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Summary. Gao gave a criterion for the integral indecomposability, with respect

to the Minkowski sum, of polytopes lying inside a pyramid with an integrally

indecomposable base. Here, we weakened this criterion to the polytopes lying

inside the convex hull of two polytopes, one of which is integrally indecompos-

able, being in two parallel nonintersecting hyperplanes.
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1. Introduction

Let R denote the n-dimensional Euclidean space and  be a subset of R
The smallest convex set containing  denoted by conv(S), is called the convex

hull of  If  = {1 2  } is a finite set then we shall denote () by
(1  ) It is straightforward to show that

() =

(
X
=1

 :  ∈   ≥ 0
X
=1

 = 1

)


The principle operation for convex sets in R is defined as follows.

Definition 1. For any two sets A and B in R, the sum

+ = {+  :  ∈   ∈ }
is called Minkowski sum, or vector addition of A and B.

The convex hull of finitely many points in R is called a polytope.
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A point in R is called integral if its coordinates are integers. A polytope in

R is called integral if all of its vertices are integral. An integral polytope 
is called integrally decomposable if there exist integral polytopes  and  such

that  = + where both  and  have at least two points. Otherwise,  is

called integrally indecomposable.

Definition 2.. Let  be any field and consider any multivariate polynomial

(1 2  ) =
X

12
1
1 22  ∈  [1  ]

We can think an exponent vector (1 2  ) of  as a point in R The
Newton polytope of  denoted by   is defined as the convex hull in R of all
the points (1  ) with 12 6= 0

A polynomial over a field  is called absolutely irreducible if it remains irre-

ducible over every algebraic extension of  .

Using Newton polytopes of multivariate polynomials, we can determine infinite

families of absolutely irreducible polynomials over an arbitrary field  by the

following result due to Ostrowski [5], c.f. [2].

Lemma 1. Let    ∈  [1  ] with  =  Then  =  + 

As a direct result of Lemma 1, we have the following corollary which is an

irreducibility criterion for multivariate polynomials over arbitrary fields.

Corollary. Let  be any field and  a nonzero polynomial in  [1  ] not

divisible by any  If the Newton polytope  of  is integrally indecomposable

then  is absolutely irreducible over 

When  is integrally decomposable, depending on the given field,  may be

reducible or irreducible. For example, the polynomial  = 9 + 9 + 9 has the

Newton polytope

 = ((9 0 0) (0 9 0) (0 0 9))

= ((6 0 0) (0 6 0) (0 0 6)) + ((3 0 0) (0 3 0) (0 0 3))

But, while  = 9 + 9 + 9 = ( +  + )9 over F3 it is irreducible over
F2F5F7F11 where F represents the finite field with  elements.

In [2], [3] and [4], infinitely many integrally indecomposable polytopes in R

are presented and then, being associated to these polytopes, infinite families of

absolutely irreducible polynomials are determined over any field 

We need some new terminologies. For details, see [1].
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Definition 3. For  ∈ R  ∈ R the set

 = { ∈ R :  ·  = }

is called a hyperplane, where

 ·  = 11 + + 

is the dot product of the vectors  = (1  )  = (1  ) In a natural

manner, the closed halfspaces formed by  are defined as

− = { ∈ R :  ·  ≤ } + = { ∈ R :  ·  ≥ }

A hyperplane  is called a supporting hyperplane of a closed convex set  ⊂
R if  ⊂ +

 or  ⊂ − and  ∩  6= ∅ i.e.  contains a boundary

point of . A supporting hyperplane  of  is called nontrivial if  is not

contained in   The halfspace 
−
 (or +

) is called a supporting halfspace of

 possibly we may have  ⊂  

Let  ⊂ R be a compact convex set. Then for any nonzero vector  ∈ R the
real number  = ∈( · ) is defined as { ·  :  ∈ } where

 ·  = 11 + + 

is the dot product of the vectors  = (1  ) and  = (1  )

Let  ⊂ R be a nonempty convex compact set. The map

 : R → R → ∈( · )

is called the support function of 

Let  ⊂ R be a nonempty convex compact set. For every fixed nonzero vector
 ∈ R the hyperplane having normal vector  is defined as

() = { ∈ R :  ·  = ()}

Note that () is a supporting hyperplane of 

It is known that every supporting hyperplane of  has a representation of this

form. See [1].

