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1. Introduction

In the modern century, almost all computational programs use energy including electrical
transmission line (ETL) with voltage. Such a line is one of the most important properties of energy
transfer concepts. It has been seen that these properties of lines may rotate the behaviors of electrons
in ETL. In this regards, F. Kenmogne et al. [1] have investigated the ETL in compact-like pulse
signals in terms of its stability equilibrium points and weak linear dispersions. Khan et al. [2] have
observed heat dissipation in ETL circuit. They have introduced a new model to symbolize heat
propagation in ETL which results in damages the electrical tools. Dynamic behaviors of the nonlinear
models arising in ETL have been presented by Tian et al. in [3]. They have used the modified
Zakharov-Kuznetsov equation to symbolize physical phenomena. With the help of several analytical
tools, physical dynamical properties of ETL have been obtained. Motcheyo et al have studied on the
Chameleon’s behavior of modulable ETL in [4]. They have also derived a mathematical description of
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ETL, and also, investigated some numerical behaviors of the model. Yemele et al. [5] have modulated
the mathematical structures which are dynamics of signals in the network with ETL by considering
peaked wave propagation and gray compactons. Mostly, such applications have been observed in
communication systems where solitons are used to codify data. They have obtained compact gray
compacton and peakon structures. Kanaya et al. [6] have designed an electrical small planner antenna
with ETL. This is important in matching circuit on the thin patterned circuit board. In this tiny device,
they have utilized the concept between interdigital gap and ETL which is composed of coplanar
waveguide. Kuusela and his team [7] have conducted an experiment on the original Toda lattice and
the dissipative lattice via nonlinear ETL. This is realized in investigating of soliton phenomena in
nonlinear discrete systems. In 1987, R.Uklejewski et al. [8] have analyzed the transmission of
vibrations in a porous vibroisolator with ETL theory. Senel et al. [9] have investigated the correlation
among electricity and economic simulations. They have characterized the porous damping element of
a vibroisolator, and also, they have presented reflection of waves among filtration velocity and fluid
pressure. E. Tala-Tebue et al. [10,11] have presented a nonlinear model defined by
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where α, β,$0, ω0 are real constants with non-zero or complex while v = v(x, y, t) defines the voltage
in lines. δ1 symbolize the space in longitudinal while δ2 is used to explain the space in the transverse
direction. This nonlinear electrical transmission line model (NETLM) explains the wave distributions
on the network lines [10,11]. Therefore, many new mathematical systems have been introduced to the
literature and they have been investigated by various experts [12–28, 33–35].

The contents of this paper are as follows. Section 2 presents the sine-Gordon expansion method
[29–31]. Section 3 presents some new mixed dark-bright optical soliton solutions to the Eq (1.1). The
main conclusions are presented in the last section of the paper.

2. The SGEM

In this section we discuss the general facts of SGEM. Consider the following sine-Gordon equation:

uxx − utt = m2 sin(u), (2.1)

where u = u(x, t) and m is a real constant. Applying the wave transformation as u = U(ξ), ξ = µ(x−ct)
to Eq (2.1), yields the following nonlinear ordinary differential equation (NODE):

U
′′

=
m2

µ2(1 − c2)
sin(U), (2.2)

where µ is the amplitude of the travelling wave and c is the velocity of the travelling wave.
Reconsidering Eq (2.2), we can write its full simplification as:[(U

2

)′]2

=
m2

µ2(1 − c2)
sin2

(U
2

)
+ K, (2.3)

where K is the integration constant.
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Substituting K = 0, w(ξ) = U
2 and a2 = m2

µ2(1−c2) in Eq (2.3), gives:

w
′

= a sin(w). (2.4)

Putting a = 1, we have:
w
′

= sin(w). (2.5)

Equation (2.5) is variables separable equation, we obtain the following two significant equations
from solving it;

sin(w) = sin(w(ξ)) =
2peξ

p2e2ξ + 1

∣∣∣∣∣∣
p=1

= sech(ξ), (2.6)

cos(w) = cos(w(ξ)) =
p2e2ξ − 1
p2e2ξ + 1

∣∣∣∣∣∣
p=1

= tanh(ξ), (2.7)

where p is the integral constant.
For the solution of the following nonlinear partial differential equation;

P(u, ux, ut, u2, . . .) = 0, (2.8)

we consider the wave transformation as u = U(ξ), ξ = µ(x − ct), which converting this equation
following nonlinear ordinary differential equation (NODE)

N(U,U′,U′′, · · · ) = 0.

In this NODE, according to the general properties of SGEM, it may be chosen that the trial solution
form is

U(ξ) =

n∑
i=1

tanhi−1(ξ)
[
Bi sech(ξ) + Ai tanh(ξ)

]
+ A0. (2.9)

Equation (2.9) can be rewritten according to Eqs (2.6) and (2.7) as follows:

U(w) =

n∑
i=1

cosi−1(w)
[
Bi sin(w) + Ai cos(w)

]
+ A0. (2.10)

We determine the value n under the terms of NODE by balance principle which is considered as a
relationship between the highest degree of the nonlinear terms and highest order of nonlinear
differential equation. Letting the coefficients of sini(w) cos j(w) to be all zero, yields a system of
equations. Solving this system by using various computational programs gives the values of Ai, Bi, µ

and c which is being real or complex values. Obtaining the different values of these coefficients giving
exact solutions to the considered model produce new physical important of nonlinear mathematical
models. Finally, substituting the values of Ai, Bi, µ and c in Eq (2.9), we obtain the new travelling
wave solutions to Eq (2.8). The SGEM is an analytical method which is based on two properties of
Sine-Gordon equation (SGE). SGE is very important in explaining the wave propagation of the
mathematical model.
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3. Application of SGEM

