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Abstract: Commonly used rock mass classification systems, Rock 
Mass Rating (RMR), Q-System, and Geological Strength Index (GSI) 
were used as input for simple regression and Neural-Network 
fitting. The relationship between the classification systems can be 
used for the estimation of unknown classification ratings. The 
necessary data for this study, consisting of 250 sets of rock mass 
classification ratings, were collected from an excavation of an 
underground mine opening during a time interval of more than 
two years. The rock mass data belongs to the Pliocene-aged Deniş 
formation in Soma region of Manisa/Turkey. The ratings, basic 
and adjusted RMR, Q, Q', and GSI were chosen for the simple 
regression. Three of the equations are suggested to be taken into 
account due to their strong correlation of determination. These 
equations can be utilized especially if the rating Q is known and 
the adjusted RMR is intended to be estimated. Additionally, basic 
RMR rating can be estimated by considering the GSI as an input. 
Utilization of the Neural Networks resulted in an improved 
prediction capability with a greater predicted-measured 
coefficient of determination.  Implementing the Neural Network 
fitting also overcame the scatter observed in the regression 
analysis. 

  

Kaya Sınıflama Sistemlerinin Regresyon ve Sinir Ağları Tekniği İle 
İlişkilendirilmesi  

 
Anahtar Kelimeler 
sınıflaması, Kaya 
Kütle Puanı, Q-
Sistemi, Jeolojik 
Dayanım İndisi, 
Regresyon, Sinir 
Ağı 

Özet: Yaygın olarak kullanılan kaya kütle sınıflama sistemlerinden 
Kaya Kütle Puanlaması (RMR), Q-Sistemi ve Jeolojik Dayanım 
İndisi (GSI) temel regresyon çalışmasına ve Sinir Ağı en iyi 
uyumlamasına tabii tutulmuştur. Sınıflama sistemleri arasındaki 
ilişkiler, bilinmeyen sınıflama puanlamasının kestirilmesinde 
kullanılabilir. Çalışmada kullanılan ve kaya sınıflama sistemleri 
puanlarından oluşan 250 veri iki yıldan uzun bir sürede bir maden 
açıklığı kazısından toplanmıştır. Kaya kütle verisi, Soma 
bölgesinde yer alan Pliyosen yaşlı Deniş birimine aittir. Temel ve 
düzeltilmiş RMR, Q, Q' ve GSI puanlamaları temel regresyon için 
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seçilmiştir. Bunlar arasından en yüksek determinasyon 
katsayısına sahip olan üç eşitliğin dikkate alınması 
önerilmektedir. Eşitlikler, özellikle Q puanı bilindiğinde ve 

düzeltilmiş RMR’nin kestirilmesinde faydalanılabilir. İlave olarak, 
Temel RMR puanı GSI kullanılarak kestirilebilmektedir. Sinir Ağı 
en iyileme uygulaması, iyileştirilmiş bir kestirim imkanını daha 
yüksek determinasyon katsayısı ile sağlamıştır. Sinir ağları en 
iyileme uygulaması, regresyonlardaki gözlemlenen saçınımın 
üstesinden gelinmesini de sağlamıştır. 
 

 
 
 
1. Introduction 
Rock mass classification systems have a 
wide application area in rock engineering 
projects, such as tunnelling, slope 
stability, and foundation engineering. 
Among these application areas, 
tunnelling is the main area of interest. 
The pioneering studies proposed by 
Terzaghi [1] and Lauffer [2] can be 
accounted for the modern rock mass 
classification systems. Deere et al. [3], 
introduced a practical and still popular 
Rock Quality Designation (RQD). Rock 
Mass Rating system (RMR) is mainly 
applicable to tunnelling and a few 
modified versions were proposed by 
several researchers, [4, 5, 6]. 
Additionally, it is commonly 
implemented in foundation engineering 
and slope stability, [7]. A recent update 
for the RMR provides sets of equations 
for the empirical design of support and 
estimation of rock pressure on the 
support, [8]. The Q-system is proposed 
only for tunnel design and an updated 
version of the system introduces 
reinforced ribs of shotcrete as a support 
element for weak ground conditions, [9, 
10]. A modified version of the Q-system 
was proposed for hard rock mining 
environment, [11, 12]. Rock Mass Index 
(RMi) [13] and Rock Mass Quality Rating 
(RMQR) [14] are other common rock 
mass classification systems. However, 
the RMR and Q-system are the most 
commonly used systems in civil and 
mining engineering. Geological Strength 
Index (GSI) is a different classification 

system when compared to other systems 
since it is only used for the 
representation 
 
