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Integrative Analysis of Axolotl Gene
Expression Data from Regenerative
and Wound Healing Limb Tissues

Mustafa Sibai'-¢, Cineyd Parlayan?3*, Pelin Tuglu?, Girkan Oztirk?** & Turan Demircan®>*

Axolotl (Ambystoma mexicanum) is a urodele amphibian endowed with remarkable regenerative
capacities manifested in scarless wound healing and restoration of amputated limbs, which makes it

a powerful experimental model for regenerative biology and medicine. Previous studies have utilized
microarrays and RNA-Seq technologies for detecting differentially expressed (DE) genes in different
phases of the axolotl limb regeneration. However, sufficient consistency may be lacking due to
statistical limitations arising from intra-laboratory analyses. This study aims to bridge such gaps by
performing an integrative analysis of publicly available microarray and RNA-Seq data from axolotl

limb samples having comparable study designs using the *merging” method. A total of 351 genes

were found DE in regenerative samples compared to the control in data of both technologies, showing
an adjusted p-value < 0.01 and log fold change magnitudes >1. Downstream analyses illustrated
consistent correlations of the directionality of DE genes within and between data of both technologies,
as well as concordance with the literature on regeneration related biological processes. qRT-PCR
analysis validated the observed expression level differences of five of the top DE genes. Future studies
may benefit from the utilized concept and approach for enhanced statistical power and robust discovery
of biomarkers of regeneration.

Axolotl is a salamander species of amphibians which has recently been established as a promising vertebrate
model system for developmental and regenerative biology due to its unique features of high regenerative capacity,
scarless wound healing, and low cancer incidence. Due to their inability to undergo natural metamorphosis,
axolotls keep on exhibiting embryonic-like cell characteristics, which promotes the finely-tuned regenerative
capacity of their body parts throughout their lifespan’**. Axolotls can faithfully regenerate several organs besides
their limbs>~'!. Studies have suggested that the successive regenerative capacity of axolotls may be driven by
a weak inflammatory response due to their simpler adaptive immune system’'2. In response to experimental
induction of metamorphosis via thyroid hormone administration, diminished regenerative power of axolotls is
observed for some body parts such as appendages'*!%, while such regenerative potential seems to be unobstructed
for other parts of the body"'>.

The process of axolotl limb wound healing and regeneration involves several key genes'®?* and proceeds in
several stages. In response to an amputation, a thin wound epidermis forms around the severed stump within
24hours due to the migration of a collection of epidermal cells to the amputation site?***. Within 48 hours there-
after, the wound area is infiltrated by macrophages where they phagocyte the debris of dead cells and clear the
wound zone from different kinds of pathogens®. In the following couple of days, several key processes such as
activation of progenitor cells as well as dedifferentiation of terminally differentiated cells take place as a result of
secretion of mitogens and growth factors from the epidermis accompanied by innervation*!. These processes lead
to the formation of the blastema cells?*?°. They are encoded with precise positional information, behave as auton-
omous units, and exhibit unidirectional signaling driven by factors originating from wound epidermis®. After
blastema cells reach a definitive size, they flatten out for cartilage to condense, allowing the differentiation of the
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required tissue types, and ultimately constructing a delicately-sized, perfectly regenerated limb that is identical
to the amputated one?*.

The ease of breeding axolotls and the application of molecular genetics on them have made it advantageous
to use axolotl as a model organism?*?’-32. While the genome of the axolotl is a simple diploid with 14 pairs of
chromosomes, its enormous, highly repetitive sequence and long introns*® have been the major hurdles towards
obtaining a full genome assembly due to the inability of acquiring sufficient read-length and the absence of an
improved methodology of genome assembly?*. Consequently, only very recently sequencing and assembly of
axolotl genome was reported***. Therefore, proteomics, transcriptomics (RNA-Seq), and microarrays have been
the primary, indispensable tools for investigating gene networks and pathways of axolot!’s regenerative mecha-
nisms!*?4%-40 Despite these advancements, a strong and popular methodology that has the potential for enhanc-
ing our current knowledge on limb regeneration is missing in the axolotl literature. Integrative data analysis
(IDA) is a key methodology that is applied across many scientific disciplines and aims to derive scientific con-
sensus on a particular research question*~*. Although the concept of IDA has recently been expanded to refer to
experiments aiming to integrate information from several layers of “omics” information (aka multi-omics)*, the
utilized IDA in this study refers to the process of combining information from different platforms across inde-
pendent studies*. The latter IDA concept is commonly used in biomedical sciences to detect DE genes for having
a better gene signature for basic science and clinical applications*>*>4,

Factors such as directly-incomparable experimental techniques between different studies due to poorly artic-
ulated experimental designs, as well as data deposition in public databases with no relevant publications are the
main reasons why many biological research and preclinical medical sciences have not embraced the application
of IDA very quickly*!. Therefore, when such factors are no longer an obstacle, the advantages of implementing
IDA can be realized from the limitations of individual studies. Firstly, the cost of utilizing new technologies often
times leads to the collection of a limited number of replicates*'. Moreover, researchers are faced with challenging
statistical issues arising from such limited replicates, manifested in high false-positive and false-negative obser-
vations*"*. Therefore, IDA is useful to minimize the effects from the issues described before, especially through
promoting statistical power**>48-50, Meta-analysis and merging are two fundamental approaches to perform
IDA*. While the former integrates statistics from different studies at a “late stage’, the latter integrates data before
running the statistical test®’. It has been argued that whenever datasets are selected for answering particularized
questions and are reasonably homogenous, the merging method outperforms meta-analysis for biomarker dis-
covery analyses*»!.

