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Abstract: Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous
ROS production in normal cells is controlled by the appropriate regulation between the silver lining
of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences
the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at
different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling
cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2
(MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase
B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high
concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels,
to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions
of ROS effectively with respect to the concentration bias, which needs to be monitored carefully
to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets
exogenously/endogenously. Overall, additional research is required to comprehend the potential of
ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.

Keywords: reactive oxygen species (ROS); oxidative stress; inflammation; angiogenesis; metastasis;
miRNA
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1. Introduction

Despite continuous efforts in the development of novel treatment modalities, cancer still remains
one of the most dreadful diseases in both developed and, developing countries; being an indomitable
conundrum for scientists worldwide. Based on the recently published GLOBOCAN 2018 report, there
was a prediction of 18.1 million new cancer cases and 9.6 million cases with cancer mortality in women
and men. If the industrial development accompanied by environmental pollution and alterations in
the human lifestyle, continue as fast as hitherto, predictions suggest by 2030, almost 13 million people
will die from different cancers each year [1]. This would be a huge burden to the whole society and
needs urgent intervention at different levels, including not only scientific contribution but also political
statutes in implementation of diverse preventive measures.

The complexity of cancer is attributed to its multifaceted and multifactorial presentation. In
the past few decades, the disruption of redox balance has been illustrated to be one of the most
important reasons underlying cancer development, its progression, and metastasis in human cells [2].
This disproportionality in redox homeostasis is documented to be induced via increased free radicals,
predominantly ROS. These highly active radicals originate from both intrinsic and extrinsic sources.
Intrinsic sources of ROS mostly include mitochondria, inflammatory cells, and several enzymatic
cellular complexes; extrinsic sources of ROS include pro-oxidant environmental toxins, radiation, [3]
and diverse chemical compounds, including alcohol, tobacco smoking, and certain drugs [4]. Such free
radicals can cause damage to various important biomolecules, including lipids, proteins, and nucleic
acids, leading to oxidative stress and damaging different human tissues.

Elevated ROS levels, accompanied with down-regulation of cellular antioxidant enzyme systems,
result in malignant transformation via different molecular targets, such as NF-κB and nuclear factor
(erythroid-derived 2)-like-2 factor (Nrf2) [5,6]. Signaling cascades regulated by these key factors
generate an inflammatory environment leading to the suppression of apoptotic cell death, tumor
proliferation, angiogenesis, and metastasis; which cumulatively augment initiation, development, and
progression of malignant neoplasms (Table 1). This review article summarizes the present up-to-date
knowledge of the molecular mechanisms of ROS generation, its role in tumor growth and metastasis,
along with highlighting the potential targets of the ROS cascade for potential therapeutic strategies.

Table 1. Role of ROS in cancer progression.

Effect Mechanism Cell Line References

Oxidative
Stress

Aquaporin AQP5-mediated H2O2 influx rate indicates the
presence of a highly efficient peroxiporin activity and
consequently activates signaling networks related to cell
survival and cancer progression

Pancreatic
Carcinoma line-3
(BxPC3)

[7]

PCB118 promotes hepatocellular carcinoma cell (HCC)
proliferation via Pyruvate kinase M2 (PKM2)-dependent
up-regulation of glycolysis, which is mediated by Aryl
hydrocarbon receptor/Nicotinamide adenine dinucleotide
phosphate oxidase (AhR/NADPH oxidase)-induced
ROS prouction

SMMC-7721 [8]

Enhanced ROS of exposed cells alters the mitochondrial
metabolic activities in terms of increased mitochondrial mass
and DNA content and initiates cancer progression through
modifying cellar biomarkers

MOE1A [9]

Inflammatory
markers

Serum ROS and damaged mtDNA may be markers of
mitochondrial metabolism through oxygenation of the
primary tumor and results in systemic inflammation and
adverse outcomes of locally advanced rectal cancer (LARC)

HCT-116, HT-29, and
LoVo [10]

Inflammation in the stroma induces TNF-α signaling and the
NOX1/ROS signaling pathway is activated downstream with
expression of TLR2 which is an important tumor-promoting
mechanism stimulated by inflammation

Mouse Model [11]
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Table 1. Cont.

Effect Mechanism Cell Line References
Alkylating agents may evoke inflammatory responses that
seem to contribute to malignant progression in specific breast
cancer cells

MDA-MB231,
Hs578T, SKBR3 and
MCF7

[12]

Metastasis

ROS induce epithelial-mesenchymal transition (EMT), the
glycolytic switch, and mitochondrial repression by activating
the Distal-less homeobox-2 (Dlx-2)/Snail axis, thereby playing
crucial roles in metastasis

MCF-7 [13]

Elevated mitochondrial ROS via fatty acid β-oxidation,
activates the MAPK cascades, results in EMT process of ROS
high tumor spheres (RH-TS) cells, and enhances metastasis

4 T1, SW480, HCT116
and HT29 [14]

Loss of TMEM126A induces ROS production with
mitochondrial dysfunction and subsequently metastasis by
activating extracellular matrix (ECM) remodeling and EMT

MDA-MB-231HM [15]

PM2.5 exposure induces ROS, which activates loc146880
expression and promotes the malignant behavior A549 [16]

Angiogenesis ROS-ERK1/2-HIF-1α-VEGF-induces angiogenesis by
increased level of RRM2 C33A and MCF-7 [17]

High glucose increases angiogenesis and decreases apoptosis
due to activation of the NF-κB pathway by increasing ROS MCF-7 [18]

27-Hydroxycholesterol (27HC) enhanced the generation of
ROS and activates the STAT-3/VEGF signaling in an ER
independent manner which results in induced angiogenesis

Breast Cancer Cells [19]

2. Role of ROS in Cancer Progression

2.1. ROS-Mediated Induction of Oxidative Stress

Oxygen is a multifaceted molecule, which is crucial for life sustainability but can be harmful
when it is converted to ROS through oxidation-reduction reactions. The distinct aspect of ROS was
first identified by Gerschmann in 1954 [20,21] and its free radical potential was described by Denham
Harman in the free radical theory of aging in 1956 [21,22]. This initial work from the group; steadily
triggered further investigations in the dimension of ROS to decipher their precise role in biological
systems [21]. The discovery of the first described antioxidant enzyme, superoxide dismutase (SOD),
by McCord [21,23] postulated the instrumental role of ROS through free radical generation. Following
the initial studies on the substantial potential role of ROS, the focus shifted to delineate the beneficial
and harmful effects of ROS in numerous pathological and physiological processes and their mechanism
of action.