In this sub-section, we apply SGEM to the Eq (1.1). With the help of travelling wave transform

v = v(x, y, t) = V(ξ), ξ = k(x + y − ct), (3.1)

Equation (1.1) may be converted the following nonlinear ordinary differential equation
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4
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Using balance principle, yields n = 1. Putting n = 1 into Eq (2.9) produces

V(ξ) = B1 sech(ξ) + A1 tanh(ξ) + A0. (3.3)

and into Eq (2.10) gives

V(w) = B1 sin(w) + A1 cos(w) + A0. (3.4)

and

V
′′

= B1 cos2(w) sin(w) − 2A1 sin2(w) cos(w) − B1 sin3(w). (3.5)

Inserting Eqs (3.4) and Eq (3.5) into Eq (3.2), gives an algebraic equation in trigonometric function
including various form of sini(w) cos j(w). Getting the coefficients of trigonometric terms in the same
power to zero, give a system. Solving this system with aid of symbolic software to obtain the values of
the coefficients involved, we find following coefficients in each case obtained from the set of algebraic
equation systems, and it gives the travelling wave solutions to Eq (1.1).
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produces following new mixed dark-bright optical soliton

v1(x, y, t) =
α

3β
[1 + i sech( f (x, y, t)) + tanh( f (x, y, t))], (3.6)
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Figure 1. The 3D and Contour surfaces of Eq (3.6).

Figure 2. Density graph of Eq (3.6).

Figure 3. The 2D simulation of Eq (3.6).
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Case-2: Choosing these coefficients as A0 =
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we can find other new mixed dark-bright optical soliton
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Figure 4. The 3D and Contour surfaces of Eq (3.7).

Figure 5. The 2D surface of Eq (3.7).

AIMS Mathematics Volume 5, Issue 3, 1881–1892.



1887

Case-3: When A0 = α
3β ,A1 = −α
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Figure 6. The 3D and 2D surfaces of Eq (3.8).

Figure 7. The Contour and density surfaces of Eq (3.8).

AIMS Mathematics Volume 5, Issue 3, 1881–1892.



1888

Case-4: If A0 = α
3β ,A1 = 0,B1 = −
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Figure 8. The 3D and 2D surfaces of Eq (3.9).

Figure 9. The Contour and density surfaces of Eq (3.9).

4. Linear stability analysis

We consider the perturbed solution of the form

v(x, y, t) = a1 + a2V(x, y, t), (4.1)

where the a1 is a steady state of the solution of Eq (1.1). Putting Eq (4.1) into Eq (1.1), we get
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Taking the linearization of Eq (4.2), we get
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Letting that Eq (4.3) has solution of the form

V(x, y, t) = ei(klx+2ky)+tΩ, (4.4)

where ki, i = 1, 2 are the normalized wave number. Inserting Eq.(4.4) into Eq.(4.3), we get
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Solving Eq (4.5) for Ω, the result yields
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the real part is zero, so in this case, it is more difficult to assess the long term behavior in this case, and
it is label as the marginally stable.

From solution 2, if k2
1$

2
0δ

2
1(−12 + k2

1δ
2
1) + k2

2δ
2
2(−12 + k2

2δ
2
2)ω2

0 > 0 and 3 − 6a1α + 9a2
1β > 0 or

k2
1$

2
0δ

2
1(−12 + k2

1δ
2
1) + k2

2δ
2
2(−12 + k2

2δ
2
2)ω2

0 < 0 and 3 − 6a1α + 9a2
1β < 0, then the real is always

positive, in this case the dispersion is unstable. If k2
1$

2
0δ

2
1(−12 + k2

1δ
2
1) + k2

2δ
2
2(−12 + k2

2δ
2
2)ω2

0 < 0 and
3 − 6a1α + 9a2

1β > 0 or k2
1$

2
0δ

2
1(−12 + k2

1δ
2
1) + k2

2δ
2
2(−12 + k2

2δ
2
2)ω2

0 > 0 and 3 − 6a1α + 9a2
1β < 0, then

the real part is zero, so in this case, it is more difficult to assess the long term behavior in this case,
and it is label as the marginally stable.
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Figure 10. 2D of Eq (4.6) and Eq (4.7), respectively, when α = −1, β = 0.1; δ1 = 1, δ2 =

0.1, $ = 1, k1 = 10.

5. Conclusions

In this research, the newly presented sine-Gordon equation method has been developed. The newly
presented technique gives variety of wave solutions when tested on the nonlinear electrical
transmission line model. Dark, mixed dark-bright optical, singular and mixed singular solitons
solutions are successfully constructed. The conditions which guarantee the existence of the valid
solutions to this model are given. The 2-, 3-dimensional, contour and density graphs to this model
have been plotted to observe voltage behaviors on the electrical transmission line. It can be observed
from Figures 1,3,5,6,8 that voltage is travelling wave propagations in the same electrical line. From
Figure 2,4,7,9, it can be inferred that electrical flow is stable and density between suitable places on
this line. In this sense, linear stability analysis has been also investigated the strain conditions for the
stability of Eq (1.1). After considering results obtained in this paper, it is estimated that these results
have one of the most important properties of gravitational potential properties with dark and bright
solutions [32]. The sine-Gordon equation method is an efficient and powerful mathematical approach
which may be used in generating varieties of wave solutions to different kind of nonlinear wave
equations.
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