In this study, we aimed to identify candidate genes for possibly characterizing biomarkers of regeneration by
separately implementing integrative analysis on publicly available microarray and RNA-Seq axolotl data using the
merging methodology. We report 351 DE genes (adjusted p-value < 0.01, |logFC| > 1), commonly identified by
microarray and RNA-Seq data analyses in the regenerative phase compared to the control (intact) limb, including
23 DE genes uniquely identified by this study. Overall, this paper identifies a set of commonly found differentially
expressed genes curated from various studies. Our approach would benefit the regeneration community, offering
a closer look at the DE genes that are present in up-to-date gene expression studies.

Methods

Gene-expression data collection. Microarray and RNA-Seq axolotl data were collected from the Gene
Expression Omnibus (GEO) and the European Nucleotide Archive (ENA) databases®*->4. The collected data were
subjected to selective criteria filtering which was set according to PRISMA guidelines®, based on which GEO
series were collected as follows:

(1) GEO series data deposited until September 2018.
(2) Non-redundant series.

(3) Series pertinent to Axolotl tissues.

(4) Series having unduplicated datasets.

The GEO datasets used, and the number of samples that are associated with these datasets, are in Table 1
and Table 2 for the Microarray and RNA-Seq experiments, respectively. Three biological groups were set for our
integrative data analysis; “control” group (intact/amputated/injured limbs and/or flank wounds at 0-hour time-
points), “wound healing” group (amputated/injured limbs and/or flank wounds up to about 50-hours post ampu-
tation/injury), and “regenerative” group (amputated/injured limbs and/or flank wounds of time points ranging
from about 50 hours to 28 days post amputations (dpa)/injuries(dpi)). According to the criteria for microarray
data selection (Fig. 1), a total of 4 GSE datasets (series) were selected; three of which were based on the Affymetrix
Ambystoma platform, and the fourth (GSE36452) based on the Agilent Ambystoma platform. The excluded sam-
ples out of the selected microarray datasets were those of denervated limbs (in GSE37198) which can’t regenerate
and those of limb buds (in GSE36451) that are totally distinct from a fully mature, amputated limb. Overall, a total
of 313 samples were selected (Table 1)186-%8,

As for the criteria for RNA-Seq data selection (Fig. 1), a total of 5 GSE datasets (series) were selected, all of
which were based on slightly different versions of the Illumina Ambystoma mexicanum platform. The excluded
samples out of the selected RNA-Seq datasets were those identified as an outlier (in GSE116777) by the authors®,
those which underwent several rounds of amputation-regeneration (in GSE103087), those which were prepared
for small RNA (sRNA) profiling experiments (in GSE74372), those which were mouse samples (in GSE34394),
and those extracted from multiple positions along the axolotl limb except for those of the upper-arm to be
used in the control group as well as the proximal and distal blastemas to be used in the regenerative groups (in
GSE92429). Overall, a total of 32 samples were selected (Table 2)'%3-%360, Further detailed information about
the selected microarray and RNA-Seq studies are summarized in Supplementary Tables 1-4.
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Group type
Dataset GSE Control ‘Wound Healing Regenerative
Accession Platform (0dpa/dpi) | (upto ~50hpa/hpi) | (>~ 50 hpa/hpi until 28 dpa/dpi) | Total | Ref
GSE116615 GPL25286 [AMB'Y_002a520748F] Affymetrix 3 3 N/A 6 56
Ambystoma mexicanum
GPL15153 Affymetrix Ambystoma mexicanum 18
GSEO7118 | \MBY_002 20k array [CDE: AMBY_002a520748F] | \© 40 148 198
GPL15153 Affymetrix Ambystoma mexicanum 57
GSE37198 | AMBY_002 20k array [CDE: AMBY_002a520748F] | © 8 16 32
GPL15342 Agilent-019788 Ambystoma mexicanum 58
GSE36451 44k_v3. 20080327 5 42 30 77
Total 26 93 194 313
Table 1. The utilized microarray datasets.
Group type Total | Ref
Dataset GSE Control ‘Wound Healing (up | Regenerative (>~ 50
Accession Platform (0 dpa/dpi) to ~ 50 hpa/hpi) hpa/hpi until 28 dpa/dpi)
GSE116777 GPL21473 Illumina HiSeq. 2000 (Ambystoma mexicanum) 2 3 N/A 5 56
GSE103087 | GPL22800 Illumina HiSeq. 2500 (Ambystoma mexicanum) N/A N/A 4 4 5
GSE92429 GPL22800 Illumina HiSeq. 2500 (Ambystoma mexicanum) 3 N/A 4 7 i
GSE74372 GPL14997 Illumina Genome Analyzer ITx (Ambystoma mexicanum) | 1 N/A 3 4 3
GSE34394 GPL14997 lllumina Genome Analyzer IIx (Ambystoma mexicanum) | 1 4 7 12 0
Total 7 7 18 32

Table 2. The utilized RNA-Seq datasets.