 
 
of the structural quality of the rock mass 
and is incorporated in the Generalized 
Hoek Brown failure criterion, [15, 16]. A 
failure criterion for a rock mass can be 
estimated by using the GSI parameter 
and laboratory test results on intact rock. 
The deformability and strength 
parameters of the rock masses can be 
estimated by the utilization of the 
previously mentioned systems. The 
original GSI chart can be used by 
imposing a visual impression of the rock 
mass and obtain a GSI rating. However, 
many quantified versions of the GSI 
charts are present, [17, 18, 19, 20]. 
Additionally, some researches presented 
GSI charts of the particular use for flysch 
and sedimentary rock masses, [21].   
 
2.  Material and Method 
 
2.1. Interrelation Between Rock Mass 
Classification Ratings 
It should be reminded that the basic RMR 
(bRMR) rating lies between 0 and 100 
consisting of 5 parameters for uniaxial 
compressive strength, RQD, discontinuity 
spacing and condition, and groundwater. 
Final RMR can be calculated by 
considering the discontinuity orientation 
adjustment. Additionally, adjusted RMR 
(aRMR) can be adjusted for blast damage, 
field stress, and weakness planes, [22]. 

*Sorumlu  yazar: feridoge@mu.edu.tr  
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However; clear guidelines for such 
adjustments are missing. The Q-system 
consists of 6 parameters, RQD, joint set 

number (Jn), Joint roughness (Jr), joint 
alteration (Ja), ground water condition 
(Jw) and stress reduction  factor (SRF).

  Table 1. Evaluation of Various Correlations between RMR and Q [7]

Correlation Related Reference 
Coefficient of 

determination (R2) 

RMR=9 lnQ + 44 Bieniawski [24] 0.77 

RMR=5.9 lnQ + 43 Rutledge and Preston [26] 0.81 

RMR=5.4 lnQ + 55.2 Moreno [27] 0.55 

RMR=5 lnQ + 60.8 Cameron-Clarke and Budavari [28] High scatter 

RMR=10.5 lnQ + 41.8 Abad et al. [29] 0.66 

 
SRF includes parameters related to 
weakness zones, rock burst, and 
squeezing conditions. In this study, 
bRMR represents the basic RMR value 
according to the version published in 
1989. aRMR represents, the discontinuity 
and the field stress condition adjusted 
RMR rating. The Q-system rating is 
directly used, however, Q' was also 
accounted in this study dropping the Jw 
and SRF parameters, [7]. 
 
Various researchers investigated the 
relationship between the RMR and Q 
systems by using several cases, (Table 1). 
 
According to Goel et al. [23], based on 
115 case histories, including 77 reported 
by Bieniawski [24], 4 from the Kielder 
experimental tunnel reported by Hoek 
and Brown [25], and 34 collected from 
India, the correlation coefficients of the 
approaches were stated as not sufficient. 
It is important to mention that the 
classification system guidelines were 
outdated since the latest version of RMR 
was proposed in 1989 and the Q-system 
was updated by minor changes in 2013. 
N and Rock condition rating (RCR) 
parameters can also be used for the 
correlation of well-known classification 
systems in a transformed form. The value 
N is obtained for any Q value with SRF=1. 
The RCR value can be obtained by taking 
the RMR parameters into account with 
an exception of the uniaxial compressive 
strength rating and the discontinuity 
adjustment. In other words, the RCR is a 

bRMR rating with a zero rating for the 
UCS value. Then, a correlation with 
higher prediction capability can be 
obtained if the condition UCS>5MPa is 
valid, [7]:  

 (1) 

  

Tzamos and Sofianos [30] used the 
shared parameters of the four commonly 
used rock mass classification systems in 
order to construct correlations between 
the systems RMR, Q, GSI, and RMi. The 
parameters on the fabric indices of rock 
mass, such as the rock structure rating 
and the discontinuity conditions were 
utilized in the correlations.  
 
Palmström [31] claimed that the Qc and 
RMR correlation is stronger and had 
better estimation performance. The 
parameter Qc = Q(UCS/100) is used as a 
strength adjusted Q-system rating in this 
approach. This application improves the 
estimation performance especially if the 
rock mass is classified as weak rock. 
 