In a normal cell, ROS levels are balanced through numerous detoxification processes regulated
through antioxidant enzymes. Hence, ROS homeostasis is well sustained, which contributes to
the maintenance of redox balance in healthy cells. The complex I and III of the mitochondrial
respiratory chain under high membrane potential, are contemplated to be the point of origin of ROS
particularly, but numerous other resources may also play a pivotal role in elevated ROS generations,
such as α-ketoglutarate dehydrogenase, monoamine oxidase, mitochondrial p66Shc, sirtuins, Nrf2, and
forkhead box O3 (FOXO3) besides the underlying redox cycling reactions [24]. This elevated ROS
production or defective defense mechanism may also lead to elevated oxidative stress levels leading
to diverse pathological conditions. Examples of endogenous sources of ROS include mitochondrial
oxidative phosphorylation, p450 metabolism, peroxisomes, and from the activation of inflammatory
cells such as macrophages and neutrophils. It is thought that during the mitochondrial respiratory
process, 1–2% of molecular oxygen is converted to ROS through one to three electron reductions and
this leads to the formation of hydroxyl, hydrogen peroxide, superoxide, and peroxynitrite radicals [25].

Oxidative stress is one of the main leading causes of toxicity which is attributed to the interactions
of ROS as well as reactive nitrogen species (RNS) with cellular macromolecules such as DNA, lipid, and
proteins, which interfere with the signal transduction pathways such as protein kinases, phosphatases,
and transduction mechanisms (Figure 1). The pathological consequences of oxidative stress are



Biomolecules 2019, 9, 735 4 of 26

characterized by impaired glucose tolerance due to mitochondrial oxidative stress. This is attributed to
pro-oxidants changing their thiol/disulphide redox state which leads to diabetes mellitus and cancer
or through the augmented action of either NAD(P)H oxidase leading to inflammatory oxidative
conditions which is associated with chronic inflammation and atherosclerosis or through the action
of xanthine oxidase-induced ROS formation which has been associated with reperfusion injury and
ischemia [21]. Further, the ageing process can be attributed to the detrimental magnitude of free
radicals leading to DNA damage, lipid peroxidation, and protein oxidation [21,22].Biomolecules 2019, 9, x FOR PEER REVIEW 5 of 28 

 
Figure 1. Oxidative stress and production of reactive oxygen species. Intracellular ROS and 
environmental factors (exogenous ROS) initiates ROS production leading to oxidative stress which in 
turn leads to DNA/lipid/protein degradation resulting in apoptosis, autophagy, necrosis and 
production of pro-inflammatory cytokines. 

The connotation of oxidative and nitrosative stress with chronic and acute disease presentation 
is based on the biomarkers validated for oxidative stress. In an excellent review by Dalle-Donne and 
coworkers [21,26], the group summarized the biomarkers of oxidative stress and their correlation 
with human disease presentation. Natural antioxidants can protect the cell via scavenging the ROS. 
They may be separated into three classes—endogenous antioxidants (bilirubin, catalase (CAT), 
ferritin, SOD, glutathione, coenzyme Q, l-carnitine, alpha lipoic acid, glutathione peroxidase (GPx), 
melatonin, metallothionein, thioredoxins, peroxiredoxins, and uric acid), natural antioxidants 
(ascorbic acid, polyphenol metabolites, β-carotene, vitamin E, and vitamin A), and synthetic 
antioxidants (Nrf2, tiron, pyruvate, selenium, and N-acetyl cysteine (NAC)). Protecting the organism 
against harmful oxidants is a complex interaction between these antioxidants. High intracellular ROS 
concentration is important for damage, but another important fact is the equilibrium between ROS 
and antioxidant systems. The ROS production/antioxidant defense system balance is required for 
homeostasis [25]. Under normal conditions antioxidants outbalance oxidants but under oxidative 
conditions pro-oxidants prevail antioxidants [27].  

2.2. Inflammatory Markers and ROS 

The intricate relationship between cancer and, prolonged inflammation has been thoroughly 
investigated since Virchow’s hypothesis [28]. In 1863, Rudolf Virchow propounded that the 
“lymphoreticular infiltrate” reflected the origin of cancer at the locations of chronic inflammation 
[29]. The obtained epidemiological and experimental data from the numerous studies supported 
Virchow’s hypothesis and revealed that inflammatory processes regulate the course of cancer based 
on the level of inflammation-related factors, inflammatory cytokines, and chemokines, in the tumor 
microenvironment, either by producing an antitumor response or by inducing cell transformation 
and malignancy [30–32]. One of the major regulatory components in the relationship between cancer 
and chronic inflammation is ROS that has an ability to affect the type, presence, and levels of 

Figure 1. Oxidative stress and production of reactive oxygen species. Intracellular ROS and environmental
factors (exogenous ROS) initiates ROS production leading to oxidative stress which in turn leads
to DNA/lipid/protein degradation resulting in apoptosis, autophagy, necrosis and production of
pro-inflammatory cytokines.