Gene-expression data processing.  The full axolotl microarray data processing workflow can be found in
Supplementary Fig. 1. CEL files from the 3 Affymetrix datasets were processed as a single dataset having a total of
236 samples and 20080 probesets. Summarization, quantile-normalization, and log2-transformation were applied
on this dataset by using the RMA algorithm from the Bioconductor’s “affty” package in R (R version: 3.5.1 was
used throughout the whole IDA)®!-°. Samples from the Agilent dataset were collected from GEO as summarized,
quantile-normalized, and log2-transformed, having a total of 77 samples and 43,796 probesets. In the Affymetrix
and Agilent datasets, low-expression probesets were filtered out using Bioconductor’s “Biobase” package in R®%
Probesets with intensities greater than a median intensity of “4” in at least the number of samples in the smallest
group were kept; this left 17,658 and 41,579 probesets for the Affymetrix and Agilent datasets that were con-
sidered for downstream anlaysis. The former probesets were annotated using AMBY_002a520748F Affymetrix
probeset annotation file (~20k probesets) provided by Sal-Site (http://www.ambystoma.org/genome-resources/
20-gene-expression) and the latter probesets were annotated using GPL15342 Agilent annotation file obtained
from GEO (https://www.ncbi.nlm.nih.gov/geo/query/ acc.cgi?acc = GPL15342). The annotation yielded 13,316
Affymetrix and 21,419 Agilent probeset-gene mappings including duplicates, respectively. The “WGCNA” R
package®® was used to remove those duplicates by respectively collapsing the Affymetrix and Agilent data from
probeset-level to gene-level while taking the maximum row mean value of the duplicated probesets to represent
the corresponding gene, yielding a total of 10,442 genes in Affymetrix and 5,083 genes in Agilent. The different
number of genes observed between the two platforms may be ascribed to the probesets design differences and the
subsequent elimination of some probesets through the filtering steps on each platform. The latter two gene lists
were then merged together resulting in 4,322 unique genes common between Affymetrix and Agilent datasets.
Thereafter, the gene lists of both of the Affymetrix and Agilent log2-transformed data were each substituted with
the 4,322 common gene list, followed by transforming each of them to z-scores®” in order to minimize the batch
effect between the two platforms. The resultant two z-scored Affymetrix and Agilent lists were merged together,
yielding a single dataset of 313 samples and 4,322 genes.

The steps of axolotl RNA-Seq data processing workflow can be found in Supplementary Fig. 2. Fastq files
corresponding to samples from the 5 GSE datasets were obtained from the European Nucleotide Archive
(ENA) database. Datasets with paired-end libraries are GSE116777, GSE92429, and GSE103087, whereas both
GSE74372 and GSE34394 are single-end libraries. Recently, an axolotl transcriptome “V5 contig assembly” with
contig length of 19,732 bp was published by Dwaraka ef al.*, and was chosen to be our transcriptome reference.
According to the authors, a total of 31,886 pairwise alignments with more than 98% sequence similarity were
detected between V5 RNA-Seq contigs and the 20,036 V3 contigs which were used to design Affymetrix microar-
ray probesets (AMBY_002a520748F) already having an annotation file. Therefore, since our microarray analysis
pipeline included those microarray probesets along with its annotation file, a new annotation file for the 31,886
aligned contigs of the V5 assembly was generated for our RNA-Seq analysis pipeline by merging the 31,886
V5 contigs-V3 probesets alignment with V3 (AMBY_002a520748F) annotation file, resulting in around 25,000
genes. The transcriptome-wide quantifier “Salmon” tool®® was then used to separately quantify the expression of
the transcripts of each of the 5 datasets by indexing the V5 transcriptome upon which direct quantification of the
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Figure 1. Flow diagram of the IDA design. This diagram illustrates the selection criteria used for separately
performing integrative analysis on microarray and RNA-seq data from axolotl samples. The diagram is prepared
according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

reads was carried out. The R/Bioconductor “tximport” package® was used to import the scaled counts generated
from transcript abundances along with our RNA-Seq annotation file, yielding a count matrix of all samples from
the 5 datasests combined (32 samples) with 10,000 unique genes. Lowly expressed genes were filtered out by
keeping genes having minimum counts for at least some samples using R/Bioconductor’s “edgeR” package’®”!.
The filtered count data was then converted to log2-counts per million (logCPM) and was made ready to be used
for linear modeling for differential expression analysis using the “voom” function from R/Bioconductor’s “limma”
package’>7%. In order to deal with issues pertaining to batch effects, a design matrix consisting of group types (for
contrasts) and GSE study origins accounting for each sample (for batch correction) was included in the “voom”
function. Therefore, when the function is run, the resulting list of logCPM counts is that which has batch effects
(study origins) accounted for.

Differential expression analysis (DEA). Microarray DEA was performed on the z-scored, combined
data (313 samples, 4,322 genes), while RNA-seq DEA was performed on the logCPM (voom) counts (32 sam-
ples, 7,562 genes), respectively. The following analyses were performed using the R/Bioconductor “limma” pack-
age’*7* Wound healing vs. control, regenerative vs. control, and regenerative vs. wound healing comparisons
were conceived for DEA of both microarray and RNA-Seq data. Design matrices were incorporated for each con-
trast to account for group type and study origin (batch factor) of every sample, followed by a fitted linear model
on the expression data for each gene, which were then ranked based on an order of evident differential expression
by applying the empirical Bayes method. False discovery rate (FDR) using the Benjamini-Hochberg (BH) method
was controlled at 0.01, below which all genes were extracted representing lists of DE genes for each comparison
from microarray and RNA-Seq data.

Principal component analyses, clustered heatmaps, and correlations. In order to explore overall
relationship occurring among samples of the z-scored microarray data and that of the “voom” counts RNA-Seq
data, for each comparison, principal component analysis (PCA) was separately implemented on each of them
in base R. PCA was also separately used on DE microarray and DE RNA-Seq data while minimizing the “study
origin” batch effect using “limma” R package’” to illustrate how differentially expressed genes determine the
clustering among samples, for every comparison. Complementary to both PCA approaches, heatmaps with
Sample-to-Sample clustering based on “Manhattan” distance were implemented using “pheatmap” R package”.
The distribution and correlation of the DE genes among the three comparisons within each technology and the
subsequent comparison of correlation of the DE genes between the two technologies were carried out using
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Venn diagram online tool (http://bioinformatics.psb.ugent.be/webtools/Venn/) and scatter plots using the R/
Bioconductor “ggplot2” package’®. Pair-wise correlation testing of logFC of the DE genes for the three compar-
isons within and between the two technologies was performed using the “Spearman” correlation test in base R,
asin”7.

