 dx.

IW|X(�) =
m∑
j=1

Rj

[
b11

(
xj;�, �

)
b12

(
xj;�, �

)
b21

(
xj;�, �

)
b22

(
xj;�, �

)
]
.

b11
(
xj;�, �

)
=

1

�2
−

x2
j
e−�xj�(1 − �)

[
e−�xj (1 − �) + �

]2 + 2��2(1 − �)∫
∞

0

z2
j
e−2�zj

[
e−�zj(1 − �) + �

]4 dzj.

b22
(
xj;�, �

)
=

1

�2
+

[
1 − e−�xj

]2
[
e−�xj (1 − �) + �

]2 − 2�� ∫
∞

0

e−�zj
[
1 − e−�zj

]2
[
e−�zj(1 − �) + �

]4 dzj.

b12
(
xj;�, �

)
= b21

(
xj;�, �

)
= −

xje
−�xj

[
e−�xj (1 − �) + �

]2 + 2�� ∫
∞

0

zje
−2�zj

[
e−�zj(1 − �) + �

]4 dzj.

(2.12)I−1
X
(�) =

[
IW (�) − IW|X(�)

]−1
.
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�̂� ± z𝛼∕2

√
V̂
(
�̂�
)
 , where z�∕2

 is the 
(
�∕2

)
100 th percentile of standard normal 

distribution.

3  Bayes Estimates

In this section, we consider the Bayes estimates of the unknown parameters. For 
a Bayesian estimation of the parameters, one needs prior distributions for these 
parameters. These prior distributions depend upon the knowledge about the param-
eters and the experience of similar phenomena. When both the parameters of the 
model are unknown, a joint conjugate prior for the parameters does not exist. In 
view of the above, we propose to use independent gamma and beta priors for � and 
� , respectively. So, we assume the following independent priors:

Here, all the hyper-parameters a1, b1, a2, b2 are assumed to be known and non-
negative. It can be observed that the non-informative priors of the parameters are 
the special case of the proposed prior distribution. Based on the observed sample {
x1∶m∶n,… , xm∶m∶n

}
 , from the progressive type-II censoring scheme, the likelihood 

function becomes:

The joint posterior density functions of � and � can be written as

where

One may use the importance sampling method to obtain the MCMC samples and 
then compute the Bayes estimates. The simulation algorithm based on importance 
sampling is as follows.

(3.1)𝜋1(𝜆) ∝ 𝜆a1−1e−b1𝜆, 𝜆 > 0,

(3.2)𝜋2(𝜃) ∝ 𝜃a2−1(1 − 𝜃)b2−1, 0 < 𝜃 < 1.

(3.3)
l(X;�, �) ∝ �m�me

−�
∑m

j=1
xje

−2
∑m

j=1
ln
�
e
−�xj (1−�)+�

�
e

∑m

j=1
Rj ln

�
e
−�xj

e
−�xj (1−�)+�

�

.

(3.4)

�(�, ��x) ∝ �m+a1−1e
−�

�∑m
j=1 xj+b1

�
�m+a2−1(1 − �)b2−1e

−2
∑m

j=1 ln
�
e
−�xj (1−�)+�

�

× e

∑m
j=1 Rj ln

�
e
−�xj

e
−�xj (1−�)+�

�

= �m+a1−1e
−�

�∑m
j=1 xj+b1+

∑m
j=1 Rjxj

�
�m+a2−1(1 − �)b2−1e

−2
∑m

j=1 ln
�
e
−�xj (1−�)+�

�

× e
−
∑m

j=1 Rj ln
�
e
−�xj (1−�)+�

�

= gamma

�
m + a1, b1 +

m�
j=1

xj +

m�
j=1

Rjxj

�
× Beta

�
m + a2, b2

�
× h(�, �),

h(�, �) = e
−2

∑m

j=1
ln
�
e
−�xj (1−�)+�

�
e
−
∑m

j=1
Rj ln

�
e
−�xj (1−�)+�

�
.
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• Step 1 Generate � from gamma ∼
�
m + a1, b1 +

∑m

j=1
xj +

∑m

j=1
Rjxj

�
.

• Step 2 Generate � from Beta ∼
(
m + a2, b2

)
.

• Step 3 Compute h(�, �) = e
−2

∑m

j=1
ln
�
e
−�xj (1−�)+�

�
e
−
∑m

j=1
Rj ln

�
e
−�xj (1−�)+�

�
.

• Step 4 Do Steps 1 and 3 for N times.

The Bayes estimate of any function of � and � , say g(�, �) , is evaluated as

Therefore, the Bayes estimate of any function of � and � , say g(�, �) , under the 
squared error loss function is:

One of the most commonly used asymmetric loss functions is the LINEX loss 
(LL) function, which is defined by:

The sign of parameter h represents the direction of asymmetry, and its magni-
tude reflects the degree of asymmetry. For h < 0, the underestimation is more seri-
ous than the overestimation, and for h > 0, the overestimation is more serious than 
the underestimation. For h close to zero, the LL function is approximately the SEL 
function. See Parsian and Kirmani [33].