Another relation was proposed by Hoek 
and Brown [15] which suggested to use 
GSI = RMR'89 – 5 (if RMR>23 or GSI>18) 
in order to relate the GSI and the RMR: 
 
Here the RMR'89 is calculated for a 
groundwater rating which is equal to 15. 
Similarly, if GSI<18 the following 
equation can be used: 
 

  (2) 
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where 
 

 
(3) 

  

For the GSI correlations, visual estimates 
or other derived equations are still used. 
The quantified GSI ratings can be 
calculated by the discontinuity condition 
parameters of both RMR and Q-system, as 
given below, [19]: 
 

GSI = 1.5 Dc + RQD/2 (4) 

 
GSI= 52(Jr/Ja)/(1+Jr/Ja) 
+ RQD/2 

 
(5) 

Where Dc is the discontinuity condition 
rating of the RMR. Above mentioned 
equations provide better GSI estimates 
by utilizing some of the RMR and Q-
system parameters. 
 
2.2. Geology of the Area 
Tuysuz and Genç [32] studied the 
geology of the research area. The 
Pliocene-aged formation (Deniş) is 
underlain by Miocene aged Soma 
formation. Deniş Formation contains 
clastic limnic deposit succession with 
coal intercalations. The unit was sub-
classified into 6 series by Nebert [33]. 
They were identified as; Sandstone-
Siltstone-reddish/greenish coloured Clay 
level (P1), Pliocene Lignite level (KP1), 
Clay-Tuff-Marl series (P2ab), Clay-
Sandstone-Conglomerate level (P2c), 
Finely Graveled (siliceous) Calcareous 
level (P3) and Tuff-agglomerate (P4 or 
Pltv) levels, (Figure 1).  
 
Another rock group situated together 
with the volcanic series, where its typical 
outcrops are commonly observed in the 
vicinity of Elmadere village, is flowing 
breccia.  These are formed in thick layers 
of a lithology with bad but distinctive, 
various sized angular lava gravels as well 

as lavas in the form of cements. The 
pyroclastic flow and rubble units are 
composed of latitic, andesitic, and rarely 
dacitic fine lava level and intercalated 
with flowing breccias and lahar levels. 
The lahar levels contain gravel and 
blocks in medium-coarse size, generally 
rounded and spherical andesite and 
latite, occasionally in dacite composition. 
Although they are mostly represented by 
lava flows, their dikes and vein systems 
intersect with the deposits and the 
pyroclastics were also observed. Typical 
examples can be observed at the 
southern part of the area, in the east and 
west of Kocadere, and also in the vicinity 
of the Kızkaya regions. 
 

 
Figure 1. Generalized stratigraphy of Soma 
coal basin (after Aksoy et al. [35]) 
 

The Soma Formation starts with a 
basement conglomerate unit and overlies 
discordantly the metamorphic rocks. The 
conglomerate contains grey coloured, 
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fine-medium grain sized grains cemented 
with sand and silt. A lignite zone with a 
thickness between 3.5 m and 30 m 
overlies this basement detritus defined 
as M1. Known as KM2 in the regional 
Neogene nomenclature, this lignite has 
generally a hard, massive, black, and 
bright appearance. A bluish-grey 
coloured marl level overlays KM2 zone.  
 

Brinkman et al. [34] combines this 
lithology defined as M2 with the upper 
limestone level (M3).  It was determined 
that both marl and limestone was 
defined together as “marl-calcareous 
series”. The marl directly overlays KM2 
lignite zone, with a sharp contact. The 
marls are grey, grey-green coloured, 
hard, and massive. It is medium-thick 
layered and abundant of leaf fossils. In 
these levels, marls are splitted into small 
plates and in almost cardboard shale 
appearances. 
 
The study area is located at the south of 
Bakırçay Graben. This graben is one of 
the most important graben formations in 
NW Anatolia. Bakırçay Graben starts with 
Dikili-Çandarlı at the West, extends to 
the east, gets narrow eastwardly, and 
changes direction in the vicinity of Soma. 
The basin is bounded at the north by an 
oblique slip active fault which is also a 
boundary for the Bergama Valley. At the 
south, small fault segments dominated by 
vertical slip components limit the 
graben’s boundaries. Dirik et al. [36] 
claimed that the coal basins located at 
the western part of Soma developed in 
Pliocene-Quaternary period and 
remained over the Çamlıca Rise which 
was disintegrated by block faults. 
 
