Selçuk J. Appl. Math.
Vol. 7. No. 1. pp. 3-8, 2006

Integrally Indecomposable Polytopes

Fatih Koyuncu

Muğla University, Faculty of Arts and Sciences, Department of Mathematics 48000, Muğla, Turkey
e-mail: fatih@mu.edu.tr

Received: January 7, 2005

Summary. Gao gave a criterion for the integral indecomposability, with respect to the Minkowski sum, of polytopes lying inside a pyramid with an integrally indecomposable base. Here, we weakened this criterion to the polytopes lying inside the convex hull of two polytopes, one of which is integrally indecomposable, being in two parallel nonintersecting hyperplanes.

Key words: Polytopes, integral indecomposability, multivariate polynomials.

1. Introduction

Let \mathbb{R}^{n} denote the n-dimensional Euclidean space and S be a subset of \mathbb{R}^{n}. The smallest convex set containing S, denoted by conv (S), is called the convex hull of S. If $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a finite set then we shall denote $\operatorname{conv}(S)$ by $\operatorname{conv}\left(a_{1}, \ldots, a_{n}\right)$. It is straightforward to show that

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{k} \lambda_{i} x_{i}: x_{i} \in S, \lambda_{i} \geq 0, \sum_{i=1}^{k} \lambda_{i}=1\right\}
$$

The principle operation for convex sets in \mathbb{R}^{n} is defined as follows.
Definition 1. For any two sets A and B in \mathbb{R}^{n}, the sum

$$
A+B=\{a+b: a \in A, b \in B\}
$$

is called Minkowski sum, or vector addition of A and B.
The convex hull of finitely many points in \mathbb{R}^{n} is called a polytope.

A point in \mathbb{R}^{n} is called integral if its coordinates are integers. A polytope in \mathbb{R}^{n} is called integral if all of its vertices are integral. An integral polytope C is called integrally decomposable if there exist integral polytopes A and B such that $C=A+B$ where both A and B have at least two points. Otherwise, C is called integrally indecomposable.

Definition 2.. Let F be any field and consider any multivariate polynomial

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum c_{e_{1} e_{2} \ldots e_{n}} x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{n}^{e_{n}} \in F\left[x_{1}, \ldots, x_{n}\right]
$$

We can think an exponent vector $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of f as a point in \mathbb{R}^{n}. The Newton polytope of f, denoted by P_{f}, is defined as the convex hull in \mathbb{R}^{n} of all the points $\left(e_{1}, \ldots, e_{n}\right)$ with $c_{e_{1} e_{2} \ldots e_{n}} \neq 0$.

A polynomial over a field F is called absolutely irreducible if it remains irreducible over every algebraic extension of F.
Using Newton polytopes of multivariate polynomials, we can determine infinite families of absolutely irreducible polynomials over an arbitrary field F by the following result due to Ostrowski [5], c.f. [2].

Lemma 1. Let $f, g, h \in F\left[x_{1}, \ldots, x_{n}\right]$ with $f=g h$. Then $P_{f}=P_{g}+P_{h}$
As a direct result of Lemma 1, we have the following corollary which is an irreducibility criterion for multivariate polynomials over arbitrary fields.

Corollary. Let F be any field and f a nonzero polynomial in $F\left[x_{1}, \ldots, x_{n}\right]$ not divisible by any x_{i}. If the Newton polytope P_{f} of f is integrally indecomposable then f is absolutely irreducible over F.

When P_{f} is integrally decomposable, depending on the given field, f may be reducible or irreducible. For example, the polynomial $f=x^{9}+y^{9}+z^{9}$ has the Newton polytope

$$
\begin{aligned}
P_{f} & =\operatorname{conv}((9,0,0),(0,9,0),(0,0,9)) \\
& =\operatorname{conv}((6,0,0),(0,6,0),(0,0,6))+\operatorname{conv}((3,0,0),(0,3,0),(0,0,3))
\end{aligned}
$$

But, while $f=x^{9}+y^{9}+z^{9}=(x+y+z)^{9}$ over \mathbb{F}_{3}, it is irreducible over $\mathbb{F}_{2}, \mathbb{F}_{5}, \mathbb{F}_{7}, \mathbb{F}_{11}$, where \mathbb{F}_{m} represents the finite field with m elements.

In [2], [3] and [4], infinitely many integrally indecomposable polytopes in \mathbb{R}^{n} are presented and then, being associated to these polytopes, infinite families of absolutely irreducible polynomials are determined over any field F.

We need some new terminologies. For details, see [1].