In this case, the Bayes estimate of � is obtained as: 

provided the above exception exists.
Another commonly used asymmetric loss function is the general ENTROPY loss 

(EL) function given by:

For q > 0, a positive error has a more serious effect than a negative error, and for 
q < 0, a negative error has a more serious effect than a positive error. Note that for 
q = −1 , the Bayes estimate coincides with the Bayes estimate under the SEL func-
tion. In this case, the Bayes estimate of � is obtained as:

provided the above exception exists.

E
�
g(�, �)�x� =

∑
g(�, �)h(�, �)∑

h(�, �)
.

L1(�, �) = E
�
g(�, �)�x� =

∑
g
�
�j, �j

�
h
�
�j, �j

�
∑

h
�
�j, �j

� .

L2(�, �) = exp (h(� − �)) − h(� − �) − 1, h ≠ 0.

�̂�L = −
1

h
ln
[
E𝜗

(
e−h𝜗|X)],

L3(�, �) =
(
�

�

)q

− q ln
(
�

�

)
− 1, q ≠ 0.

�̂�E = [E𝜗(𝜗
−q|X)]− 1

q
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3.1  Shrinkage Preliminary Test Estimator

In problems of statistical inference, there may exist some known prior information 
on some (all) of the parameters, which are usually incorporated in the model as a 
constraint, giving rise to restricted models. The estimators resulting from restricted 
(unrestricted) model are known as the restricted (unrestricted) estimators. Mostly 
the validity of a restricted estimator is under suspicion, resulting to make a prelimi-
nary test on the restrictions. Bancroft [5] pioneered the use of the preliminary test 
estimator (PTE) to eliminate such doubt, and further developments appeared in the 
works of Saleh and Sen [37], Saleh and Kibria [36], Kibria [15], Kibria and Saleh 
[16–20] and Arabi Belaghi et al. [2, 3].

Here, we suppose there exists some non-sample prior information with form of 
� = �0 and we are interested in estimating � using such information. So, we can run 
the following simple hypotheses to check the accuracy of this information:

It is demonstrated that constructing shrinkage estimators for � based on fixed 
alternatives H1 ∶ � = �0 + � , for a fixed � , does not offer substantial performance 
change compared to �̂� . In other words, the asymptotic distribution of shrinkage 
estimator coincides with that of �̂� (see Saleh [35] for more details). To overcome this 
problem, we consider local alternatives with form

where � is a fixed number.
Under H0 , 

√
r
�
�̂� − 𝜆

�
 is asymptotically N

(
0, 𝜎2

(
�̂�
))

 and the test statistics can be 
defined as

where �̂� is MLE of � resulted from SEM method and 𝜎2
(
�̂�
)
 is the associated vari-

ance of �̂� that is obtained from the missing information principle. Based on the 
asymptotic distribution of Wr , we reject H0 when Wr > 𝜒2

1
(𝛾) , where � is the type-

one error that prespecified by the researchers and �2
1
(�) is the � the upper quantile of 

chi-square distribution with one degree of freedom.
The asymptotic distribution of Wr converges to a non-central chi-square distribu-

tion with one degree of freedom and non-centrality parameter Δ2∕2 , where

Note that 𝜎2
(
�̂�
)
 is obtained from (2.11). Thus, we define the shrinkage prelimi-

nary test estimator (PTE) of � as

{
H0 ∶ � = �0,

H1 ∶ � ≠ �0.

A(r) ∶ �(r) = �0 + r
−

1

2 �,

Wr =

�√
r
�
�̂� − 𝜆

�

𝜎
�
�̂�
�

�2

,

Δ2 =
𝛿2

𝜎2
(
�̂�
) .
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and

In which � ∈ [0, 1] and �̂�Bayes is the Bayes estimate of � (see Arabi Belaghi 
et  al. [2, 3], for more details about the construction of PTEs). We call the �̂�B.SPT 
as the Bayesian shrinkage preliminary test estimators (BSPTE). The shrinkage PTE 
(SPTE) of � is also defined in a similar fashion as in (3.5), which is not given here. 
Shrinkage and preliminary test estimators are extensively studied by Saleh [35] and 
Saleh et al. [38].

3.2  Lindley Approximation Method

In previous section, we obtained various Bayesian estimates of � and � based on 
progressive type-II censored observations. We notice that these estimates are in 
the form of ratio of two integrals. In practice, by applying Lindley method (see 
Lindley [24]) one can approximate all these Bayesian estimates. For the sake of 
completeness, we briefly discuss the method below and then apply it to evaluate 
corresponding approximate Bayesian estimates. Since the Bayesian estimates are in 
the form of ratio of two integrals, we consider the function I(X) defined as

where u(�, �) is function of � and � only and l(�, �|X) is the log-likelihood (defined 
by Eq. 2.2) and �(�, �) = log�(�, �) . Indeed, by applying the Lindley method, I(X) 
can be rewritten as

where �̂� and �̂� are the MLEs of � and � , respectively. Also, u�� is the second 
derivative of the function u(�, �) with respect to � and û𝜆𝜆 is the second derivative of 
the function u(�, �) with respect to � evaluated at 

(
�̂�, �̂�

)
.Also, �ij = (i, j) th elements 

of the inverse of the matrix 
[
−

�2l(�,�|X)
����

]−1
 are evaluated at 

(
�̂�, �̂�

)
 . Also expressions of 

l�� , l�� , l�� , l��� , l��� and l��� are presented in “Appendix.”
For the squared error loss function LSB , we get that

(3.5)�̂�EM.SPT = 𝜔𝜆0 + (1 − 𝜔)�̂�EMI
(
Wr < 𝜒2

1
(𝛾)

)
,

(3.6)�̂�B.SPT = 𝜔𝜆0 + (1 − 𝜔)�̂�BayesI
(
Wr < 𝜒2

1
(𝛾)

)
.