Another structural element in the study 
area are the folds. They are determined 
by the strike and dips of the deposits, and 
changing features of the layers through 
the borehole cores. It is known from 
previous studies that Soma and Deniş 
Formations are folded. From both Dirik’s 

[36] data and the borehole data, some 
folds are syn-sedimentary folds (slump 
structure). The slump nature of the folds 
is clearly seen through the boreholes, 
also from the low-angled slopes or 
horizontal beddings that overlie or 
underlie steeply layered zones. Many 
medium-scaled folds were also 
determined in the area as well. These are 
symmetrical and are located along the 
NE-SW direction. The fold structures are 
especially important for synclinal 
structures, exploration of underground 
waters, and underground water 
movements. Although the strata dip 
directions are generally towards SE, SW 
and NW directions, the strikes of the 
layers are dominated in the NE-SW 
direction and are partially NW-SE 
directed. NE directed layer dip directions 
are rarely observed. 
 
2.3. Data Characteristics 
The study area is a decline heading of an 
underground coal mine development 
which is planned to pass through all 
geological formations in the Soma coal 
basin located in Soma/Manisa and 
Kınık/İzmir. A section with 2100 m 
length is considered in the study. During 
the decline heading, aRMR, bRMR, Q, Q', 
and GSI ratings were collected directly 
from the face mapping and logging, 
separately. 125 different chainages were 
considered in the data collection. Due to 
the geological complexity and strongly 
varying geology within short advance 
intervals, two values for each 
classification parameter were calculated. 
One of the parameters belongs to the 
dominant zone and the other one was 
attained for the minor zone at face. As a 
result, a total of 250 data points were 
obtained for the study. The data is 
obtained from the sections of the decline 
driven through P2c, P2ab, and volcanic 
units. The units, P2c and P2ab are 
generally observed to have poor rock 
mass character, while volcanic rock 
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masses in the study area generally 
exhibit good rock mass conditions.  
 
Frequency histograms of the collected 
data based on the related rock mass 
classification systems are provided in 

Figure 2. When the RMR is considered for 
the basic and adjusted values, it is 
observed that the rock mass quality is 
mostly in fair to very poor rock classes. 
 

 
                         Figure 2. Frequency histograms for rock mass classification data 

 
The distributions of the ratings Q and Q' 
are similar to the RMR values. A rock 
mass class could not be assigned for Q' 
since groundwater and stress reduction 
factor were missing. The majority of the 
data points have Q values smaller than 1. 
There is a significant amount of data 
between 0.001 and 0.01. Considering the 
database, it can be remarked that the 
study is mostly concentrated on very 
poor to fair rock mass classes. This fact is 
also verified by the normality test. In the 

probability functions, p-values are 
smaller than 0.005 for all classifications. 
Anderson-Darling coefficients lie 
between 1.8 and 6.1 which are relatively 
high. Indicators show that the data is 
non-homogenously distributed. In none 
of the data points, extreme water inflow 
was observed. Mostly, conditions were 
dry, damp, or wet. This fact limits the 
utilization of the findings presented in 
this study. The findings can be used in 
cases where serious groundwater ingress 
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is not present. In the field, sedimentary 
rock units were generally moist. Due to 
the excavation induced permeability 
increase around the excavation, the 
groundwater was observed to 
deteriorate the rock material. However, 
during the data collection the initial state 
of the rock mass was taken into account. 
For the uniaxial compressive strength 
rating of the RMR system, the lithology is 
matched with the 
numerous laboratory test results and 
ISRM suggested field estimates, [37]. The 
drill core samples obtained from 14 
boreholes were used in the laboratory 
testing and numerous test results were 
available for the study. The results and 
observed lithology were matched but 
thin beddings exhibiting frequent 
alternation of the geological units caused 
difficulties in the representation of the 
rock mass. The dominant and minor zone 
approach provided identification of a 
range for the classification data. The 
dominant and minor zone approach was 
employed in the chainages where it was 
necessary. In the presence of 
homogenous rock mass conditions, only 
a single set of rock mass classification 
data was identified. 
 