Gene ontology enrichment analysis. Gene Ontology annotations of the top DE genes commonly iden-
tified by microarray and RNA-Seq DE analyses were carried out using Bioconductor’s “clusterProfiler” package
in R¥. The top up-regulated and down-regulated Entrez ID-mapped genes of each comparison were separately
queried against the three GO (BP,CC,MF) categories. The background gene list was all Entrez IDs from axolotl
Affymetrix annotation file. The organism database was set as homo sapiens “org.Hs.eg.db”, the adjusted p-value
method was Benjamini & Hochberg (BH), and cutoffs for p and q values were set to 0.05 (to have a better com-
parability with previous studies which utilized “0.05” when identifying biological processes and pathways).
Redundant GO terms were eliminated using “simplify” function from the clusterProfiler package®. The latter
package was also used to visualize some GO categories and genes using a heatmap-like plot (heatplot) and a
circular net (cnetplot). Bar plots of the top 10 terms of GO categories were generated using the R/Bioconductor
“ggplot2” package’®. Pathway analysis of the genes which were uniquely identified as DE by our IDA was per-
formed using PathCards (Human biological pathway unification)®'.

Heatmap generation for top 100 regenerative vs. control genes. The top 100 DE genes detected
by DEA of each technology in regenerative vs. control comparison were visualized in a clustered heatmap using
“pheatmap” package in R”. The samples were clustered using the “Manhattan” distance measure. The genes
were hierarchically clustered using “Complete Linkage” method. The values were centered and scaled in the row
direction.

Ethical statement, animal husbandry and qRT-PCR analysis. Animal care conditions and experi-
mental procedures were approved by the local ethics committee of the Istanbul Medipol University (IMU) with
authorization number 38828770-E.16123. All animal experiments were performed in accordance with relevant
guidelines and regulations. Followed housing conditions, feeding regime and used anesthesia were described in
[12,34]. Right forelimb of 9 axolotl was amputated at mid-zeugopod level. Amputated animals were selected ran-
domly to form three groups (0, 1, and 7 days post amputation groups) and tissue samples were collected accord-
ingly. To minimize the differences between individuals, 3 samples of each group pooled prior to RNA isolation.
RNA was isolated from axolotl limb tissues (0,1 and 7 dpa) using TRIzol reagent (Invitrogen) by following the
manufacturer’s instructions. RNA quantity was checked by spectrophotometrically using a NanoDrop ND-1000
(NanoDrop) and quality of isolated RNA was assessed by gel electrophoresis. M-MLV Reverse Transcriptase
(Thermo Fisher Scientific) was used to perform reverse transcription according to manufacturer’s procedure.
Quantitative PCR assays were performed at following conditions: initial denaturation at 95 °C for 2 minutes, and
40 cycles of denaturation at 95 °C for 5 seconds, annealing at 55 °C for 10 seconds and extension at 72 °C for
15seconds. For qPCR reactions, SensiFAST™ SYBR® No-ROX Kit (BIOLINE, BIO-98005) and CEX Connect
Real-Time PCR Detection System (BIO-RAD) was used. Gene expression levels were calculated using the 2—
AACt method and cDNA concentrations were normalized with Efl-« (elongation factor 1-alpha) housekeeping
gene. Primers used in this study are listed in Supplementary Table 5.

Results

Whole gene expression data-based PCA and heatmap clustering.  The first principal component
(PC1) as well as the sample-to-sample clustering heatmap of the z-scored, microarray data (4,322 genes) show a
rough separation among the samples based on their group types; for control and regenerative samples (Fig. 2a,b)
(PC1=18.4%, PC2=12.3%) and for the other two group pairs (Supplementary Figs. 3A,B and 4A,B) (PC1 =18%
and 21.8%, PC2=12.1% and 8.8%, respectively). However, PC2 seems to separate the samples based on their
study origin. Therefore, the source of variation is likely explained by differential gene expression between the
group types.

On the other hand, the separation among the samples displayed by PC1 in addition to the sample-to-sample
clustering heatmap of the voom-counts, RNA-Seq data (7,562 genes) seems to be influenced by their study origin,
conspicuously between GSE34394 and the rest; for control and regenerative samples (Fig. 2¢,d) (PC1 = 38.6%,
PC2=26.2%) and for the other two group pairs (Supplementary Figs. 3C,D and 4C,D) (PC1 =58.2% and 43.6%,
PC2=17.8% and 26.6%, respectively). PC2, however, seems to roughly separate the samples based on their group
types.

In general, PCA and clustering of the gene expression data appears to emphasize an overall batch factor (study
origin) which has a more dominant effect on how samples are separated than the time points (group types) in
both microarray and RNA-Seq data.

DEA-based PCA and heatmap clustering. DEA of the z-scored, microarray data resulted in 2,748 DE
genes in regenerative vs. control, 2,092 DE genes in wound healing vs. control, and 3,166 DE genes in regenerative
vs. wound healing, all having an adjusted p-value < 0.01. Furthermore, DEA of the voom-counts, RNA-Seq data
yielded 2,992 DE genes in regenerative vs. control, while 423 genes and 2,371 genes were DE in wound healing
vs. control and regenerative vs. control, respectively, all having an adjusted p-value < 0.01. The result of DEA for
every comparison showed p-value enrichment near-zero peak corresponding to the number of DE genes from
microarray data (Supplementary Fig. 5) and RNA-Seq data (Supplementary Fig. 6).

PCl1 as well as the sample-to-sample clustering heatmap of the z-scored, microarray DEA-based data
show a clear separation among the samples based on their group types; for regenerative vs. control (Fig. 3a,b)
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Figure 2. Clustering of the selected datasets. Whole gene expression data-based principal component analysis
and sample-to-sample clustering heatmaps for control and regenerative samples of (a,b) Microarray quantile-
normalized, log2-transformed, z-scored, data (4,322 genes, 220 samples) and of (c,d) RNA-seq logCPM

(voom) counts (7,562 genes, 25 samples). (a,c) principle component analysis. (b,d) sample-to-sample clustering
heatmap. The number of samples per group are; 26 control and 194 regenerative for microarray data; 7 control
and 18 regenerative for RNA-Seq data.