I(X) =
∫ ∞

0
∫ ∞

0
u(�, �)el(�,�|X)+�(�,�)d�d�

∫ ∞

0
∫ ∞

0
el(�,�|X)+�(�,�)d�d�

,

I(X) = u
(
�̂�, �̂�

)
+

1

2

[(
û𝜆𝜆 + 2û𝜆�̂�𝜆

)
�̂�𝜆𝜆 +

(
û𝜃𝜆 + 2û𝜃�̂�𝜆

)
�̂�𝜃𝜆

+
(
û𝜆𝜃 + 2û𝜆�̂�𝜃

)
�̂�𝜆𝜃 +

(
û𝜃𝜃 + 2û𝜃�̂�𝜃

)
�̂�𝜃𝜃

]

+
1

2

[(
û𝜆�̂�𝜆𝜆 + û𝜃�̂�𝜆𝜃

)(
l̂𝜆𝜆𝜆�̂�𝜆𝜆 + l̂𝜆𝜃𝜆�̂�𝜆𝜃 + l̂𝜃𝜆𝜆�̂�𝜃𝜆 + l̂𝜃𝜃𝜆�̂�𝜃𝜃

)

+
(
û𝜆�̂�𝜃𝜆 + û𝜃�̂�𝜃𝜃

)(
l̂𝜃𝜆𝜆�̂�𝜆𝜆 + l̂𝜆𝜃𝜃�̂�𝜆𝜃 + l̂𝜃𝜆𝜃�̂�𝜃𝜆 + l̂𝜃𝜃𝜃�̂�𝜃𝜃

)]
,
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and the corresponding Bayesian estimate of � is

Next, the Bayesian estimate of � under LSB is obtained as
(Here u(�, �) = �, u� = 1, and u� = u�� = u�� = u�� = u�� = 0)

For the loss function LLB , noticing that in this case we have

and with

the Bayesian estimate of � is obtained as

Similarly, for � we have

Finally, we consider the ENTROPY loss function. Notice that for the parameter � 
and loss function LEB,

Thus, the approximate Bayesian estimate of � in this case is given by

Also, for the parameter � we get that

u(�, �) = �, u� = 1, and u�� = u� = u�� = u�� = u�� = 0,

�̂�SB = E(𝜆|X) = �̂� + 0.5
[
2�̂�𝜆�̂�𝜆𝜆 + 2�̂�𝜃�̂�𝜆𝜃 + �̂�2

𝜆𝜆
l̂𝜆𝜆𝜆 + �̂�𝜆𝜆�̂�𝜃𝜃 l̂𝜃𝜃𝜆 + 2�̂�𝜆𝜃�̂�𝜃𝜆 l̂𝜆𝜃𝜃 + �̂�𝜆𝜃�̂�𝜃𝜃 l̂𝜃𝜃𝜃

]
.

�̂�SB = E(𝜃|X) = �̂� + 0.5
[
2�̂�𝜃�̂�𝜃𝜃 + 2�̂�𝜆�̂�𝜃𝜆 + �̂�2

𝜃𝜃
l̂𝜃𝜃𝜃 + 3�̂�𝜆𝜃�̂�𝜃𝜃 l̂𝜆𝜃𝜃 + �̂�𝜆𝜆�̂�𝜃𝜆 l̂𝜆𝜆𝜆

]
.

u(�, �) = e−h�, u� = −he−h�, u�� = h2e−h�, and u� = u�� = u�� = u�� = 0,

E
(
e−h𝜆|x) = e−h�̂� + 0.5

[
û𝜆𝜆�̂�𝜆𝜆 + û𝜆

(
2�̂�𝜆�̂�𝜆𝜆 + 2�̂�𝜃�̂�𝜆𝜃 + �̂�2

𝜆𝜆
l̂𝜆𝜆𝜆 + �̂�𝜆𝜆�̂�𝜃𝜃 l̂𝜃𝜃𝜆

+ 2�̂�𝜆𝜃�̂�𝜃𝜆 l̂𝜆𝜃𝜃 + �̂�𝜆𝜃�̂�𝜃𝜃 l̂𝜃𝜃𝜃
)]
,

�̂�LB = −
1

h
ln
{
E
(
e−h𝜆|x)}.