2.4. Simple Regression and Neural 
Network Fitting 
Simple regression method was 
implemented commonly for the 
correlation of RMR, Q, Q', and GSI as it is 
presented in section 2.1. Linear 
regression is preferred for the 
correlation of RMR and GSI since they are 
linear variables and have a range 
between 0 and 100. A logarithmic 
function is necessary when Q or Q' is 
taken into consideration for the 
correlation of RMR or GSI. Natural 
logarithm of Q or Q' parameters were 
utilized in this study for the regression 
work. The coefficient of determination is 
the main performance indicator for the 
regressions. 
 

Alvarez Grima and Babuska [38] 
explained that neural networks (NN) are 
simplified models of the biological 
structure found in human brains. 
Neurons are elementary processing units 
and there is large amount of 
interconnections among them. The 
interconnections provide a capability to 
learn from the processed data led 
algorithm to exhibit strong classification 
and prediction performance. Therefore, 
neural network fitting can be used to 
develop complex relationships among 
variables. Neural-networks are widely 
used in rock engineering and rock 
mechanics in order to relate several 
parameters, such as laboratory or field 
test results, [39, 40]. 
 
Rafiai and Jafari [41] used the NN as a 
failure criteria prediction tool. Prediction 
of the cutting performance was also 
handled by using the same method, [42, 
43, 44]. Sonmez et al. [45] employed 
artificial NN for the prediction of intact 
rock modulus. Yesiloglu-Gultekin et al. 
[46] utilized the neural networks in 
order to predict the uniaxial compressive 
strength for six granite types. A study 
about the excavation performance was 
carried out by similar approaches with 
multiple parameters by Küçük et al. [47]. 
Prediction of the drilling performance 
was investigated by the similar approach, 
[48]. 
 
In this study, Levenberg-Marquardt back 
propagation method was used for the 
training of the neural network. This 
algorithm was chosen because it is one of 
the fastest methods for training 
moderate-sized neural networks. 
MATLAB v.9 [39] provides a neural 
network fitting toolbox which enables 
researchers to handle the fitting process 
with a GUI. The structure was 
constructed in a simple form. One hidden 
and one output layer were sufficient for 
fitting two parameters, (Figure 3). 
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Figure 3. Structure of neural network 

 
The neural network was constructed in 
the form of a feed forward network with 
sigmoid hidden neurons and linear 
output neurons. In fact, NN was well 
suited for the solution of multi-variable 
and complex problems. In this study, one 
variable (i.e. Q) was selected as a 
predictor to estimate only a single target 
(i.e. RMR). In fact, NN is capable of fitting 

one predictor and one target with a high 
R2 since the problem is not complex. 
 

To define a fitting problem for the 
toolbox, a set of input vectors were   
arranged in the columns of a matrix. 
Then, another set of target vectors were 
arranged correspondingly (the actual 
output vectors for each of the input 
vectors) into a second matrix. 70% of the 
250 data rows were used in training of 
the NN, 15% of the data was reserved for 
testing, and 15% for the validation of the 
model. 
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                         Figure 4. Correlations of bRMR, aRMR, Q, Q' and GSI 
 

3. Results  
Initially, the collected data was subjected 
to simple regression analysis. As it is 
shown in Figure 4, majority of the data is 
available in the range of fair to very poor 
rock mass. For the highest quality rock 
mass, less amount of data was available.  
 

For Basic RMR (bRMR), it can be 
indicated that the representation of very 
poor rock masses on-site was a problem. 
If the ground is dry, then a minimum 
rating of 15 is attained. The bRMR rating 
gets above 20 easily, even though the 
remaining ratings are lying on the lower 
bound. In the bRMR-Q correlation, only a 
few data points having the RMR value 
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smaller than 20 are observed. For bRMR 
and Q correlation, when Q rating has the 
smallest value (0.001), bRMR is greater 
than 10 according to the intercept of the 
fitting equation. When the adjusted RMR 
value in aRMR-Q correlation is 
investigated, an improved fitting 
equation with higher R2 value is 
obtained. It should be reminded that, 
aRMR value is adjusted by discontinuity 
orientation rating in accordance with the 
RMR guidelines. 
 