(PC1=26.4%, PC2=12.7%) and for the other two comparisons (Supplementary Figs. 7A,B and 8A,B)
(PC1=30.8% and 31.7%, PC2=11.3% and 7.9%, respectively). However, PC2 indicates no strong separation
of any type. Therefore, differential gene expression between the group types is evidently the dominant source
of variation in this case. Likewise, the separation among the samples displayed by PC1 in addition to the
sample-to-sample clustering heatmap of the voom-counts, RNA-Seq DEA-based data, unlike the whole gene
expression data-based approach, is apparently based on their group types, while PC2 seems to point towards
no particular separation of any type; for regenerative vs. control (Fig. 3c,d) (PC1 =74.1%, PC2=7.5%) and for
the other two comparisons (Supplementary Figs. 7C,D and 8C,D) (PC1 =81.6% and 71%, PC2=6% and 6.2%,
respectively). Thus, PC1 along with the heatmap clustering sufficiently and strongly demonstrate such high vari-
ation among the samples stems from differential expression between the group types.

Overall, the batch factor (study origin) has apparently been minimized during DEA as illustrated by the
DEA-based PCA and clustering approach, which further demonstrated how group types are separated as a result
of differential gene expression in both microarray and RNA-Seq data.

Distribution of DE genes is evident among all three comparisons. Although the distribution of
DE genes is evident among comparisons (Fig. 4a,b), they may not necessarily share the same direction of gene
regulation. In order to test this notion, correlations of the logFCs of the genes commonly DE in two or more
comparisons were calculated in a pair-wise trend and visualized through scatter plots. Interestingly, the observed
correlations within microarray data (Fig. 4c-h) share a similar pattern of gene regulation directionality with those
in RNA-Seq data (Fig. 4i-n).

The Spearman correlation coefficient (r,) for logFCs of the genes commonly DE in regenerative vs. control
and regenerative vs. wound healing in microarray and RNA-Seq data are 0.85 and 0.94, respectively (Fig. 4c,i).
Likewise, the coefficients for logFCs of the genes commonly DE in regenerative vs. control and wound healing vs.
control in microarray and RNA-Seq data are 0.96 and 0.93, respectively (Fig. 4e,k). On the other hand, the coef-
ficients for logFCs of the 575 genes and 177 genes commonly DE in wound healing vs. control and regenerative
vs. wound healing in microarray and RNA-Seq data are - 0.71 and - 0.95, respectively (Fig. 4d,j). The pair-wise
correlations for the 1,018 genes and 39 genes DE in all three comparisons in microarray (Fig. 4f-h) and RNA-Seq
(Fig. 41-n) data, respectively, demonstrate that those genes follow the same trend as when they are shared by only
the two corresponding comparisons. From microarray data, the 1,018 genes DE in regenerative vs. control and
regenerative vs. wound healing are positively correlated (r,=0.52), in regenerative vs. control and wound heal-
ing vs. control are positively correlated (r,=0.77), and in regenerative vs. wound healing and wound healing vs.
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Figure 3. Clustering of the DE genes. DEA-based principal component analysis and sample-to-sample
clustering heatmaps for regenerative vs. control comparison of (a,b) Microarray quantile-normalized, log2-
transformed, z-scored data after DEA (2,748 DE genes, 220 samples) and of (c,d) RNA-seq logCPM (voom)
counts data after DEA (2,992 DE genes, 25 samples). (a,c) principle component analysis. (b,d) sample-to-sample
clustering heatmap. The number of samples per group are; 26 control and 194 regenerative for microarray data;
7 control and 18 regenerative for RNA-Seq data. The DE genes have an adjusted p-value < 0.01.

control are negatively correlated (r,= —0.02). From RNA-Seq data, the 39 DE genes have an r,=0.03, r,=0.54,
and r;=—0.71 for the latter three comparisons, respectively.

Some DE genes are commonly detected by the analyses of microarray and RNA-Seq data.
Microarray and RNA-Seq DEA was carried out on the 4,322 and 7,562 genes, respectively. Since the same annotation
source (AMBY_002a520748F) was used for the analyses from both technologies, a total of 3,653 genes are common
between them (Fig. 5a). Therefore, differing numbers of DE genes per comparison that would be commonly identified
by the analyses of both technologies is conceivable. Indeed, after merging the DE gene list (adjusted p-value < 0.01) of
microarray data with that of RNA-Seq data for each comparison, we found 170, 1,254, and 1,047 DE genes commonly
identified by both technologies in wound healing vs. control, regenerative vs. control, and regenerative vs. wound heal-
ing, respectively (Fig. 5b-d). Each set of those common DE genes per comparison were tested for their logFC correla-
tion between both technologies and were visualized using scatter plots. The common DE genes of all three comparisons
had positive correlations between the two technologies; r,=0.74 for wound healing vs. control, r,=0.71 for regenerative
vs. control, and r;=0.77 for regenerative vs. wound healing (Fig. 5e-g).

In order to decrease the number of genes with low logFCs as well as those with opposite expression direction-
ality between data of both technologies, the top DE genes can be extracted by a criterion. Firstly, genes with logFC
magnitudes >1 are separately extracted from both microarray and RNA-Seq DE lists. Next, the resultant two lists
are merged to yield the top DE genes commonly detected by DEA of both technologies. The extracted top DE
genes are 91 genes in wound healing vs. control, 351 genes in regenerative vs. control, and 280 genes in regener-
ative vs. wound healing (Supplementary Table 6). The correlation of the logFCs of those top DE genes between
the two technologies is positive for wound healing vs. control (r,= 0.44), regenerative vs. control (r,=0.72), and
regenerative vs. wound healing (r,=0.76) (Fig. 5h—j). Those top DE genes were merged together to see whether
they are distributed among the three comparisons. Indeed, some of them are commonly DE in more than one
comparison. However, notably, the number of genes commonly DE in all three comparisons is zero, and the num-
ber of DE genes specific to each comparison is relatively high (Fig. 5k).