The connotation of oxidative and nitrosative stress with chronic and acute disease presentation is
based on the biomarkers validated for oxidative stress. In an excellent review by Dalle-Donne and
coworkers [21,26], the group summarized the biomarkers of oxidative stress and their correlation
with human disease presentation. Natural antioxidants can protect the cell via scavenging the ROS.
They may be separated into three classes—endogenous antioxidants (bilirubin, catalase (CAT), ferritin,
SOD, glutathione, coenzyme Q, l-carnitine, alpha lipoic acid, glutathione peroxidase (GPx), melatonin,
metallothionein, thioredoxins, peroxiredoxins, and uric acid), natural antioxidants (ascorbic acid,
polyphenol metabolites, β-carotene, vitamin E, and vitamin A), and synthetic antioxidants (Nrf2, tiron,
pyruvate, selenium, and N-acetyl cysteine (NAC)). Protecting the organism against harmful oxidants is
a complex interaction between these antioxidants. High intracellular ROS concentration is important
for damage, but another important fact is the equilibrium between ROS and antioxidant systems.
The ROS production/antioxidant defense system balance is required for homeostasis [25]. Under
normal conditions antioxidants outbalance oxidants but under oxidative conditions pro-oxidants
prevail antioxidants [27].
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2.2. Inflammatory Markers and ROS

The intricate relationship between cancer and, prolonged inflammation has been thoroughly
investigated since Virchow’s hypothesis [28]. In 1863, Rudolf Virchow propounded that the
“lymphoreticular infiltrate” reflected the origin of cancer at the locations of chronic inflammation [29].
The obtained epidemiological and experimental data from the numerous studies supported Virchow’s
hypothesis and revealed that inflammatory processes regulate the course of cancer based on the level of
inflammation-related factors, inflammatory cytokines, and chemokines, in the tumor microenvironment,
either by producing an antitumor response or by inducing cell transformation and malignancy [30–32].
One of the major regulatory components in the relationship between cancer and chronic inflammation
is ROS that has an ability to affect the type, presence, and levels of inflammation-modulating
factors such as activator protein 1 (AP-1), β-catenin/Wnt (wingless related integration site), HIF-1α
(hypoxia-inducible factor-1 alpha), NF-κB, PPAR-γ (peroxisome proliferator-activated receptor gamma),
p53, inflammatory cytokines, chemokines, and growth factors [27,33–35]. However, it should be
noted that there is a complex crosstalk between chronic inflammation, ROS accumulation, and cancer
progression (Figure 2). The inflammatory cells in the tumor microenvironment lead to a massive
production of ROS by activating the oxidant-generating enzymes such as inducible nitric oxide synthase
(iNOS), myeloperoxidase (MPO), NADPH oxidase, and xanthine oxidase (XO), and by up-regulating
cyclooxygenase 2 (COX2) and lipoxygenase (LOX) to remove and disrupt the biological, chemical, and
physical factors. The abundant accumulation of ROS also produces oxidative damage to the DNA,
RNA, proteins, lipids, and mitochondria.
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and overpowered generation of additional ROS that activate the inflammation-modulating factors, 
inflammatory cytokines, and chemokines [34–37]. Apart from the induction of chronic inflammation 
by ROS-mediated NF-κB activation, the active NF-κB is considered to be a key component in the rise 
of therapy-resistant cancers toward fractional gamma-irradiation therapy and chemotherapeutic 
agents such as 5-fluorouracil, bortezomib, cisplatin, daunorubicin, doxorubicin, paclitaxel, 
vinblastine, vincristine, and tamoxifen, through the transcriptional up-regulation of Akt, Bcl-2 (B-cell 
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Figure 2. Schematic illustration of mechanism of action of reactive oxygen species (ROS)
leading to inflammation. ADAM17 (ADAM metallopeptidase domain 17); ASC (Activating signal
co-integrator 1); BMP4 (Bone morphogenetic protein 4); IKB-α (Inhibitor of nuclear factor kappa B
kinase regulatory subunit alpha); IKK (Inhibitor of nuclear factor kappa-B kinase); IP3R (Inositol
1,4,5-trisphosphate receptor type 3); JNK (c-Jun N-terminal kinase); LPC (Lysophosphatidylcholine);
LPS (Lipopolysaccharide); NF-кB (Nuclear factor kappa subunit B); NLRP3 (NLR family pyrin domain
containing 3); NOX (NADPH oxidase); OxPL (Oxidized phospholipids); PAR (Par family cell polarity
regulator); PAK (p21 (RAC1) activated kinase); SOD (Superoxide dismutase); TLR4 (Toll like receptor 4);
TNF-α (Tumor necrosis factor alpha); TNFR (TNF receptor superfamily); TNFR1 (TNF receptor
superfamily 1); TXNIP (Thioredoxin interacting protein); Ub (Ubiquitin).
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This causes an increased mutation load, defects in signal-transduction, inactivation of apoptosis,
and overpowered generation of additional ROS that activate the inflammation-modulating factors,
inflammatory cytokines, and chemokines [34–37]. Apart from the induction of chronic inflammation
by ROS-mediated NF-κB activation, the active NF-κB is considered to be a key component in the
rise of therapy-resistant cancers toward fractional gamma-irradiation therapy and chemotherapeutic
agents such as 5-fluorouracil, bortezomib, cisplatin, daunorubicin, doxorubicin, paclitaxel, vinblastine,
vincristine, and tamoxifen, through the transcriptional up-regulation of Akt, Bcl-2 (B-cell lymphoma 2),
Bcl-xL (B-cell lymphoma- extra-large), cyclin D1, COX-2, survivin, and XIAP (X-linked inhibitor of
apoptosis) [38–43]. Targeting ROS consequently seems to be a very promising way to modulate
cancer related chronic inflammation and the hallmarks for cancer development such as sustaining
proliferative signaling, evading growth suppressors, activating invasion and metastasis, enabling
replicative immortality, inducing angiogenesis, and resisting cell death [37,44].

2.3. Cancer Metastasis and ROS

Metastasis involves the spread of cancer cells from the primary tumor to the surrounding tissues
and to distant organs, and is the primary cause of morbidity and mortality [45]. Studies reveal that
tumor metastasis is not an autonomous program but a complex and multifaceted event, occurring due to
the intrinsic mutational burden of cancerous cells and bidirectional interaction between nonmalignant
and malignant cells [46]. It occurs due to the up-regulation of several transcriptional factors such as
NF-kB, ETS-1 (ETS proto-oncogene 1, transcription factor), Twist, Snail, AP-1, and Zeb (zinc finger E-box
binding homeobox); metalloproteases viz. MMP-9 and, MMP-2; and chemokines or cytokines like
transforming growth factor beta (TGF-β) (Figure 3) [47]. ROS plays an important role in the migration
and invasion of cancerous cells. ROS are mainly produced as byproducts during mitochondrial electron
transport in aerobic respiration and have numerous deleterious effects [48]. Epithelial to mesenchymal
transition (EMT) is the major cause of tumor metastasis, where epithelial cells lose their polarity,
cell-cell adhesion, and gain mobility.