u(𝜆, 𝜃) = e−h𝜃 , u𝜃 = −he−h𝜃 , u𝜃𝜃 = h
2e−h𝜃 , and u𝜆 = u𝜆𝜆 = u𝜃𝜆 = u𝜆𝜃 = 0,

E
(
e−h𝜃|x) = e−h�̂� + 0.5

[
û𝜃𝜃�̂�𝜃𝜃 + û𝜃

(
2�̂�𝜃�̂�𝜃𝜃 + 2�̂�𝜆�̂�𝜃𝜆 + �̂�2

𝜃𝜃
l̂𝜃𝜃𝜃 + 3�̂�𝜆𝜃�̂�𝜃𝜃 l̂𝜆𝜃𝜃 + �̂�𝜆𝜆�̂�𝜃𝜆 l̂𝜆𝜆𝜆

)]
,

�̂�LB = −
1

h
ln
{
E
(
e−h𝜃|x)}.

u(𝜆, 𝜃) = 𝜆−w, u𝜆 = −w𝜆−(w+1), u𝜆𝜆 = w(w + 1)𝜆−(w+2),

and u𝜃 = u𝜃𝜃 = u𝜃𝜆 = u𝜆𝜃 = 0,

E(𝜆−w|x) = �̂�−w + 0.5
[
û𝜆𝜆�̂�𝜆𝜆 + û𝜆

(
2�̂�𝜆�̂�𝜆𝜆 + 2�̂�𝜃�̂�𝜆𝜃 + �̂�2

𝜆𝜆
l̂𝜆𝜆𝜆 + �̂�𝜆𝜆�̂�𝜃𝜃 l̂𝜃𝜃𝜆

+2�̂�𝜆𝜃�̂�𝜃𝜆 l̂𝜆𝜃𝜃 + �̂�𝜆𝜃�̂�𝜃𝜃 l̂𝜃𝜃𝜃
)]
.

�̂�EB = {E(𝜆−w|x)}− 1

w .

u(𝜆, 𝜃) = 𝜃−w, u𝜃 = −w𝜃−(w+1), u𝜃𝜃 = w(w + 1)𝜃−(w+2), and u𝜆 = u𝜆𝜆 = u𝜃𝜆 = u𝜆𝜃 = 0,

E(𝜃−w|x) = �̂�−w + 0.5
[
û𝜃𝜃�̂�𝜃𝜃 + û𝜃

(
2�̂�𝜃�̂�𝜃𝜃 + 2�̂�𝜆�̂�𝜃𝜆 + �̂�2

𝜃𝜃
l̂𝜃𝜃𝜃 + 3�̂�𝜆𝜃�̂�𝜃𝜃 l̂𝜆𝜃𝜃 + �̂�𝜆𝜆�̂�𝜃𝜆 l̂𝜆𝜆𝜆

)]
.
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Consequently,

3.3  Metropolis Hasting Algorithm

Metropolis–Hastings (M–H) algorithm is a useful method for generating random sam-
ples from the posterior distribution using a proposal density. Let g(.) be the density 
of the proposal distribution. Since the support of the parameters of our distribution is 
positive, we consider the chi -square distribution as our proposal density for estimating 
the posterior samples from � . We also consider the standard uniform distribution as 
candidate distribution for � . Based on (3.4), the posterior distribution of � and � for the 
given sample x is as follows:

and

where

It is clear that both posterior distributions do not have closed form; therefore, we use 
the Metropolis–Hasting algorithm to obtain our Bayes estimators based on posterior 
samples, suppose the �(�|x) is the posterior distribution of the MH algorithm steps as 
follows:

Given �(t),

1. Generate Yt ∼ g(y)

�̂�EB = {E(𝜃−w|x)}− 1

w .

�(��x) = k−1(x)�m+a1−1e
−�

�∑m

j=1
xj+b1

�
× ∫

1

0

�m+a2−1 × (1 − �)b2−1

exp

�
−2

m�
j=1

ln
�
e−�xj (1 − �) + �

�
+

m�
j=1

Rj ln
�
e−�xj (1 − �) + �

��
d�,

�(��x) = k−1(x)�m+a2−1(1 − �)b2−1 × ∫
1

0

�m+a1−1e
−�

�∑m

j=1
xj+b1

�

× exp

�
−2

m�
j=1

ln
�
e−�xj (1 − �) + �

�
+

m�
j=1

Rj ln
�
e−�xj (1 − �) + �

��
d�,

k(x) = ∫
∞

0 ∫
1

0

�m+a1−1e
−�

�∑m

j=1
xj+b1

�
�m+a2−1(1 − �)b2−1

× exp

�
−2

m�
j=1

ln
�
e−�xj (1 − �) + �

�
+

m�
j=1

Rj ln
�
e−�xj (1 − �) + �

��
d�d�.
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2. Take �(t+1) = Yt with probability p = min
{
1,

�(Yt|x)
�(�(t)|x) .

g(�(t))
g(Yt)

}
 and �(t+1) = �(t) with 

probability 1 − p,

where g(.) is the p.d.f of a chi-square distribution with four degrees of freedom. With a 
similar approach, the M–H samples can be drawn from the posterior distribution of �|x 
with the standard uniform as a proposal distribution. Finally, from the random sample 
of size M drawn from the posterior density, some of the initial samples (burn-in) can 
be discarded, and the remaining samples can be further utilized to compute Bayes esti-
mates. More precisely, the Bayes estimators of any function g(�, �) of parameters can 
be given