GO enrichment of the top DE genes.  Our top DE genes commonly detected by the DEA of each of the
two technologies enriched a variety of GO terms for each comparison (Supplementary Tables 7-9). Biological pro-
cesses such as mitotic nuclear division, regulation of cell cycle process, and ECM organization were found among
the top 10 BPs enriched by the top 181 up-regulated regenerative vs. control genes (Fig. 6a). Those up-regulated
genes also enriched several cellular components, such as chromatin and spindle. On the other hand, muscle fila-
ment sliding, muscle contraction, and generation of precursor metabolites and energy were detected among the
top 10 biological process enriched by the top 166 down-regulated regenerative vs. control genes (Fig. 6b). Cellular
components such as contractile fiber and actin cytoskeleton were enriched by those down-regulated genes. The
latter genes also enriched several molecular functions, including actin filament binding and calmodulin binding.
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Figure 4. Comparison of DE genes. Venn Diagram of the distribution of significant genes (adjusted

p-value < 0.01) among the three comparisons, from (a) Microarray data and (b) RNA-Seq data; (a,b) Each
complete circle represents the number of differentially expressed genes of a certain comparison as resulted

by DEA. (c-h) Scatter plots of the log-fold change of significant genes (adjusted p-value < 0.01) shared by

two or more comparisons from microarray data (as shown in a). (c) Scatter plot of the logFC of the 1,168 DE
genes shared by Regenerative vs. Control and Regenerative vs. Wound healing comparisons. (d) Scatter plot
of the logFC of the 575 DE genes shared by Regenerative vs. Wound healing and Wound healing vs. Control
comparisons. (e) Scatter plot of the logFC of the 457 DE genes shared by Regenerative vs. Control and Wound
healing vs. Control comparisons. (i-n) Scatter plots of the log-fold change of significant genes (adjusted.p-
value < 0.01) shared by two or more comparisons from RNA-Seq data (as shown in b). (i) Scatter plot of

the logFC of the 1,582 DE genes shared by Regenerative vs. Control and Regenerative vs. Wound healing
comparisons. (j) Scatter plot of the logFC of the 177 DE genes shared by Regenerative vs. Wound healing

and Wound-healing vs. Control comparisons. (k) Scatter plot of the logFC of the 145 DE genes shared by
Regenerative vs. Control and Wound healing vs. Control comparisons. (f-h,1-n) Pair-wise scatter plots of

the logFC of the 1,018 and 39 DE genes shared by all three comparisons from microarray and RNA-Seq data,
respectively; (f,1) Regenerative vs. Control and Regenerative vs. Wound healing, (g,m) Regenerative vs. Control
and Wound healing vs. Control, (H,N) Regenerative vs. Wound healing and Wound healing vs. Control.

Heatmap of top 100 DE genes. In order to look at the most DE genes detected by the DEA of both
microarray and RNA-Seq data in regenerative samples compared to the controls all in a single and interpretable
plot, the top 100 DE genes were selected and visualized in a gene-wise hierarchically-clustered heatmap (Fig. 7a).
The clustering shows an overall conspicuous clustering between regenerative and control samples from data of
each technology.

Validation of candidate DE genes by qRT-PCR. To test the accuracy of our analysis, qRT-PCR was
conducted for several randomly-selected genes from the 351 regenerative vs. control genes commonly identi-
fied as DE by both microarray and RNA-Seq analyses. Two groups of genes were selected. The first one consists
of 5 randomly-selected genes previously well known as DE in axolotl limb regeneration (MAPKS6, Keratinl?7,
TGFBI, MMP13), and Coagulation factorXIII which is more evidently expressed in Cynops orientalis limb and
Pleurodelinae (newt) lens regeneration®-%2-%, The second group consists of four randomly-selected genes from
the ones uniquely found as DE by our methodology (CTPS, IFNAR1, PCDHGC3, METTL2A). The expression
levels of all these genes were upregulated at dayl and day7 compared to day0 post-amputation (Fig. 7b), which is
consistent with the output of our IDA.

Discussion
To our knowledge, this is the first study describing an integrative analysis methodology by which publicly avail-
able microarray and RNA-Seq axolotl data were leveraged in order to identify DE genes marking the wound
healing and regenerative phases of the axolotl limb.

Despite the more frequent and persistent application of “meta-analysis” in the literature in contrast to “merg-
ing”*, the latter has been applied in several studies***”* and was chosen for the purpose of our study. It has been
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Figure 5. Identification of the common DE genes. (a) Venn Diagram of the initial number of genes used

before differential expression analysis. This number for each platform is obtained just after the filtering and/or
merging. (b-d) Venn diagrams of the distribution of DE genes (adjusted p-value < 0.01) between Microarray
and RNA-seq data as well as (e-g) scatter plots of the log-fold change of the common DE genes between the

two technologies for (b,e) wound healing vs. control, (c,f) regenerative vs. control, and (d,g) regenerative vs.
wound healing. (h-j) Scatter plots of the log-fold change of the top DE genes (adjusted p-value < 0.01, logFC
magnitudes >1) commonly identified by Microarray and RNA-seq technologies’ analyses for (h) wound healing
vs. control (91 top DE genes), (i) regenerative vs. control (351 top DE genes), and (j) regenerative vs. wound
healing (280 top DE genes). (k) Venn Diagram of the distribution of the top DE genes (adjusted p-value < 0.01,
logFC magnitudes >1) commonly identified by the analyses of both technologies among the three comparisons.

postulated that computing separate statistics and taking the average is often less powerful compared to aggrega-
tion of data as a first step and then deriving statistics from this data*>*>4>%,