Several studies have proved ROS to be a major cause of EMT. TGF-β1 regulates uPA (Urokinase type
Plasminogen Activator) and MMP-9 to facilitate cell migration and invasion through ROS-dependent
mechanisms [49]. Another study revealed that ROS increases tumor migration by inducing hypoxia
mediated MMPs and, cathepsin expression [50,51]. According to a study reported by Zhang, NADPH
oxidase 4 (NOX4)-dependent ROS production is necessary for TGF β1-induced EMT in MDAMB-231C
and MCG-10A cell lines [52]. P53 also plays a major role in cell migration using cytokines TGF β1.
Pelicano et al. suggested that mitochondrial dysfunction can lead to increased ROS production, which
further up-regulates C-X-C motif chemokine 14 (CXCL14) expression through the AP-1 signaling
pathway and, enhances cell mobility by elevating cytosolic Ca2+ levels [53]. ROS activate Nrf2
that stimulates Klf9 (Krupple like factor 9), thus activating ERK1/2; and results in an increased
ROS production in cancer cells. Thus, a premalignant growth can be suppressed by using topical
antioxidants that target Klf9 [54,55].

Mitochondrial Ca2+ also plays an important role in cancer metastasis. Jin and his colleagues
observed that MCUR1 (Mitochondrial Calcium Uniporter Regulator 1) is up-regulated in hepatocellular
carcinoma (HCC) which promotes EMT by activating ROS/Notch1/Nrf2 pathways. Thus, MCUR1
can be a potential target for the treatment of HCC [56]. Aydin et al. analyzed that NOX2 generates
ROS, which influence metastasis by down-modulating the function of natural killer (NK) cells, and
its inhibition can restore the IFNγ (interferon gamma)-dependent NK cell-mediated clearance of
myeloma cells [57]. Vimentin protein also plays a major role in cancer initiation and progression
such as EMT, and metastasis. Oxidative stress caused by HIF-1 regulates vimentin gene transcription,
which helps in the formation of invadopodia during cancer cell invasion and migration [58]. Inhibition
of vimentin expression by RNAi can reduce cell metastasis and hence decrease tumor volume [59].
ROS also induces epigenetic changes in the promoter region of E-cadherin and various other tumor
suppressor genes, hence leading to tumor progression and metastasis. It causes hyper-methylation of
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the promoter gene by increasing Snail expression. Snail induces DNA methylation with the help of
histone deacetylase 1 (HDAC1) and DNA methyltransferase 1 (DNMT1) [60].

2.4. Angiogenesis and ROS

During the initial stages of tumorigenesis, new blood vessels are formed from the pre-existing
vasculatures, a process known as angiogenesis, which supports tumor proliferation and survival [61–64].
ROS-dependent angiogenesis is initiated through cancer proliferation, which in turn increases the
metabolic rate leading to the generation of high ROS levels [63,64]. These elevated ROS levels
lead to oxidative stress in the tumor microenvironment, which initiates secretion of angiogenic
modulators [65]. Both endogenous and exogenous ROS spearheads stimulation of growth factors,
cytokines, and transcription factors like VEGF and HiF-1α, which promote tumor migration and
proliferation through ROS-dependent cellular signaling [62,65,66]. The signaling cascade through ROS
mediation has been documented to perpetuate VEGF secretion and activate the PI3K/Akt/mammalian
target of the rapamycin (mTOR) pathway through hypoxia independent or dependent mechanisms
(through stabilization of HIF-1α which increases production of VEGF) (Figure 4), [67]. Additionally,
the Ras signaling pathway has also been reported to up-regulate VEGF secretion [68]. Recently,
mutant p53 was also recognized to modulate the angiogenic response in tumor proliferation through
the ROS-mediated activation of VEGF-A and HiF-1 in HCT116 human colon carcinoma cells [69].
The mechanism of ROS-mediated angiogenesis has been extensively studied to understand the signaling
cascade modulating cancer progression. In a study carried out using MDA-MB-231 breast cancer
cells, deferoxamine (DFO) induced HIF-1α through ERK1/2 phosphorylation which promoted tumor
migration and metastasis [70].
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Figure 3. Reactive oxygen species and metastasis. High levels of reactive oxygen species leads to
metastasis through the stimulation of phosphoinositide-3-kinase regulatory subunit/AKT serine/threonine
kinases/mechanistic target of rapamycin kinase (PI3K/Akt/mTOR), and MAPK (Mitogen-activated
protein kinases) signaling pathways which activates downstream SNAIL, MMP2 (metalloproteinase 2),
and MMP9 (metalloproteinase 9) enzymes initiating epithelial-mesenchymal transition (EMT) leading
to metastasis.
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Figure 4. Angiogenesis activation through reactive oxygen species (ROS) via hypoxia dependent and
hypoxia independent pathways. The hypoxia dependent pathway increases vascular endothelial
growth factor (VEGF) expression via the phosphoinositide-3-kinase regulatory subunit/AKT
serine/threonine kinases/mechanistic target of rapamycin kinase (PI3K/Akt/mTOR), PTEN (phosphatase
and tensin homolog), and MAPK (Mitogen-activated protein kinases) signaling cascades via HIF-1α
(Hypoxia-inducible factor1-alpha) and p70S6K1 (ribosomal protein S6 kinase B1), which release
various cytokines, growth factors, and up-regulation of MMPs (matrix metalloproteinases) leading to
angiogenesis. The hypoxia independent pathway leads to angiogenesis through oxidative lipid ligands
which activates NF-кB (Nuclear factor kappa subunit B) via Toll-like receptors (TLRs).

Han and colleagues demonstrated that the elevated levels of epidermal growth factor (EGF)
triggered hydrogen peroxide production, which stimulated p70S6K1 via the PI3K/Akt signaling
pathway, leading to the activation of downstream VEGF and HiF-1α [71]. On similar lines, Liu et al.
reported that EGF lead to increased production of hydrogen peroxide in OVCAR-3 ovarian cancer
cells, which activated the AKT/p70S6K1 pathway, thereby resulting in increased VEGF expression [72].
The group further documented that catalase overexpression and rapamycin inhibited angiogenesis.
Hydrogen peroxide was also illustrated to inactivate phosphatase and tension homolog (PTEN) through
the reversible oxidation of phosphatases in the cysteine thiol group and promote activation of the
PI3K/Akt/mTORsignaling cascade and Ras [73].

