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On a LOD and Crank-Nicolson Methods For the Two 
Dimensional Diffusion Equation 

Mustafa GÜLSU1 

Abstract: Finite-difference techniques based on explicit method and Crank-Nicolson 
method tor one dimensional diffusion are used to solve the two-dimensional 
time dependent diffusion equation with boundary conditions. in these cases local/y 
one-dimensional (LOD) techniques are used to extend the one-dimensional 
techniques to solve the two-dimensional problem. The results of numerical 
testing show that these schemes use less central processor (CPU) time than 
the fully implicit scheme. 
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İki Boyutlu Diffuzyon Denklemi için Yerel Bir Boyut ve Crank­
Nicolson Metodları Üzerine 

Özet: Bu çalışmada bir boyutlu diffuzyon denklemi için Açık yöntem ve Crank 
Nicolson yöntemini temel alan sonlu fark teknikleri, iki boyutlu zamana bağımlı 
diffuzyon denklemini çözmek için kullanıldı. Yerel bir boyut(LOD) yöntemi iki 
boyutlu diffuzyon denklemini çözmek için genişletildi. Nümerik sonuçlar ile bu 
yöntemin kapalı yöntemlere göre daha az zaman (CPU) harcadığı gösterildi. 

Anahtar Kelimeler: Sonlu farklar, difizyon denklemi, Crank-Nicolson Yöntemi, Yerel Bir 
Boyut Yöntemi 

1-lntroduction 

The constant-coefficient two-dimensional diffusion equation, namely 

1.1 

O~t~T 
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where a and a are the coefficients of diffusion in the x and y directions respectively, 
X y . 

has many applications to practical problems, including the flow of groundwater, and the 
diffusion of heat through solids. For many years the standart explicit two-level fınite 

difference method for solving (1.1) was the classical explicit forward-time centred-space 
method described in Noye B.J., Hayman K.J.[4] 

Recent improvements include the effıcient alternating group explicit method of 
Dehghan M. [2]. The present article investigate the development of a fourth-order accurate 
two-level explicit fınite difference method for solving (1 .1) subject to Drichlet boundary 
condition. in particular locally one dimensional (LOD) method and Crank-Nicolson method 
are investigated. 

For convenience, a method which uses · a computational molecule that involves m1 

grid points from time level (n+1) and m2 grid points from time level n is denoted as an 
(m1,m2) methods. Also, the grid point (iilx,jily,nilt) i=0, 1,2, ... 1, j=0, 1,2, ... ,J, n=O, 1,2, ... K where 
LlX=M/1, Lly=N/J, Llt=T/K, is referred to as the (i,j,n) grid point. At this point the partial 
differential equation (PDE) (1.1) is discretised to give the aproximating fınite difference 
equation (FDE) 

1.2 

The coeffıcient aı,m and bı,m are functions of the non dimensional diffusion numbers 

/ıt /ıt 
r =a --

x X (/ıx)2 ' r =a --
Y Y (/ıy)2 

Theoretical comparisons of the order of convergence of various fınite-difference 

methods are based on the leading error terms in their modifıed equivalent partial 
differential equations (MEPDE) which hava- the general form 

1.3 

where the Cp,q are coefficients of errors term. Given that (1 .2) is consistent with the two­
dimensional diffusion equation (1.1) which requires that 

Limax,Liy,M• Ocp,q = o for p~ O, 1.4 

the error coefficient Cp,q in the MEPDE can be written in the form; 
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2a (Axy-ı 
Xp! rp,/rx,ry) .... .. ...... ...... q=O 

2ay (ı:1yy-ı _ 
cp,q = p! rp,q(rx,ry) ........... ...... .. q- p 1.5 

4a (Axy-q-ı (ı:1yt 
X rp q(rx,ry) .. ... .. otherwise 

(p-q)!q! ' 

it can be seen from (1.3) that the error term associated with the coefficients Cp.q 

are of the order (p-2) in Lix and Liy. The order of accuracy of an FDE which approximately 
solves (1 .1) is the smallest order of any error term present in the corresponding MEPDE. 
Hence if the leading error term in the MEPDE is CP.q for any q=O, 1,2, .. . ,P then the FDE 
is order (P-2) accurate.[4] 

in the following the time-stepping stability of the FDE (1 .2) is established by means 
of the von Neumann method. 

in order to verify theoretical predictions, numerical tests were carried out on a two 
dimensional time-dependent diffusion equation: 