While the merging method recognizes all samples coming from different datasets across different platforms
as a single dataset when testing the same hypothesis, the existence of systematic biases may introduce unwanted
batch effects (non-biological differences) during the analysis of gene signatures and, consequently, true biological
differences can be masked among the conditions of interest*>*>*"!. Moreover, several intra-laboratory variables
that may have ambiguous or absent GEO entries such as amputation site, size, feeding, and maintenance pro-
tocols of axolotls are amongst many factors which can influence how control and test samples cluster together,
and probably contributing to the observed batch effect in whole gene expression data-based PCA and clustering
heatmap (Fig. 2 and Supplementary Figs. 3 and 4). Nonetheless, preservation of true biological (gene-expression)
differences between experimental groups were successfully attained after DEA and visualized through PCA and
clustering heatmap (Fig. 3 and Supplementary Figs. 7 and 8), indicating an indecisive role of any intra-laboratory
variables. Notably, minimization of batch effects and maximization of true gene-expression differences were
mainly due to the application of transformation and normalization techniques during data processing*>*” along
with accounting for the experiment source (study origin) for each sample while performing DEA7%.

The consistency of the results obtained from each of microarray and RNA-Seq DEAs with one another indi-
cates a fairly valid approach of integrative analysis that we took. First and foremost, the correlations of each
pair-wise distribution of the DE genes among all three comparisons from microarray data (Fig. 4a,c-h) accord
with those from RNA-Seq data (Fig. 4b,i-n). Positive correlations are always observed among the genes com-
monly DE in regenerative vs. control and regenerative vs. wound healing (Fig. 4c,f,i,]), as well as among those
commonly DE in regenerative vs. control and wound healing vs. control (Fig. 4e,g,k,m). Further, negative corre-
lations are always observed among the genes commonly DE in regenerative vs. wound healing and wound healing
vs. control (Fig. 4d,h,j,n). This also suggests a possibly true underlying biological behavior of those genes in their
respective comparisons (Supplementary Table 10). Secondly, DE genes commonly detected by DEA of each of
the two technologies are always positively correlated between microarray and RNA-Seq data, along with their
top DE genes, for every comparison (Fig. 5b-j). Several previous studies have also reported such strong positive
correlations between microarray and RNA-Seq data’7*%>%, Notably, a small number of genes have opposite gene
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Figure 6. Gene ontology analysis of the DE genes. (a) top 10 GO terms of each of biological processes and
cellular components enriched by the top 181 up-regulated genes in regenerative vs. control comparison
commonly identified by both technologies’ analyses. (b) top 10 GO terms of each of biological processes,
cellular components, and molecular functions enriched by the top 166 down-regulated genes in regenerative
vs. control comparison commonly identified by both technologies’ analyses. (c) Biological processes related to
cell cycle, muscle-tissues, and metabolism enriched by some of the top up-regulated and down-regulated genes
in regenerative vs. control comparison. (d) some of the top DE muscle-specific genes and other DE metabolic
genes being down-regulated in regenerative vs. control comparison at different rates.

expression direction, which is probably attributable to artifacts of gene expression technologies. Nevertheless, the
number of those genes with an opposite direction was found significantly low for the top DE genes (Fig. 5h—j).

Some of the top DE genes detected by both technologies in wound healing vs. control comparison concur
with previously identified genes in the wound healing response. In wound healing process, at around 6-8 hours
post-amputation (hpa), epithelial cells tend to migrate to the amputation site to form the “wound epithelium
(WE)” beneath which are cellular and extracellular debris as well as a damaged vasculature®”?*. Basel cells of
this wound epidermis lacking a basement membrane at 24 hpa are characterized with highly up-regulated thbs1
gene®®?, which was found as a top up-regulated gene in our wound healing vs. control list. Furthermore, matrix
metalloproteinases activity is required to regulate the extracellular matrix and these proteins are enriched in the
wound epidermis as soon as an injury takes place®®. Our wound healing vs. control top DE genes list also included
metalloproteinases such as mmpl, mmp3, mmp19, and their regulator timpl, in addition to the extracellular
matrix-generating component tnc*®. Complete list of the top DE genes in wound healing vs. control is presented
in Supplementary Table 6 and GO terms enriched by them are documented in Supplementary Table 7.

Genes which were previously implicated in the regenerative process also concord with some of our top DE
genes detected by both technologies in regenerative vs. control comparison. Following 2 dpa, processes such as
DNA replication, mitosis, and cell cycle are enriched by a set of up-regulated genes the majority of which signify
a transition phase in the limb regeneration program during 2-3 dpa interval'®. After 3 dpa, those genes either
undergo an increased rate of up-regulation or sustain a relatively constant expression until 28 dpa'®. Concordantly,
many gene ontology terms, particularly those related to cell cycle, were enriched by many of our top up-regulated
regenerative vs. control genes, such as mitotic nuclear division, positive regulation of cell cycle, and DNA con-
formation change (Fig. 6¢). This punctuated increase of cell cycle transcripts is, therefore, indicative of a striking
change in the population of proliferative cells taking place at the stump of the distal limb'®. Besides, earlier stud-
ies have reported significant reduction of muscle-specific genes over the course of limb regeneration!”186:6097,
During early response to limb amputation, the limb stump also undergoes muscle tissue remodeling along with
diminished levels of muscle-specific transcripts®. The reduction in the expression of muscle-specific transcripts,
however, becomes so significant by around 10 dpa which strongly implies complete absence of muscle tissues'
Therefore, depletion of muscle tissues in such an absolute manner is propounded to be an essential step towards
the recruitment of progenitor cells and the initiation of blastemal outgrowth®. This observation is also in line with
our top down-regulated regenerative vs. control genes which enriched many muscle-specific GO terms, including
muscle filament sliding, regulation of muscle contraction, and muscle cell development (Fig. 6¢). In addition
to the reduction of muscle-specific transcripts by 10 dpa, expression levels of some transcripts associated with
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Figure 7. Visualization and qRT-PCR of DE genes. (a) clustered heatmap of the top 100 DE genes commonly
detected by the analyses of both technologies in regenerative vs. control comparison. (b) qRT-PCR of 5
randomly-selected genes previously known to be DE, and 4 other randomly-selected genes uniquely detected
as DE by our IDA. All genes are up-regulated at 1 and 7 dpa compared to day0. KRT17: Keratin 17, MMP13:
Matrix Metallopeptidasel3, TGFBI1: transforming growth factor beta 1, MAPK6: Mitogen-Activated Protein
Kinase 6, F13A1: Coagulation Factor XIII A Chain, CTPS: CTP Synthase, IFNARI: Interferon Alpha And Beta
Receptor Subunit 1, PCDHGC3: Protocadherin Gamma Subfamily C 3, METTL2A: Methyltransferase Like 2A.