In another study on ovarian cancer cells, Xia and colleagues documented that NOX4 knockdown
lead to a reduction of VEGF and HIF-1α, which in turn regulated tumor angiogenesis [74,75]. A similar
mechanism of action of ROS was illustrated through experiments in WM35 melanoma cells, where Akt
induced the expression of NOX4 [75,76]. NADPH oxidase 2 (Nox2)-derived ROS was also reported to
induce cancer progression and migration, modulated through the ERK/PI3K/AKT/Src (Proto-oncogene
tyrosine -protein kinase)-dependent pathway leading to the activation of endothelial cells and induction
of angiogenesis [77–79]. Nox1 (NADPH oxidase 1) was also reported to mediate the Ras-dependent
up-regulation of VEGF expression and, angiogenesis via the Ras/ERK-dependent Sp1 phosphorylation
and activation in CaCO-2 colon cancer cells [80,81]. In human umbilical vein endothelial cell (HUVECs),
Angiopoietin -1 (Ang1) induced transient ROS through the activation of endothelial specific tyrosine
kinase receptor, Tie-2, and p44/42, MAPK leading to vascular remodeling [82].
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Moreover, copper was reported to increase the ROS-mediated expression of VEGF, HiF-1α,
and G-protein estrogen receptor (GPER) in HepG2 hepatocellular carcinoma cells and SkBr3 breast
cancer cells via activation of the EGFR/ERK/c-Fos pathway [83,84]. Similarly, the cadmium activated
ERK/Akt pathway induced ROS expression and HiF-1; its downstream pro-angiogenic molecule in
BEAS-2B bronchial epithelial cells [85]. In addition, several other extracellular remodeling proteins and
transcription factors (p53, HiF-1α, VEGF, and MMPs) have been documented to be regulated by ROS [86–91].
Also, numerous studies in cancer cell lines (MCF-7, HepG2, H-1299, PC-3) showed that ROS acted
through the PI3K/Akt signaling cascade, thereby enhancing HiF-1α expression and angiogenesis [92–94].
In view of literature supporting the angiogenic potential of ROS, therapeutic targets with antioxidant
potential and targeting subsequent signaling cascades will be of clinical significance in the management
and treatment of patients through down-regulation of neovascularization. Different strategies to
restore redox imbalance is another avenue to improve outcome of diseases. As the interventional trials
with small anti-oxidants have not been effective, further research to explore disease-specific ROS may
be of clinical relevance for futuristic drug development.

3. Role of ROS in Cancer Cell Killing

3.1. Cellular Apoptosis and ROS

Almost all forms of DNA damage, like base modifications, strand breakage, DNA cross-linking,
and proteins are induced by ROS, which are associated with cancer initiation and development [95].
However, a paradox in biological systems is that ROS can induce apoptotic cell death, which is an
important approach in cancer therapeutics [96–98]. ROS disrupts the mitochondrial membrane and
opens the mitochondrial permeability transition pore (PTP), and thus interferes with mitochondrial
electron transfer chain and induces the release of Cytochrome-c. In the cytosol, together with Apaf-1
(apoptotic peptidase activating factor 1) and procaspase-9, Cytochrome-c forms ‘apoptosomes’ leading
to the activation of caspase-9, which then activates effector caspases, e.g. caspase-3, that results in the
cleavage of cellular proteins and apoptotic cell death (Figure 5) [99–102]. Indeed, hydrogen peroxide
(H2O2) is one of the most important among the ROS group which is a direct and potent inducer of
apoptosis [103].

Numerous studies [104–108] have illustrated that anticancer agents induce cancer cell apoptosis
and autophagy via ROS generation as detailed in Table 2. For example, natural polyphenol resveratrol
was found to induce mitochondrial accumulation of H2O2 by regulating antioxidant enzymes, which in
turn, induced apoptosis in PC-3 (prostate cancer), HepG2 (hepatic cancer), and MCF-7 (breast cancer)
cells [109]. Some evidence have also shown that the black cumin component, thymoquinone, also act
as a pro-oxidant and induces apoptosis by generating ROS through different molecular pathways, like
activating Akt and causing conformational changes in BCL-2 associated X, apoptosis regulator (Bax)
protein, which leads to the loss of mitochondrial membrane potential and release of cytochrome-c and
subsequent activation of the caspase-dependent apoptotic pathway [110–114]. Several studies have
also discovered that ginsenosides exert their anticancer activities by generating ROS via a signaling
cascade, where ROS was found to be responsible for inducing apoptosis [115].
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Table 2. Role of ROS in cancer cell death.

Effect Mechanism Cell Line References

Apoptosis Increase in cell oxidation by c-Met-Nrf2-HO-1 pathway and
promotes apoptotic cell death 786-O and ACHN [116]

Apoptosis enhanced by ROS by affecting MAPK & AKT
signaling and DNA damage mediated p53 phosphorylation HePG-2 Cells [117]

↓ ROS by expression of GPx3 and leads to G2/M arrest
H157, H460, A549, H1299,
H1650, and H1975 lung
cancer cells

[118]

↑ ROS by knockdown of nicotinamide nucleotide
transhydrogenase and significant cell apoptosis under
oxidative Stress

GES-1, SGC7901, SNU216,
MKN45, MKN74, BGC823,
HGC27 and MGC803

[119]

Short
mRNA

Salviamiltiorrhiza treatment induces apoptosis through
regulation of miR-216b and ROS/ER stress pathways U266 and U937 Cells [120]

miR-21 silencing effect the ROS-induced activation, invasion,
migration, and glycolysis of Pancreatic stellate cells (PSCs) Human PSCs, Panc-1 [121]

Down-regulation of NOX2 using siRNA technology in
decreased cell viability and ROS content SNU719 cells [122]

Melanoma differentiation-associated gene-7/interleukin-24
(mda-7/IL-24) regulates miRNA biogenesis through alteration
of ROS-dependent MITF-DICER pathway

Animal cancer model [123]

Autophagy Silencing of YAP enhanced autophagic flux by increasing
RAC1-driven ROS, through inactivation of mTOR BEL/FU, BEL-7402 [124]

Zinc Oxide Nanoparticle (ZON) evoked autophagy by
accelerating the intracellular dissolution of ZONs and ROS
generation.