Additionally, due to the high overburden 
and weak rock mass conditions, the field 
stress corrections were applied for the 
data points of the aRMR, where 
necessary. In Q' rating, SRF and Jw 
parameters are disregarded hence it only 
represents the facts of the structural 
quality of the rock mass. Since GSI 
represents the structural quality only, it 
is expected to be correlated with Q' with 
high R2, which is not the case in this 
study. Unexpectedly, the parameter Q' is 
strongly correlated with the ratings 
aRMR and bRMR represented by a higher 
value of R2 when compared to the rest of 
the parameters used in the correlation 
study. Among the correlations with the 
GSI, the bRMR has the greatest 
correlation coefficient. In the correlation 
of aRMR and GSI, the scatter is greater 
than the others. For the parameters Q 
and Q', although satisfactory R2 values 
are obtained, considerable scatter is 
clearly visible in the correlations. Several 
correlations are presented in this section 
to discuss and evaluate the issue and 
present the performance of correlations. 
However, only the suggested equations 
are given in Table 2. 
In Table 2, calculation of the Q or Q' is 
suggested first then the RMR ratings 

should be calculated. The ambiguity in 
the field stress adjustment of the RMR, 
especially for squeezing conditions, led 
to the abovementioned suggestion. 
Another concern is the performance of 
RMR for the representation of very poor 
rock masses. While Q lies between 0.001 
and 0.01, Basic RMR or, discontinuity 
adjusted RMR does not fall in the range 
between 0 and 20 for the same rock mass 
conditions. This study reveals that, in 
very poor rock masses, it is suggested to 
acquire Q rating first and then aRMR 
rating should be correlated. The 
correlation of bRMR with GSI had the 
highest R2 among the other GSI 
relationships. Still, the scatter of data is 
significant when GSI is considered.  
 
Table 2. Suggested correlations for the rock 
mass classification systems 
Correlation R2 

aRMR = 6.645 lnQ + 45.50 0.87 
aRMR = 6.696 lnQ' + 32.10 0.84 
bRMR = 0.698 GSI + 11.97 0.83 

 
Following the regression work, three NN 
fitting models were constructed for 
aRMR-Q, aRMR-Q', and bRMR-GSI. All of 
the three prediction models performed 
better than regressions with small error 
distribution and high R2 values, (Figure 
5). The predicted (target)-estimated 
(output) plots are given for the complete 
data, not individually for the sets of 
training and validation. 
 
When the error histograms are inspected 
(Figure 5.a-c), very small errors (<0.1) 
are observed. The error values are 
insignificant since predicted RMR or GSI 
ratings do not have such small 
sensitivity.  
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                         Figure 5. Error histograms for a) aRMR-Q b) aRMR-Q' c) bRMR-GSI and predicted 
(target)-estimated (output) plots for d) aRMR-Q e) aRMR-Q' f) bRMR-GSI  
 

That is to say, predicted-estimated R2 
values are close to the possible 
maximum. Generally, other statistical 
parameters are also used to measure the 
performance of NN models, such as Root 
Mean Square Error or Variation 
Accounted For. 
 
In this study, it is concluded that 
employing such effort is not necessary 
due to the high R2 values and 
insignificant error, (Figure 5.d-f).  
However, the NN fitting tool utilizes a 
very complex algorithm and background 
thus, an equation cannot be produced. 
Instead a MATLAB compatible file can be 
constructed. 
 
4. Discussion and Conclusion 
The ratings, basic and adjusted RMR, Q, 
Q' and GSI were correlated and all 
derived equations resulted in having 
higher R2 values than the previous 
studies in the same field. Although all of 
the correlations converged to R2 values 

greater than 0.73, only three of them are 
suggested due to having greater R2 
values and relatively low scatter. The 
correlations in the form of simple 
regressions seem to be satisfactory but 
the scatter seems to be considerable and 
in particular cases the difference 
between estimated and predicted values 
can be crucial. In fact, the best practice is 
the collection of data on site for all 
classification systems and the 
computation of each rating separately. In 
such cases, the correlations can be used 
for verification purposes. However, the 
equations given in this study can be 
expected to best suit the Pliocene-aged 
formations of Soma coal basin due to the 
obtained data. In the available data, poor 
end ratings are present but it is difficult 
to represent the same class by the rating 
bRMR especially if the rock mass is very 
weak and the depth is great. In such 
cases, Q-system fits the problem better. 
Alternatively, the field stress adjustment 
is necessary for RMR. This observation 
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can be verified by having greater R2 
values for the correlations of aRMR and 
Q.  The Neural Network application is 
found to be superior to the regressions 
for this research study as the error 
values of the NN is smaller and 
practically negligible when compared to 
regression. 
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