Definition 3. For $\alpha \in \mathbb{R}, \beta \in \mathbb{R}^{n}$ the set

$$
H=\left\{x \in \mathbb{R}^{n}: \beta \cdot x=\alpha\right\}
$$

is called a hyperplane, where

$$
\beta \cdot x=\beta_{1} v_{1}+\ldots+\beta_{n} v_{n}
$$

is the dot product of the vectors $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right), v=\left(v_{1}, \ldots, v_{n}\right)$. In a natural manner, the closed halfspaces formed by H are defined as

$$
H^{-}=\left\{x \in \mathbb{R}^{n}: \beta \cdot x \leq \alpha\right\}, \quad H^{+}=\left\{x \in \mathbb{R}^{n}: \beta \cdot x \geq \alpha\right\}
$$

A hyperplane H_{K} is called a supporting hyperplane of a closed convex set $K \subset$ \mathbb{R}^{n} if $K \subset H_{K}^{+}$or $K \subset H_{K}^{-}$and $K \cap H_{K} \neq \emptyset$, i.e. H_{K} contains a boundary point of K. A supporting hyperplane H_{K} of K is called nontrivial if K is not contained in H_{K}. The halfspace H_{K}^{-}(or H_{K}^{+}) is called a supporting halfspace of K, possibly we may have $K \subset H_{K}$.
Let $C \subset \mathbb{R}^{n}$ be a compact convex set. Then for any nonzero vector $v \in \mathbb{R}^{n}$, the real number $s=\sup _{x \in C}(x \cdot v)$ is defined as $\max \{x \cdot v: x \in C\}$, where

$$
x \cdot v=x_{1} v_{1}+\ldots+x_{n} v_{n}
$$

is the dot product of the vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$.
Let $K \subset \mathbb{R}^{n}$ be a nonempty convex compact set. The map

$$
h_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad u \rightarrow \sup _{x \in K}(x \cdot u)
$$

is called the support function of K.
Let $K \subset \mathbb{R}^{n}$ be a nonempty convex compact set. For every fixed nonzero vector $u \in \mathbb{R}^{n}$, the hyperplane having normal vector u is defined as

$$
H_{K}(u)=\left\{x \in \mathbb{R}^{n}: x \cdot u=h_{K}(u)\right\} .
$$

Note that $H_{K}(u)$ is a supporting hyperplane of K.

It is known that every supporting hyperplane of K has a representation of this form. See [1].

Let P be a polytope. The intersection of P with a supporting hyperplane H_{P} is called a face of P. A vertex of P is a face of dimension zero. An edge of P is a face of dimension 1 , which is a line segment. A face F of P is called a facet if $\operatorname{dim}(\mathrm{F})=\operatorname{dim}(\mathrm{P})-1$. If u is any nonzero vector in $\mathbb{R}^{n}, F_{P}(u)=H_{P}(u) \cap P$ shows the face of P in the direction of u, that is the intersection of P with its supporting hyperplane $H_{P}(u)$ having outer normal vector u. And, it is known that $F_{P}(u)=F_{Q}(u)+F_{R}(u)$ if $P=Q+R$ for some polytopes Q and R.

If P is a polytope and v is a point in \mathbb{R}^{n} then, the translation of P by v is the set

$$
P+v=\{a+v: a \in P\}
$$

The following theorem explains the most important properties about the decomposition of polytopes. Especially, it shows how faces of a polytope decompose in a Minkowski sum of polytopes.

Theorem 1. (a) If h_{K} and h_{L} are the support functions of the convex sets K and L in \mathbb{R}^{n} respectively, then, $h_{K}+h_{L}$ is the support function of $K+L$, i.e.

$$
h_{K+L}=h_{K}+h_{L} .
$$

(b) $H_{K+L}=H_{K}+H_{L}$.
(c) If F is a face of $K+L$, then there exist unique faces F_{K}, F_{L} of K, L respectively such that

$$
F=F_{K}+F_{L} .
$$

In particular, each vertex of $K+L$ is the sum of unique vertices of K, L respectively.
(d) If K and L are polytopes, then so is $K+L$.
(e) If A is a polytope in \mathbb{R}^{n} with $A=B+C$, then so are B and C (which are called summands of A).

Proof: See, e.g., the proof of [1].

A New Criterion for Integral Indecomposability

In [2], Gao gave the following result.
Theorem 2. Let Q be an integrally indecomposable polytope in \mathbb{R}^{n} which is contained in a hyperplane H and having at least two points. Let $v \in \mathbb{R}^{n}$ be an arbitrary point which is not contained in H. If S is any set of integral points in the pyramid $\operatorname{conv}(v, Q)$, then the polytope $P=\operatorname{conv}(Q, S)$ is integrally indecomposable.