2. LOD Methods 

u(x,y,O)=f(x) = exp(x+y) O:::; x:::; 1,0:::; y:::; 1 

u(O,y,t)=go(Y,t)= exp{y+2t), o:::; t:::; T,O:::; y:::; 1 

u(1,y,t)= 91(y,t)= exp(1+y+2t) , ö:s; t:::; T ,O:::; y:::; 1 

u(x, 1,t)= h1(x,t)= exp(1 +x+2t), O:::; t:::; T,O:::; x :::; 1 

u(x,O,t)= h0(x,t)= exp(x+2t), o:::; t:::; T,O:::; x:::; 1 

1.6 

1.7 

Partial Differential Equation (1.1) can be solved by splitting it into two one­
dimensional equation 

1 dU d2U 
--=a-
2 dt x dX 2 

1 dU a2u 
--=a-
2 at y ay 2 

2.1a 

2.1b 
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rather than discretising the complete two-dimensional diffusion equation to give an 
approximating finite-difference equation based on a two-dimensional computational molecule. 
Each of these equations is then solved over half of the time step used for the complete 
two-dimensional equation using techniques for the one dimensional problems. This is 
advantageous since accurate and stable techniques for one -dimensional diffusion are much 
easier to develop and use than single step methods for two-dimensional diffusion equation. 

Commencing with the initial condition for each n=O, 1,2, ... ,K the process of stepping 
from time tn to tn+1 is carried out in two stages. in the first stage , in advancing from tn=nk 

k 
to the time t 1 = (t n + -) , the parti al differential equation 

n+-- 2 
2 

1 au a2u 
--=a --
2 aı X ax2 

is solved numerically at the spatial points (xi,Yi) , i=1,2, ... ,l-1 ·for each j=O, 1, ... ,J. 

2.2 

Commencing with previously computed values u. _n i,j=1,2, ... ,M-1 and boundary 
l,J 

values: 

2.3 

results in the set of approximate values 

the intermediate time t 1 • 

1 n+--
Ui, j 2 , i=1,2, ... ,I-1 ,j=0,1, ... ,J being found at 

n+--
2 

Then in advancing from the time t I to tn+ı = (tn + k) the equation: 
n+--

2 

1 au a2u 
--=a --
2 aı y ay 2 

is solved numericaly at the spatial points (xi,Yi) , commencing with initial values 
~ ~ . ~ 

ui,f ı, i=1,2, ... ,l-1 ,j=1,2, ... ,J-1 and using as boundary values U;,o 2 and ui,M . ı 

2.4 

i=1,2, ... ,l-1. Not that the boundary conditions (1 .7) are not used at the intermediate time 

t 1 . This is because in the time interval tn to t 1 , the process of diffusion in the x-
n+- n+-

2 2 

direction has been applied with a diffusion coefficient which is twice that in the original 
equation (1.1) as can be seen by rearranging in the form 

74 



Mustafa GÜLSU 

dU =2a d
2
U 

df X dX 2 
2.5 

Not that the values of 
1 

n+-
Ui, j 2 i=1,2, ... ,I , j=1,2, ... ,J are not approximate solutions to the 

original problem. 
Let's running the LOD process using explicit method for which the correct two-stage 

procedure is: 
1 

n+- n 
u;J 2 -u;,i 

k 
1 ~ n n n} =- . 1 . -2u .. +u ·+ı. h2 ı- ,J ı ,J ı ,J 

2.6 

for each j=0, 1,2, ... ,J apply 

2.7 

for each i=1,2, ... ,l-1 then for each i=1,2, ... ,l-1 apply 

( 
1 1) 1 n+I n+- n+- n+-

U . . = r u. . 1 2 + u. ·+ı 2 + (1- 2r )u. . 2 l,J y 1,J- l,J y l ,J 
2.8 

. 1 1 
for each J=1,2, ... ,J-1. These are von Neumann stable for O< rx :s; - , O< rY :s; - .[S] 

2 2 
lf rx=ry=r· =1 /6 the results obtained should be fourth-order accurate and if rx=ry=r·=1 /2 the 

1 
n+-

results should be second -order accurate. However , when known boundary values u;,o 2 , 

1 u;/~ , i=0, 1, ... ,1 for the complete problem computed using (1 .7) are used instead of 

those calculated using (2.7) the result shown in Figure1 . indicate that this LOD procedure 
has produced only second order results, for s*=1/6 the slope of the line of best fit which 
gives an estimate of the order of convergence of the error, is 1.82, and for r*=1/2 it is 
2.02. 