Here lB represents the number of burn-in samples. Next, we will use the method of 
Chen and Shao [8] to obtain HPD interval estimates for the unknown parameters of the 
CEG distribution. This method has been extensively used for constructing HPD inter-
vals for the unknown parameters of the distribution of interest. In the literature, samples 
drawn from the posterior density using importance sampling technique are used to con-
struct HPD intervals, see Dey and Dey [13], Kundu and Pradhan [21] and Singh et al. 
[39]. In the present work, we will utilize the samples drawn using the proposed MH 
algorithm to construct the interval estimates [11]. More precisely, let us suppose that 
�(�|x) denotes the posterior distribution function of � . Let us further assume that �(p) be 
the pth quantile of � , that is, �(p) = inf{� ∶ �(�|x) ≥ p} , where 0 < p < 1 . Observe that 
for a given �∗ , a simulation consistent estimator of �(�∗|x) can be obtained as

Here I�≤�∗ is the indicator function. Then the corresponding estimate is obtained as

where �j =
1

M−lB
 and �(j) are the ordered values of �j . Now, for i = lB,… ,M , �(p) can 

be approximated by

ĝMH(𝜆, 𝜃) =
1

M − lB

M∑
i=lB

g
(
𝜆i, 𝜃i

)
.

�(�∗|x) = 1

M − lB

M∑
i=lB

I�≤�∗ .

�̂�(𝜃∗�x) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 𝜃∗ < 𝜃(lB)
M∑
j=lB

𝜔j, if 𝜃(i) < 𝜃∗ < 𝜃(i+1)

1, if 𝜃∗ > 𝜃(M)

�̂�(p) =

⎧⎪⎨⎪⎩

𝜃(lB), if p = 0,

𝜃(i), if
i−1∑
j=lB

𝜔j < p <
i∑

j=lB

𝜔j.
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Now to obtain a 100(1 − p)% HPD credible interval for � , let 

Rj =

(
�̂�

(
j

M

)
, �̂�

(
j+(1−p)M

M

))
 for j = lB,… ,

[
pM

]
, here [a] denotes the largest integer less 

than or equal to a . Then choose Rj∗ among all the R′

j
s such that it has the smallest 

width.

4  Simulation Study and Illustrative Example

In this section, we conduct some simulation study to compare the performance of 
the different methods proposed in the previous sections. For hyper-parameters of 
prior distributions, we set a1 = b1 = 0 and a2 = b2 = 0 . Further, it is supposed that 
h = q = 1 in the LINEX and ENTROPY loss functions. In this importance sampling 
method, we generate 1000 MCMC samples and calculated the related Bayes estima-
tors while in M–H algorithm we generate 10,000 samples and withdraw the first 
5000 and then obtain the related Bayes estimates based on the remaining samples. 
The acceptance rate for M–H algorithm 0.513 with DIC = 50.81586 which are rea-
sonable values. Note that in generating the M–H sample we use the MLE’s of � and 
�
(
𝜆(0), 𝜃(0)

)
=
(
�̂�MLE, �̂�MLE

)
 as the initial values Markov chains.

We considered three different censoring schemes in Table 1. We run the whole 
process for 10,000 times, and the results are provided in Tables 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21 for different values of the parame-
ters. Note that, for the shrinkage estimators we used the relative efficiencies formula 
as follows.

where we use 1

n

∑n

j=1

�
�̂�
j

SEL
− 𝜃

�2

 , 1

n

∑n

j=1
[e

h
�
�̂�
j

Linex
−𝜃

�
− h

�
�̂�
j

Linex
− 𝜃

�
− 1] , 

1

n

∑n

j=1
[

�
�̂�
j

Entropy

𝜃

�q

− q ln

�
�̂�i
Entropy

𝜃

�
− 1] , for the estimated risk values of the Bayes 

estimators based on SEL, LINEX and ENTROPY loss functions. We generate the 
censored data from CEG distribution with parameters � = 2, � = 0.5 and 
� = 5, � = 0.6 . The results for the NR and EM methods are shown in Tables 2 and 
3. Further the estimated risk and biases for the Bayes estimators for different loss 
functions are provided in Tables 5 and 6, next in Tables 10, 11, 12 and 13 the simu-
lations results are given for the shrinkage estimators. Note, in Table 10, we assume 
the prior guesses to �0 = 2.2 , �0 = 0.6 and in Table 11, we take �0 = 5.2 , �0 = 0.7 . 
Further the simulated Pitman closeness (PC) for comparing the EM and NR meth-
ods is as follows.

We say that �̂�EM competes with �̂�NR if > 0.5.

RE
(
�̂�SPT
Bayes

, �̂�Bayes

)
=

MSE
(
�̂�Bayes

)

MSE
(
�̂�SPT
Bayes

) ,

PC = P
{|||�̂�EM − 𝜗

||| <
|||�̂�NR − 𝜗

|||
}
=

1

1000
#
{|||�̂�EMi − 𝜗

||| <
|||�̂�NRi − 𝜗

|||
}
.