Let  be a polytope. The intersection of  with a supporting hyperplane 

is called a face of  . A vertex of  is a face of dimension zero. An edge of  is

a face of dimension 1 which is a line segment. A face  of  is called a facet

if dim (F)= dim (P) −1 If  is any nonzero vector in R,  () =  () ∩ 
shows the face of  in the direction of  that is the intersection of  with its

supporting hyperplane  () having outer normal vector  And, it is known

that  () = () + () if  = + for some polytopes  and 
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If  is a polytope and  is a point in R then, the translation of  by  is the

set

 +  = {+  :  ∈ }
The following theorem explains the most important properties about the decom-

position of polytopes. Especially, it shows how faces of a polytope decompose

in a Minkowski sum of polytopes.

Theorem 1. (a) If  and  are the support functions of the convex sets 

and  in R respectively, then,  +  is the support function of  +  i.e.

+ =  + 

(b) + =  +

(c) If  is a face of  + then there exist unique faces    of  respec-

tively such that

 =  + 

In particular, each vertex of + is the sum of unique vertices of  respec-

tively.

(d) If  and  are polytopes, then so is  + 

(e) If  is a polytope in R with  =  + , then so are  and  (which are

called summands of ).

Proof: See, e.g., the proof of [1].

A New Criterion for Integral Indecomposability

In [2], Gao gave the following result.

Theorem 2. Let  be an integrally indecomposable polytope in R which
is contained in a hyperplane  and having at least two points. Let  ∈ R
be an arbitrary point which is not contained in  If  is any set of integral

points in the pyramid (), then the polytope  = () is integrally

indecomposable.

Our new criterion is given as follows.

Theorem 3. Let  ∈ R, 1 and 2 = 1 +  be nonintersecting parallel

hyperplanes in R and let 1 be an integrally indecomposable polytope lying
inside 1 and having at least two points. Consider the polytope 2 ⊂ 1+ ⊂
2 Assume that at least one of the vertices of 2 does not lie on the boundary of

the polytope1+ If  is any set of integral points in the polytope (1 2)

then the polytope  = (1 ) is integrally indecomposable.

Proof. Let  = (1 ) be the polytope as described in Figure 1. Observe

that, since 1 =  ∩ 1, 1 is a face of  If  =  +  for some integral

polytopes  and  then, by Theorem 1,  and  have unique faces 1 and 1
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respectively, such that 1 = 1 + 1. While 1 is integrally indecomposable,

1 or 1 must consist of only one point, say 1 = {} for some point  ∈ R
and hence 1 = 1 + (−) Shifting  and  suitably, i.e. writing

 = ( + (−)) + (+ )

we may suppose that 1 = {0} and 1 = 1 Our aim is to show that  must

contain only one point, i.e.  = 1 = {0} But, this is geometrically obvious
from Figure 1, since for 0 6=  ∈ R any shifting  + 1 cannot lie in the

polytope (1 2)

Figure 1.

Example1. Let  and  be relatively prime positive integers, and  ≥ 0 and
 ≥ + 1 be arbitrary integers. Then, the quadrangle

 = (( 0) (+ 1 + ) (0 ) (0 ))

is integrally indecomposable by Theorem 2, or Theorem 3. Consequently, by

Theorem 3, the integral polytopes

 = (( 0 0) (+1 +  0) (0  0) (0  0) ( 0 ) (0  ) (0  ))

 = (( 0 0) (+1 + 0) (0  0) (0  0) ( 0 ) (+1 + ) (0  ))

 = (( 0 0) (+1 + 0) (0  0) (0  0) ( 0 ) (+1 + ) (0  ))

are integrally indecomposable, where  is any positive integer, see Figure 2.
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For example, taking  = 10  = 21  = 30  = 5 and  = 70, we see that the

integral polytope

 = ((10 0 0) (11 35 0) (0 30 0) (0 21 0) (10 0 70) (0 30 70) (0 21 70))

is integrally indecomposable.

As a result, the multivariate polynomial

 = 1
10+2

1135+3
30+4

21+5
1070+6

3070+7
2170+

X




with (  ) ∈  and  ∈  \ {0} is absolutely irreducible over any field  by

Corollary 1.

Figure 2.
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