The correct boundary values to be used along y=0 and y=N at the intermediate 
time level for the second half-time step are those obtained from the boundary values at 
the previous time t0 by applying the one-dimensional finite-difference equation being used 
elsewhere in the interior of the region . Note that end-points values along x=0 and x=M at 
the intermediate time level are not required in the second stage. 
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Figure1 Relation between error u and gridspacing for exp.method with using (1 .7) 

1 

The numerical result obtained with this procedure are shown in Figure2. it is clear 
that the errors when r*=1/6 are now of order fourth. in fact , the slope of the line of best 
fit for r*=1/6 is 4.01 while that for r*=1/2 is 2.02. This clearly shows that the correct 
treatment of the boundaries at the intermediate time level for any time-splitting procedure is 
very important in the generation of the final solution. 
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Figure2 Relalion between error u and gridspacing for exp.method with usirıg (2.7) 

3.Crank-Nicolson Method 
The Crank-Nicolson method is used in the following. Equation (2.1 a) is solved 

numerically over the half-time step t0 to t0+112 using: 
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3.1 

.f 
applied far j=2,3, .. . ,J-2 far each i=0, 1, ... ,1. This procedure is unconditionally von Neumann 
stable and solvable for all r>0 . Then far each i=0, 1, ... ,1 values at points adjacent to the 
boundary y=0 are calculated using the forward time centered space (FTCS) farmula in the 

following form: 

3.2 

while values at points adjacent to the boundary y=1 are calculated using 

3.3 

Both ( 3.2) and (3.3) are stable only for 0<rs::1/2.[2] 

The Cranc-Nicolson formula is then used to solve Eq.(2.1,b) over the time interval 
t 1 to tn+1 as fallows. For i=1,2, ... ,l-1 and each j=j=1,2, ... ,J-1 use : 
n+-

2 

n+I n+ı n+I n+!. n+!. n+!. 
- ryu;-ı.ı + 2(1 + rY )u;.ı - ryu;+ı.ı = ryu;-ı,ı 2 + 2(1- rY )u;.J 2 + ryu;+ı. ı 2 3.4 · 

1 
n+-

The formula (3.1) (3.2) and (3.3) are used far i=0 and i=M , so the values of u0_1 2 and 

1 
n+-

UM.j 2 , j=0, 1, ... ,J which are required in using farmulae (3.4), have already been found. 

n+ı 
Values of u;,ı on the boundaries x=0,1 and y=0,1 far the local problem are provided by 

the boundary conditions (1.7). 
This procedure is unconditionaly von Neumann stable , and solvable for all r>0. 
When the absolute value of the error; 

e;,/ =u(ih,jk,nk)-u;,/ 3.5 

at the point (0.5,0.5) at time T=1.0 was graphed against h on a logarithmic scale for 
various r , it was faund that the slopes of lines were always close to 2 far Cranc-Nicolson 
formu la and the explicit formula. These results illustrate the theoretical orders · of accuracy 
evident from the modifıed equivalent equation. 
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X y Exp. Method Cr-Nic Method Exp.- Error Cr-Nic -Error Analitical Solutions 

0.1 0.1 9.024880145 9.024953 0.00133354 -o.6x1 o·· 9.025013499 

0.2 0.2 11 .022m50 11.022976 0.00039888 -0.2x10"" 11 .02317638 

0.3 0.3 13.46303642 13.463438 0.00070162 -0.3x1 o·a 13.46373804 

0.4 0.4 16.44367357 16.444147 0.00097320 -0.5x10"" 16.44464777 

0.5 0.5 20.08438023 20.904643 0.00115669 -0.6x10"" 20.08553692 

0.6 0.6 24.53132433 24.531930 0.00120587 -0.6x10"" 24.53253020 . 

0.7 0.7 29.96301156 29.963600 0.00108849 -0.5x10"" 29.96410005 

0.8 0.8 36.597 44019 36.597834 0.00079425 -0.4x10·· 36.59823444 

0.9 0.9 44.70082306 44.700858 0.00036143 -0.1 x1 o-· 44. 70118449 

Table1 Results for u with T=1 .0 , h=0.05, r-1/2 

4.Conclusion 

in this paper two-methods namely the explicit method and the second-order Crank­
Nicolson method are used to solve the two-dimensional diffusion equation with boundary 
condition through a LOD procedure which employed those one-dimensional schemes to 
apply them in each direction. Using the explicit method for one-dimensional diffusion 
equation in a LOD procedure with special treatment on the boundaries at the intermediate 
time level gave fourth-order accuracy. Without the special boundary treatment at the 
intermediate time levels high-order methods used at interior grid points in an LOD 
procedure only produce low-order results. 

A comparison with the fully implicit schemes far the · model problem clearly 
demonstrates that the new techniques use tess CPU time. The only disadvantage of these 
methods was their limited range of stability. This was because of avoiding the use of the 
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boundary values at the intermediate time levels as this makes these procedures to be 
dependent to some other conditional schemes to evaluate the values near the boundaries. 

Alsa Crank-Nicolson method produced second-order results. it used more CPU time 
than the fourth-order LOD procedure to get results of the same accuracy. 
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