Our new criterion is given as follows.
Theorem 3. Let $v \in \mathbb{R}^{n}, H_{1}$ and $H_{2}=H_{1}+v$ be nonintersecting parallel hyperplanes in \mathbb{R}^{n}, and let Q_{1} be an integrally indecomposable polytope lying inside H_{1} and having at least two points. Consider the polytope $Q_{2} \subset Q_{1}+v \subset$ H_{2}. Assume that at least one of the vertices of Q_{2} does not lie on the boundary of the polytope $Q_{1}+v$. If S is any set of integral points in the polytope $\operatorname{conv}\left(Q_{1}, Q_{2}\right)$ then the polytope $P=\operatorname{conv}\left(Q_{1}, S\right)$ is integrally indecomposable.

Proof. Let $P=\operatorname{conv}\left(Q_{1}, S\right)$ be the polytope as described in Figure 1. Observe that, since $Q_{1}=P \cap H_{1}, Q_{1}$ is a face of P. If $P=K+L$ for some integral polytopes K and L then, by Theorem 1, K and L have unique faces K_{1} and L_{1}
respectively, such that $Q_{1}=K_{1}+L_{1}$. While Q_{1} is integrally indecomposable, K_{1} or L_{1} must consist of only one point, say $K_{1}=\{a\}$ for some point $a \in \mathbb{R}^{n}$, and hence $L_{1}=Q_{1}+(-a)$. Shifting K and L suitably, i.e. writing

$$
P=(K+(-a))+(L+a),
$$

we may suppose that $K_{1}=\{0\}$ and $L_{1}=Q_{1}$. Our aim is to show that K must contain only one point, i.e. $K=K_{1}=\{0\}$. But, this is geometrically obvious from Figure 1 , since for $0 \neq u \in \mathbb{R}^{n}$, any shifting $u+Q_{1}$ cannot lie in the polytope $\operatorname{conv}\left(Q_{1}, Q_{2}\right)$.

Figure 1.

Example1. Let m and n be relatively prime positive integers, and $c \geq 0$ and $d \geq n+1$ be arbitrary integers. Then, the quadrangle

$$
Q=\operatorname{conv}((m, 0),(m+1, d+c),(0, d),(0, n))
$$

is integrally indecomposable by Theorem 2 , or Theorem 3 . Consequently, by Theorem 3, the integral polytopes
$A=\operatorname{conv}((m, 0,0),(m+1, d+c, 0),(0, d, 0),(0, n, 0),(m, 0, r),(0, d, r),(0, n, r))$,
$B=\operatorname{conv}((m, 0,0),(m+1, d+c, 0),(0, d, 0),(0, n, 0),(m, 0, r),(m+1, d+c, r),(0, d, r))$,
$C=\operatorname{conv}((m, 0,0),(m+1, d+c, 0),(0, d, 0),(0, n, 0),(m, 0, r),(m+1, d+c, r),(0, n, r))$
are integrally indecomposable, where r is any positive integer, see Figure 2.

For example, taking $m=10, n=21, d=30, c=5$ and $r=70$, we see that the integral polytope
$P=\operatorname{conv}((10,0,0),(11,35,0),(0,30,0),(0,21,0),(10,0,70),(0,30,70),(0,21,70))$
is integrally indecomposable.
As a result, the multivariate polynomial
$f=a_{1} x^{10}+a_{2} x^{11} y^{35}+a_{3} y^{30}+a_{4} y^{21}+a_{5} x^{10} z^{70}+a_{6} y^{30} z^{70}+a_{7} y^{21} z^{70}+\sum c_{i j k} x^{i} y^{j} z^{k}$, with $(i, j, k) \in P$ and $a_{i} \in F \backslash\{0\}$, is absolutely irreducible over any field F by Corollary 1.

Figure 2.

References

1. Ewald G. (1996): Combinatorial Convexity and Algebraic Geometry, GTM 168, Springer.
2. Gao S. (2001): Absolute irreducibility of polynomials via Newton polytopes, Journal of Algebra 237, No. 2 501-520.
3. Gao S. (2001): Decomposition of Polytopes and Polynomials, Discrete and Computational Geometry 26 , No. 1, 89-104.
4. Koyuncu F., Özbudak F. : A Geometric Approach to Absolute Irreducibility of Polynomials, submitted.
5. Ostrowski A. M. (1975): On multiplication and factorization of polynomials, I. Lexicographic orderings and extreme aggregates of terms. Aequationes Math. 13, 201-228.