MCF-7/ADR [125]

Cell killing was due to the summative effect of
caspase-dependent intrinsic apoptosis and
caspase-independent autophagy by activation of MAPK
family members (ERK1/2 and JNK) with generation of ROS

SNU-719 [126]
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3.2. Autophagy and ROS

The process of autophagy, involving degradation of organelles and proteins, plays a crucial role in
cellular processes which is associated with elevated ROS levels. Numerous studies have documented
the role of ROS regulation in the mediation of autophagy [127–129]. The diverse effects of autophagy
range from prevention of infection to pathogen elimination to cell death of dysfunctional cellular
organelles. These consequences indicate the potential of ROS to act as a signaling target in survival
related to autophagy [130–132]. Recently, research has transitioned into looking for the potential
applicability of ROS-derived autophagy in the treatment of malignancies [133–135]. The intracellular
ROS levels have also been reported to directly corroborate with the regulation of autophagy induction
in malignant tumors [136,137]. Autophagy related 4A cysteine peptidase (ATG4) enzyme oxidation,
a prerequisite for de-lipidation of the ATG8 protein, induced by H2O2 leads to the induction of
autophagy. This H2O2-induced oxidation in turn inactivates ATG4 which subsequently results in an
elevated LC3-associated autophagosomes production [136]. On the other hand, the AMP-activated
protein kinase (AMPK) pathway also plays a major role in the ROS related autophagy regulation.
This activation of AMPK inhibits mTORC1 resulting in autophagy induction. Additionally, oxidative
stress also regulates AMPK pathway activation via phosphorylation of AMPKK (AMPK kinase) which
increases H2O2 production, thereby resulting in apoptosis induction [136]. In addition, various
transcription factors e.g., NF-κB can also modulate the expression of autophagy-associated genes
(ATG6/BECLIN1 or p62/SQSTM1) which directs ROS induced autophagy in cancer [138,139]. In an
initial study by Kim and colleagues, SOD overproduction was documented to inhibit selenite induced
cytotoxicity (autophagy) in human glioma cells [140]. Additionally, small miRNA was reported
to knockout ATG6/7 (Autophagy related gene 6 and 7), which in turn reduced selenite induced
cytotoxicity [132,141,142]. Based on these findings, it has been postulated that elevated ROS levels and
its modulation induces autophagy in malignant cells.

3.3. Anticancer Therapy and ROS

ROS concentration in tumor cells is very critical in anticancer therapy. High ROS levels are
documented to induce cytotoxicity along with reversal of chemotherapeutic resistance in tumorigenic
cells. Several investigations are suggestive of the fact that elevated ROS levels is the underlying core
mechanism of action and efficacy of conventional cancer therapies which is directly associated with
cancer cell death [143–146]. The mechanism of elevated ROS levels to target malignant cells is either
via augmenting ROS generation through exogenous agents or inhibitors of the antioxidant system.

3.4. Inhibition of Antioxidant System in Cancer Cells

The disruption or inhibition of cellular antioxidant enzymes augment ROS production which
trigger apoptosis in malignant cells. SOD, Glutathione (GSH) system, and Thioredoxin 1 (Trx) are
the major targets of ROS enhancing antitumor agents [142,147,148]. In a normal healthy cell, ROS
levels are low which signify their lower dependence on antioxidant enzymes. Numerous studies
have reported the findings that inhibition of cellular antioxidant system lead to the induction of
ROS-mediated cytotoxicity (autophagy) in different types of cancers [147,149–152]. Further, elevated
cellular antioxidant levels are also reported to be directly involved in developing chemoresistance
in malignant cells. To overcome chemotherapy resistance, many chemotherapeutic compounds and
antitumor agents have been developed which specifically target intracellular GSH levels. For example,
administration of PEITC (phenethyl isothiocyanate) in combination with GSH alleviates the GSH
pool, subsequently stemming oxidative stress leading to cytotoxicity in malignant cells. This was
further reported to block GPX in HRAS-transformed ovarian carcinoma cells, thereby inducing cell
death [149,153,154]. In another study on similar lines, β-PIETC was documented to block GPX
thereby decreasing GSH levels which induced high ROS expression in tumor cells [155–157]. Hence,
targeting and reducing GST and GSH levels is illustrated to restore the cytotoxic ability of various
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arsenic derivatives, alkylating agents, and platinum derived agents. Buthioninesulfoximine (BSO)
has been identified to halt GSH production and is being increasingly studied owing to its high
sensitivity [158–160]. ATO (Arsenic trioxide) and BSO administration in acute promyelocytic leukemia
(APL) was reported to synergistically reduce GSH levels thereby inducing apoptosis [161–164]. Similarly,
copper N-glycinate (CuNG), a copper derivative, has been illustrated to target GSH in Ehrlich ascites
carcinoma and stimulate ROS production [164–166].

In addition to GSH, SOD1 can also be targeted specifically to induce apoptosis in different
types of cancers. This SOD inhibition has presented as a promising approach for targeting tumor
cells. In an in vitro study carried out on lung adenocarcinoma, inhibition of SOD1 alleviated the
growth of KRAS-mutant tumor cells [147,167]. Similarly, in another study, methoxyestradiol (2-ME),
was illustrated to block SOD, which lead to the induction of cell death in leukemia cells. NRF2, is also
a key regulator of cellular antioxidants and KRAS and MYC oncogenes have been reported to mediate
NRF2 transcription. Hence, NRF2 can be therapeutically targeted to stimulate ROS-induced apoptosis
in tumor cells [168,169].