425

1 3

Estimation in the Complementary Exponential Geometric…

Table 1  Censoring scheme 
R =

(
r1,… , r

m

) n m Scheme Scheme

30 20 1
(
10, 0∗19

)
2

(
1, 2, 1, 3, 3, 0∗15

)
3

(
0, 1, 0∗4, 2, 0∗3, 2, 0∗2, 3, 0∗2, 1, 0∗2, 1

)
50 35 4

(
15, 0∗34

)
5

(
0∗34, 15

)
6

(
0, 1, 0∗2, 2, 0∗4, 2, 0∗2, 1, 0∗2, 2, 0∗4, 1,

0∗2, 1, 0∗4, 1, 0∗2, 2, 0, 1, 0
)

100 80 7
(
20, 0∗79

)
8

(
0∗79, 20

)
9

(
0∗19, 5, 0∗19, 5, 0∗19, 5, 0∗19, 5

)

Table 2  Bias and MSE (in parentheses) of the estimators with � = 2 and � = 0.5

Scheme NR EM

� � � �

1 0.2585 (0.7809) 0.0756 (0.2235) 0.0808 (0.2586) 0.0240 (0.0485)
2 0.2788 (0.8303) 0.0628 (0.1832) 0.1524 (0.3363) 0.0070 (0.0361)
3 0.3274 (1.0734) 0.0959 (0.3112) 0.2015 (0.4889) 0.0103 (0.0578)
4 0.1525 (0.3890) 0.0440 (0.1116) 0.0346 (0.1085) 0.0070 (0.0113)
5 0.2295 (0.8090) 0.1506 (0.7161) 0.0722 (0.1544) 0.0004 (0.0177)
6 0.5301 (0.8351) − 0.0524 (0.0774) 0.2314 (0.2102) 0.0039 (0.0150)
7 0.0719 (0.1433) 0.0145 (0.0383) 0.0079 (0.0412) 0.0097 (0.0034)
8 0.0731 (0.2235) 0.0379 (0.0668) 0.0226 (0.0435) 0.0050 (0.0046)
9 0.0658 (0.1835) 0.0278 (0.0480) 0.0120 (0.0458) 0.0069 (0.0047)

Table 3  Bias and MSE (in parentheses) of the estimators with � = 5 and � = 0.6

Scheme NR EM

� � � �

1 0.7160 (5.5910) 0.0905 (0.3306) 0.3280 (2.7502) 0.0287 (0.0837)
2 0.7736 (5.9825) 0.0745 (0.2695) 0.5174 (3.5906) 0.0340 (0.1354)
3 0.9205 (7.9352) 0.1216 (0.5041) 0.7759 (5.7106) 0.0128 (0.1421)
4 0.4220 (2.7578) 0.0525 (0.1635) 0.1653 (1.0516) 0.0171 (0.0367)
5 0.6450 (6.0999) 0.2980 (5.1355) 0.1609 (1.8422) 0.0283 (0.0331)
6 1.4657 (6.2038) − 0.0686 (0.1129) 0.7299 (2.4367) 0.0128 (0.0491)
7 0.1969 (1.0030) 0.0172 (0.0560) 0.0352 (0.3594) 0.0099 (0.0166)
8 0.2059 (1.6423) 0.0498 (0.1079) 0.1640 (0.5431) − 0.0127 (0.0156)
9 0.1860 (1.3184) 0.0343 (0.0730) 0.1150 (0.4875) − 0.0031 (0.0146)
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This simulation results reveal that the SEM is always superior to the NR method 
in terms of estimated biases, MSE’s. Further it is seen that SEM estimated is Pitman 
closer to the parameters than to the Bayes NR estimates. We also observe that the 
shrinkage Bayes estimated have smaller estimated risk than the usual Bayes esti-
mated based on MCMC method. It is shown that the relative efficacies of the pro-
posed shrinkage estimated are higher than 1 which is indicated to use of the shrink-
ages estimators in the case of having suspected non-sample prior information. We 
also observe that the Bayes estimators based on M–H algorithm, mostly, perform 
those based on Lindely approximation and MCMC method.

4.1  Real Data Analysis

For illustrative purposes, here real data are analyzed using the proposed methods. 
A data set on the endurance of deep groove ball bearings analyzed by Lieblein and 
Zelen [23] consists of the number of million revolutions before failure for each of 23 
ball bearings used in a life test. The data set is as follows.

Louzada et al. [26] indicated that the CEG can be fitted to this data set quite well. 
For our purpose, we generate three different schemes of progressive type-II censored 
sample as follows.

Scheme 1: R = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12)
Scheme 2: R = (12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Scheme 3: R = (0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0)

The estimated values of the parameters are given in the following Tables 22, 
23, 24 and 25 while the approximate and Bayesian confidence intervals are pre-
sented in Table 26.