metabolic processes also markedly drop by around the same time'®*¢. Indeed, some of our top down-regulated
regenerative vs. control genes enriched several GO terms associated with cellular metabolic processes, such as
NADH metabolic process, ATP biosynthetic process, and regulation of ATPase activity (Fig. 6¢).

Another interesting observation is that cellular metabolic genes are still expressed by the cells which do not
die or undergo reprogramming. Therefore, non-absolute, moderate depletion of some metabolic genes in con-
trast to the complete reduction of muscle-specific genes during the regenerative phase was previously shown®.
This relationship was also discovered in our regenerative vs. control comparison between top down-regulated
muscle-specific genes and some of the metabolic genes functioning in electron transport chain and mitochon-
dria, most of which are not among the top DE genes (Fig. 6d). As depicted, those metabolic genes are much less
down-regulated than the muscle-specific genes during the regenerative phase.

When discussing “top DE genes” or “DE genes’, we refer to those genes commonly detected by the DEA of each
of microarray and RNA-Seq. However, an important point to underline here is that two of the muscle-specific
genes (myh6, myh3) and a metabolic gene (ndufv2) from Fig. 6d were detected DE (adjusted p-value < 0.01) only
by RNA-Seq DEA. Since Affymetrix and Agilent data’s gene lists were merged together, the resultant microarray
genes did not completely match those of RNA-Seq which were annotated using the Affymetrix annotation file.
Consequently, many genes which were used for RNA-Seq DEA were not represented in the final 4,322 microarray
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gene list. This is, therefore, indicative of the fact that the reliability of our results may be extended to those DE
genes specifically detected by only RNA-Seq DEA, and not to be limited to those commonly detected by the DEA
of each of the two technologies. Excluding the Agilent dataset from microarray DEA could -probably- lead to less
complicated downstream analysis. On the other hand, sample size is often a key for and a fundamental premise
of having a successful and powerful integrative analysis; and in this study, this concept was further fulfilled by
integrating the Agilent dataset.

In addition to the previously identified DE genes, we aimed to find a set of genes uniquely found as DE by our
IDA in our top upregulated regenerative vs. control gene list. We checked for genes that have been overlooked,
absent, inconsistently found as DE, or labeled insignificant by the studies used in the IDA. Interestingly, we found
at least 23 upregulated genes which may be now considered as novel candidate genes enriched in axolotl limb
regeneration (Supplementary Table 11). The differential expression of four of these genes were consistently val-
idated by qRT-PCR (Fig. 7b). This finding gives credence to the usage of IDA as a powerful statistical approach
to both enhance the confidence that a gene is DE and detect new DE genes that may have been overlooked by
previous studies due to factors such as limited sample size and diminished statistical power.

There are some inherent limitations about this study that need to be addressed. Despite our successful mini-
mization of batch effects across experiments, the merging methodology cannot guarantee their complete removal.
In some cases, the quality of the deposited, original data could play a deterministic role in the acquisition of the
most statistically-sound downstream results. The major limitation to underline, however, lies within the concept
of data integration itself along with the gene-level data processing approach we took. Integrative analysis of dif-
ferent platforms provides statistical power through increased sample size at the expense of having a large number
of genes for differential expression and downstream analyses. The process of merging the genes of Affymetrix
platform with those of Agilent’s showed a decrease in the total number of microarray genes which were used for
DEA. Moreover, the approach of annotating our integrated RNA-Seq data eliminated a plethora of transcripts
which could be important in the limb regeneration process. Therefore, a “meta-analysis” approach which would
utilize probeset-level information could solve the aforementioned issues. Nevertheless, since we rather chose
the “merging” approach on the premise that it is well suited for both our experimental design and biomarker
discovery, it was an absolute necessity to collapse information from probe/contig-level to gene-level. It is also
plausible to conceive the RNA-Seq annotation process from the list of Affymetrix-Agilent genes instead of the
whole Affymetrix annotation file, which would also lead to a decrease in the total number RNA-Seq genes to be
used for DEA, not to mention the further decrease due to filtering steps. Therefore, in this study, we tried to sus-
tain a trade-off between increased statistical power through integration of data and having the maximum possible
number of genes to be analyzed.

Conclusion

To the best of our current knowledge, this is the first study describing an integrative analysis of publicly available
microarray and RNA-Seq axolotl data, with an aim to uncover DE genes signifying the wound healing and regen-
erative phases of the axolotl limb. The validity of our DEA methodology can be realized from observing the same
pattern of gene expression directionality within data of each technology, and the positive correlation of the DE
genes between both technologies. Our results included many DE genes enriched in a wide variety of biological
processes in accord with those described in previous studies. Some genes were uniquely detected as DE by our
IDA approach. qRT-PCR experiments (Fig. 7b) provide another layer of evidence to validate our computational
findings. Future direction of this study would aim to explore the putative functions of the newly found DE genes
during regeneration. Our methodology can be repeated with more axolotl data as we anticipate more will become
available in near future.
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