Additionally, Trx and TrxR is also an appropriate target for the development of novel antitumor
treatments. This is attributed to augmented Trx and TrxR levels reported to positively correlate with
tumor progression, chemo resistance, and poor survival [170–172] Presently, several compounds
specially targeting Trx are being explored on the scientific front in pre-clinical and clinical models.
For instance, a Trx-blocker, motexafin gadolinium, in phase III clinical trials has shown to specifically
target malignant cells [173,174].

3.5. Production of ROS Directly in Cancer Cells

Inhibition of antioxidant enzymes is another therapeutic approach in the induction of ROS
production in tumor cells [143,175]. Numerous approaches have been developed to administer ROS
and ROS producing agents in vitro in cell cultures, which would enhance ROS levels and ultimately
cause cellular damage [176,177]. Some of these compounds have been approved as anticancer drugs
and many are still being developed. These drugs/agents are either used alone or in combination with
chemotherapy and/or radiotherapy. Of these, some chemotherapeutic agents like antifolates, alkaloids,
and taxanes, disrupt the mitochondrial electron transport chain (ETC), thereby resulting in high O2−
levels and the induction of mitochondria-mediated cell cytotoxicity [178–180]. Other chemotherapeutic
agents like doxorubicin and cisplatin also lead to increased ROS production, levels of which are
cytotoxic to tumor cells.

Procarbazine was the first ROS inducing drug used in anticancer therapy [181]. Procarbazines
lead to the production of azo-derivatives, which in turn lead to ROS generation and oxidative DNA
damage. In 1963, the first clinical trial of Procarbazine was conducted following which it was approved
as a cytotoxic agent for treatment of brain tumors and Hodgkin’s lymphoma [182–184]. In last span of
15 years, numerous conventional antitumor agents inducing ROS as a cancer therapeutic modality has
been extensively investigated for their safety and efficacy. For instance, doxorubicin and anthracyclines
induce ROS production and are widely used in the treatment of acute lymphocytic leukemia (ALL),
bladder cancer, lymphoma, Kaposi’s sarcoma (KS), breast cancer, and other malignancies [185–188].
In addition, biological molecules can also stimulate ROS generation leading to apoptotic cell death.
ROS-dependent arsenic drugs are reported to be used in APL treatment [178,189]. Also, Imexon has
shown to elevate oxidative stress and stimulate apoptosis in cancer cells. In preclinical investigations
and phase I/II clinical trials, the safety and anticancer effect of Imexon has been very well studied in
leukemia [190].

Several anticancer drugs have also been reported to disrupt the ETC, resulting in elevated ROS
production [179]. Further, these ROS-generating agents directly target the complex I/II of ETC [175,180].
For example, ATO has been successfully used for the treatment of APL patients, wherein ATO leads to
the generation of ROS via NADPH oxidase, which in turn induces apoptotic cell death [178,189].
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Some studies have also indicated that administration of therapeutic agents increasing ROS
production along with conventional chemotherapies, have shown increased efficacy in targeting tumor
cells [175,191,192]. The synergizing effect of emodin and ROS-inducing therapeutic agents have been
documented to induce cell apoptosis in different types of cancers [192–194]. Further, the safety was
also monitored and was shown to cause negligible damage to healthy cells.

3.6. miRNAs and ROS

As both reactive oxygen species and microRNAs (miRNAs) are dysregulated in cancers, it is
imperative to understand their association, and how they maintain homeostasis and avert tumorigenic
conversion from a healthy cell. In view of reported scientific literature, accumulative evidence is
suggestive of the crosstalk between ROS signaling and miRNAs expression. miRNAs are a class of
small endogenous non-protein coding RNAs that have the size of approximately ~22 nts; they are
capable of altering the expression of target genes at the post-transcriptional level, mainly by binding
at the 3′UTR region of their mRNA [195]. In this section, we are going to discuss the latest findings
on ROS-mediated regulation of miRNAs, ROS pathways regulated by miRNAs in cancer, and the
ROS-miRNAs axis as a potential target for cancer as illustrated in Figure 6.
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In an interesting study by Yang et al., 2019, [196], the group reported that the deprivation of
glutamine in pancreatic ductal adenocarcinoma (PDAC) cells can lead to significant up-regulation
(~3-fold) of miR-135a and miR-135b expression as compared to PDAC cells having glutamine [196].
Further, it was shown that when PDAC were treated with an antioxidant N-acetyl-L-Cysteine glutamine
molecule, the levels of miR-135a and miR-135b decreased, which suggested that the induction of the
miR-135 family is ROS-dependent. Glutamine is known to regulate the ROS level in the cells [197].
Mechanistically, it was demonstrated that low levels of glutamine in cells induced ROS species
activation, which in turn activates mutant p53 and increases the expression of miR-135 by binding to
its promoter [196].
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Another group have shown that when hepatocellular carcinoma cells (HepG2) were exposed to
H2O2 there was a significant decrease (~1.5 fold) in the expression of miR-145 and miR-128 levels in
the cells [198]. Further, the authors have demonstrated that the insulin-induced ROS is responsible for
the decrease in miR-145 and miR-128 expression in cells, and the overexpression of either miR-145
or miR-128 eliminates insulin-induced ROS and pyruvate kinase M2 expression. It was also shown
that when vascular cells were exposed to a high concentration of H2O2, the expression of miR-200c
up-regulated, which further leads to cellular apoptosis and senescence through binding of the ZEB
transcription factor 1 (ZEB1) [199]. Normally miR-200c acts as a tumor suppressor in the bladder,
gastric, and ovarian cancers. Similarly, another group reported a group of four miRNA signatures
namely, miRNAs let-7s, miR-34s, miR-200s, and miR-182, which were significantly increased in
high-grade serous ovarian carcinoma cells post-H2O2 exposure [200]. They further demonstrated that
ROS up-regulates β-catenin, which in turn regulate the expression of miR-182 in cells. He et al., 2012
have demonstrated that via epigenetic mechanisms, ROS decreases miR-199a and miR-125b expression
in ovarian cancer cells, through the promoter methylation of miR-199a and miR-125b [201]. It was
also documented that Chidamide, a HDAC inhibitor (HDACi), increased ROS production in cells and
up-regulated miR-129-3p expression in H1355 and A549 lung adenocarcinoma cells [202]. In cells,
Chidamide suppressed telomerase activity through ROS accumulation and cell cycle arrest.