17.88 42.12 51.96 68.64 93.12 127.96

28.92 45.60 54.12 68.64 98.64 128.01

33.00 48.48 55.56 68.88 105.12 173.4

41.52 51.84 67.80 84.12 105.84

Table 4  PC comparison of MLEs based on EM and NR algorithms

� � Scheme 1 Scheme 3 Scheme 4 Scheme 5 Scheme 7 Scheme 9

PC for �̂�EM versus �̂�NR
 2 0.5 0.7550 0.8050 0.7760 0.8090 0.7340 0.7800
 5 0.6 0.7810 0.8180 0.7830 0.8140 0.7820 0.8190

PC for �̂�EM versus �̂�NR
 2 0.5 0.9480 0.9640 0.9640 0.9590 0.9530 0.9650
 5 0.6 0.8780 0.8570 0.8720 0.8610 0.9510 0.9440
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5  Summary and Conclusion

In this paper, we proposed different estimators for the parameters of the comple-
mentary exponential distribution. We obtained maximum likelihood estimators 
based on N–R and stochastic expectation maximization method as well. Further 
different sorts of Bayes estimates are obtained under various loss functions. We 

Table 7  PC comparison of MLEs based on EM and Bayes (under SEL function) algorithms

� � Scheme 1 Scheme 3 Scheme 4 Scheme 5 Scheme 7 Scheme 9

PC for �̂�EM versus �̂�Bayes(SEL)
 2 0.5 0.6970 0.6830 0.7810 0.8470 0.9330 0.9400
 5 0.6 0.6800 0.6280 0.7760 0.7850 0.8610 0.8610

PC for �̂�EM versus �̂�Bayes(SEL)

 2 0.5 0.9430 0.9200 0.9920 0.9910 1 0.9980
 5 0.6 0.7460 0.6440 0.9040 0.8990 0.9810 0.9720

Table 8  PC comparison of MLEs based on EM and Bayes (under LINEX loss function) algorithms

� � Scheme 1 Scheme 3 Scheme 4 Scheme 5 Scheme 7 Scheme 9

PC for �̂�EM versus �̂�Bayes(LINEX)
 2 0.5 0.7210 0.6990 0.7990 0.8590 0.9370 0.9430
 5 0.6 0.7460 0.6770 0.8160 0.8110 0.8830 0.8810

PC for �̂�EM versus �̂�Bayes(LINEX)

 2 0.5 0.9420 0.9160 0.9920 0.9900 1 0.9980
 5 0.6 0.7430 0.6350 0.9020 0.8980 0.9810 0.9720

Table 9  PC comparison of MLEs based on EM and Bayes (under ENTROPY loss function) algorithms

� � Scheme 1 Scheme 3 Scheme 4 Scheme 5 Scheme 7 Scheme 9

PC for �̂�EM versus �̂�Bayes(ENTROPY)

 2 0.5 0.7280 0.7050 0.8010 0.8600 0.9370 0.9460
 5 0.6 0.7160 0.6520 0.7980 0.7980 0.8710 0.8690

PC for �̂�EM versus �̂�Bayes(ENTROPY)

 2 0.5 0.9390 0.9130 0.9910 0.9900 1 0.9980
 5 0.6 0.7340 0.6230 0.9000 0.8970 0.9810 0.9720
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also proposed the shrinkage estimators which has higher relative efficiency than the 
usual Bayes estimates. The Bayesian credible intervals are also computed by means 
of MCMC samples. We found that maximum likelihood estimators of the unknown 
parameters of the distribution do not admit closed form, and further the EM algo-
rithm for this purpose still requires optimization technique to solve the involved 
expressions. Therefore, we considered the SEM algorithm to obtain the maximum 
likelihood estimators. In simulation study, we presented a comparison between the 
estimates obtained using SEM algorithm and estimates from Newton–Raphson and 
EM algorithm. We observed that the performance of SEM algorithm is quite sat-
isfactory. For illustration purpose, we also considered a real data set. It should be 
mentioned here that the prediction of the future-order statistics based on the pro-
gressive type-II censored samples is also in progress by the authors and we hope to 
report these results in another communication.

Table 12  Relative efficiencies 
(RE) of Bayesian shrinkage 
estimates with respect to the 
Bayes estimates with � = 2 and 
� = 0.5

Scheme Bayes

SEL LINEX ENTROPY

� � � � � �

1 1.6264 1.3532 1.6347 1.3684 1.6562 1.3077
2 4.8325 1.7976 4.5944 1.8365 5.3868 1.6679
3 7.5362 2.3604 6.6295 2.4500 9.2535 2.0938
4 1.4088 1.2688 1.4099 1.2800 1.4113 1.2377
5 8.1011 2.5296 6.9654 2.6583 9.6389 2.2165
6 8.7391 2.5188 7.6447 2.6444 10.2391 2.2121
7 1.3324 1.2104 1.3298 1.2194 1.3352 1.1866
8 8.4610 2.6644 7.3519 2.8313 9.9692 2.3003
9 8.6799 2.6626 7.5487 2.8263 10.2241 2.2999

Table 13  Relative efficiencies 
(RE) of Bayesian shrinkage 
estimates with respect to the 
Bayes estimates with � = 5 and 
� = 0.6

Scheme Bayes

SEL LINEX ENTROPY

� � � � � �

1 1.6051 1.3135 1.5611 1.3246 1.6391 1.2785
2 3.9190 1.6580 3.2809 1.6796 4.3681 1.5668
3 5.1491 2.0340 3.8864 2.0789 6.0973 1.8677
4 1.4445 1.2586 1.4240 1.2672 1.4557 1.2333
5 5.2818 2.2326 4.0320 2.3073 6.1579 2.0438
6 5.4492 2.2231 4.2616 2.2921 6.2656 2.0374
7 1.3684 1.2029 1.3468 1.2099 1.3808 1.1859
8 5.4644 2.4049 4.2847 2.5113 6.2432 2.1779
9 5.5136 2.4037 4.3429 2.5038 6.2500 2.1764
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Table 18  Bayesian confidence 
interval for � = 2 and � = 0.5

Scheme Bayesian confidence interval

� �

1 (1.1056, 3.1061) (0.2190, 0.9667)
2 (1.1002, 3.1434) (0.2202, 0.9668)
3 (1.0457, 3.2321) (0.2155, 0.9695)
4 (1.2348, 2.8898) (0.2476, 0.9503)
5 (1.1365, 3.0676) (0.2406, 0.9648)
6 (1.2723, 3.2512) (0.2218, 0.9488)
7 (1.3942, 2.6143) (0.2999, 0.9160)
8 (1.3087, 2.6982) (0.2898, 0.9338)
9 (1.3325, 2.6418) (0.3013, 0.9255)

Table 19  Coverage probability 
(CP) of Bayesian confidence 
interval for � = 2 and � = 0.5

Scheme CP

� �

1 0.9850 0.9940
2 0.9810 0.9950
3 0.9770 0.9960
4 0.9670 0.9840
5 0.9770 0.9960
6 0.9940 0.9970
7 0.9690 0.9770
8 0.9680 0.9860
9 0.9670 0.9690

Table 20  Bayesian confidence 
interval for � = 5 and � = 0.6

Scheme Bayesian confidence interval

� �

1 (2.5058, 6.6231) (0.3212, 0.9862)
2 (2.4742, 6.5575) (0.3330, 0.9868)
3 (2.4009, 6.5836) (0.3473, 0.9884)
4 (2.9290, 6.4527) (0.3541, 0.9835)
5 (2.7378, 6.4696) (0.3729, 0.9883)
6 (3.0009, 7.0518) (0.3393, 0.9829)
7 (3.4215, 6.1888) (0.3930, 0.9688)
8 (3.2137, 6.2185) (0.3930, 0.9796)
9 (3.2965, 6.2159) (0.3984, 0.9755)
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Table 21  Coverage probability 
(CP) of Bayesian confidence 
interval for λ = 5 and � = 0.6

Scheme CP

� �

1 0.9630 1
2 0.9480 0.9990
3 0.9460 0.9990
4 0.9450 1
5 0.9470 1
6 0.9910 0.9980
7 0.9527 0.9776
8 0.9232 0.9875
9 0.9530 0.9780

Table 22  Estimated values of 
λ and �

Scheme NR method SEM method

�̂� �̂� �̂� �̂�

1 0.09778 0.03752 0.04435 0.06966
2 0.06578 0.0185 0.04621 0.06537
3 0.07782 0.0105 0.06646 0.0182

Table 23  Estimated values of 
λ and �

Scheme Bayes estimates (MCMC method)

SEL LINEX ENTROPY

�̂� �̂� �̂� �̂� �̂� �̂�

1 0.0128 0.6612 0.0128 0.64958 0.0121 0.6273
2 0.0143 0.6244 0.0143 0.6140 0.01375 0.6140
3 0.0118 0.6560 0.0118 0.6444 0.01125 0.6223

Table 24  Estimated values of λ and �

Scheme Bayes estimates (Lindley’s method)

SEL LINEX ENTROPY

�̂� �̂� �̂� �̂� �̂� �̂�

1 0.05119 0.05325 0.05240 0.050725 0.052409 0.04766
2 0.0455 0.07634 0.04420 0.06401 0.04419 0.048791
3 0.04022 0.06731 0.04368 0.0600 0.04370 0.05058
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Appendix

Lindley Method
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Table 25  Estimated values of 
λ and �

Scheme Bayes estimates (M–H method)

SEL LINEX ENTROPY

�̂� �̂� �̂� �̂� �̂� �̂�

1 0.0700 0.0337 0.0698 0.0329 0.0630 0.0094
2 0.0293 0.2374 0.0293 0.2241 0.0258 0.1319
3 0.0248 0.2912 0.0247 0.2742 0.0209 0.2742

Table 26  Confidence interval 
for λ and �

Method Scheme Confidence interval

λ �

Bayesian 1 (0.0325, 0.1115) (0.0019, 0.1515)
2 (0.0128, 0.0515) (0.0357, 0.6755)
3 (0.0097, 0.04821) (0.0468, 0.7504)

Asymptotic 1 (− 0.0208, 0.0938) (0.10737, 0.1283)
2 (0.01722, 0.05703) (− 0.07901, 

0.17856)
3 (0.00252, 0.1031) (0.03076, 0.06111)
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