In addition to acting as an essential target of ROS-mediated stress molecules, miRNAs are also
found to control genes that are either ROS activators or scavengers. For example, miR-9 suppressed
the glutamic-oxaloacetic transaminase (GOT1) gene by directly binding to its 3’-UTR in melanoma
cells, which subsequently abridged erastin- and RSL3-induced ferroptosis. Ferroptosis is a form of cell
death process driven by lipid-based ROS accumulation [203]. Another study showed that miR-34a
directly targets the NOX2 gene and induces apoptosis in glioma cells through NOX2-derived ROS
generation [204]. The NOX2 subunit is the catalytic core of the NADPH oxidase complex, which is
considered as the major source of ROS production in epithelial cells and increases cancer risk [205,206].
Similarly, miR-23b was reported to down-regulate proline oxidase expression by directly targeting its
3′UTR and thereby promoting renal cancer [207]. The proline oxidase gene is a mitochondrial tumor
suppressor gene that is known to induce apoptosis through ROS production and also reduces HIF [208].
He et al., 2018 have demonstrated that the miR-422 a-pyruvate dehydrogenase kinase 2 axis influence
de novo lipogenesis in gastric cancer cells, that subsequently increases ROS production and rapid
hypo-phosphorylation of retinoblastoma protein and finally cell cycle arrest at the G1 phase of the cell
cycle [209]. Furthermore, another group have shown that miR-148b suppressed cell proliferation and
regulated the oxidative stress response in human endometrial cancer RL95-2 cells by decreasing the
expression of HIF-1α and nuclear factor erythroid 2-related factor by down regulating the endoplasmic
reticulum MMP1 gene [210].

From the above-mentioned studies, it is very clear that both ROS and miRNAs are interlinked to
each other and play an important role in the pathogenesis of cancer. Hence, the future targeting of
ROS with miRNAs inhibitors may represent a novel therapeutic approach for the treatment of cancer.

4. ROS: A Double-Edged Sword

In a normal cell, redox homeostasis is sustained amidst ROS production and exclusion due to the
conserved antioxidant mechanism via enzymes (glutathione peroxidase, superoxide dismutase, and
catalase) and transcription factor Nrf2 [211]. Excessive ROS generation leads to a defective antioxidant
defense mechanism, incompetent to scavenge excess, thereby leading to impaired balance between
antioxidants and pro-oxidants. Recent literature has emphasized the dichotomous nature of ROS
in malignant cells, depending on the stage of cancer progression i.e., early stage/late stage, on the
basis of which differential effects of ROS are reported in tumor cells. In a tumorous cell, elevated
ROS production initiates an adaptation reaction, which subsequently maintains the redox balance.
At the precancerous/early stage of tumor progression, moderate ROS levels induce tumorigenesis,
tumor promulgation, metastasis, and survival [211]. With tumor progression, elevated ROS levels
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beyond the toxic threshold lead to cell death, apoptosis [212,213], and senescence [212]. Through
the inclusion of dietary antioxidants i.e., phytochemicals, the level of cellular antioxidants can be
regulated, which can in turn regulate the growth inhibition and cell death in malignant cells. In MCF-7
breast cancer cells, tamoxifen-induced cytotoxicity was reported to be regulated via the intracellular
concentration of vitamin C, which inhibited lipid peroxidation leading to decreased ROS levels [214].
In addition, in MDA-MB-435, SKBR-3, and MDA-MB-231 cells, resveratrol reduced ROS accumulation
which was shown to decrease paclitaxel-induced cell death [215,216]. Vitamin E was also reported to
decrease ROS production in a dose-dependent manner in a MCF-7 orthotropic breast tumor model.
The results from the study showed decreased ROS levels post-12 days treatment followed by tumor
growth in breast cancer cells and p53 expression [217]. On the other hand, phytochemicals like
vitamin C, resveratrol, apigenin, luteolin, and epigallocatechin-3-gallate etc. have been reported to
have pro-oxidant effects leading to elevated ROS levels and cell death. In an in vitro study, elevated
vitamin C doses have been reported to induce pro-oxidant activity via high H2O2 generation [218]. In
MCF-7 breast cancer cells and HT29 colon cancer cells, vitamin C-induced oxidative stress can lead
to NAD depletion and inhibition of energy metabolism causing cellular apoptosis [219]. Resveratrol
was also seen to have pro-oxidant activity resulting in elevated formation of hydroxyl radicals in
the presence of copper ions [220,221]. These phytochemicals are being increasingly explored for the
development of ROS-targeted killing of tumor cells as anticancer therapeutic agents.

5. Conclusions and Future Perspectives

For the healthy functioning of normal cells, a delicate balance in ROS redox processes, which
maintains physiological homeostasis, is critical. This is elicited in numerous in vitro and in vivo
studies emphasizing the significant role of ROS homeostasis in cellular signaling. ROS also plays
a pivotal role in cellular processes, with low levels playing a substantial role in the regulation of
signaling cascades while higher concentrations of ROS initiates apoptosis/cell damage. The decrease
in effective neutralization of excessive ROS can result in different serious diseases, such as cancer.
The aberrant production of ROS leads to cancer growth and progression via different signaling
pathways (PI3/Akt/mTOR, PTEN, MAPK, VEGF/VEGFR, and MMPs). However, the substantial
increase in ROS levels has been shown to intervene in processes important for cancer progression,
initiate apoptosis, and contribute to cell death induced by traditional therapeutic modalities, including
chemotherapy. A number of chemotherapeutic drugs have been reported to induce apoptosis through
ROS. As ROS have diverse molecular targets in cells, their activities are also regulated by a wide range
of signaling pathways. ROS is also known to cause drug resistance to chemotherapeutic treatments.
It acts through the activation of NF-κB, which triggers the secretion of pro-inflammatory cytokines.
Hence, the dual role of ROS should be exploited as a therapeutic target to inhibit tumor growth via
impeding inflammation, angiogenesis, and metastasis. To develop an effective anti-tumor treatment
modality, the scientific groups need to completely comprehend ROS and its redox state in malignancies,
which is still enigmatic despite extensive research.
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