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Abstract: In the present paper, we introduce the fractional Bernstein series solution (FBSS) to solve the
fractional diffusion equation, which is a generalization of the classical diffusion equation. The Bern-
stein polynomial method is a promising one and can be generalized to more complicated problems in
fractional partial differential equations. To get the FBSS, we first convert all terms in the problem to
matrix forms. Then, the fundamental matrix equation is obtained and thus, the solution is obtained.
Two error estimation methods based on a residual correction procedure and the consecutive approx-
imations are incorporated to find the estimate and bound of the absolute error. The perturbation
and stability analysis of the method is given. We apply the method to some illustrative examples.
The numerical results are compared with the exact solutions and known second-order methods.
The outcomes of the numerical examples are very encouraging and show that the FBSS is highly
useful in solving fractional partial problems. The results show the accuracy and effectiveness of
the method.

Keywords: bernstein series; fractional calculus; diffusion equations; error estimate

1. Introduction

Fractional derivatives have been used to model many problems in science, e.g.,
physics [1–3], medicine [4], hydrology [5], biomedical problems [6], dynamics of par-
ticles [7] and applied sciences [8]. The linear fractional diffusion equation is considered
for scientists and engineers [9]. Fractional space derivatives are used in the modeling of
anomalous diffusion. In a diffusion model, replacement of the second derivative by a
fractional derivative causes enhanced diffusion, also called superdiffusion [10].

In the present study, we consider the following one-dimensional fractional diffusion
equation (FDE),

∂y(x, t)
∂t

= d(x)
∂αy(x, t)

∂xα
+ g(x, t), (1)

on a finite domain L < x < R, 1 < α ≤ 2 and d(x) > 0. We assume the initial condition
c(x, t = 0) = F(x) for L < x < R and the boundary conditions c(x = L, t) = 0 and
y(x = R, t) = bR(t).

The fractional derivative in Equation (1) is the Caputo fractional derivative of order
α [11]. The basic property of the Caputo derivative is as follows.

Dα
∗c = 0, (c constant),

Dα
∗xβ =

{
0, for β ∈ N0 and β < dαe,

Γ(β+1)
Γ(β+1−α)

xβ−α, for β ∈ N0 and β ≥ dαe or β > bαc.
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Several methods have been used to solve the FDE numerically, e.g., Crank–Nicholson
method, which is second-order accurate [12]; finite difference method [13]; finite ele-
ment method [14]; generalized differential transform method [15]; and Galerkin method,
which includes the normalized Bernstein polynomials, collocation method [16], the shifted
Jacobi tau method [17], and the Chebyshev spectral-tau method [18]. Fractional Taylor
vector to solve multi-term fractional differential equations [19].

One effective method to solve the problems is the Bernstein polynomials method
(BPM), also called the Bernstein series solution method [20–25]. Positive linear operators of
Bernstein with sequence of these operators are established to solve to solve two-variables
equations [26]. The operational matrices of the BPM have been used to get the numerical
solutions of a class of third-order ordinary differential equations [27]. The multi-stage
BPM, a generalization of the standard BPM, was applied to fractional-order stiff sys-
tems [28]. The BPM with new modifications was employed to solve fractional differential
equations [29]. Moreover, the same method was used to solve some types of ordinary
differential equations [30–32]. A special type of the singular Emden-Fowler problems was
solved by BPM [33]. Recently, some linear and non-linear systems of ordinary differential
equations have been solved by BPM and the accuracy has been improved by a residual cor-
rection procedure [34]. A novel error estimation method for the parametric non-intrusive
reduced order model based on machine learning is presented in [35].

In this paper, the fractional Bernstein series solution (FBSS) method is introduced and
applied to solve Equation (1) numerically. The method comprises the fractional Bernstein
polynomials and collocation method. We approximate the exact solution of Equation (1)
by fα pn,n

fα pn,n(x, t) =
n

∑
i=1

n

∑
j=1

aij fαBi,n(x)Bj,n(t),

such that fα pn,n satisfies Equation (1) on the collocation nodes.
This paper is organized as follows. Section 2 presents necessary definitions and

theorems. Section 3, the main section, discusses the matrix forms of the solution fα pn,n
with its derivatives. Then, we get the fundamental matrix equation of the FDE. Employing
the conditions and applying the Gauss elimination procedure yields the unknown matrix.
Thus, we obtain the FBSS. In Section 4, two different error analysis methods are presented
to get the upper bound of the absolute error with the corrected FBSS. Moreover, an upper
bound obtained by the generalized Taylor theorem is presented. To decide the stability,
the perturbation and stability analysis of the method is done in Section 5. Section 6 provides
the numerical results to illustrate the FBSS method for different n values. We compare
the method with other methods used to solve the problem. The results show that the
present method gives accurate solutions and is also efficient. We test the effect of small
perturbations to the approximate solutions both theoretically and practically for various
values of n. Section 7 summarizes the results.

2. Preliminaries and Notations

Bernstein polynomials of n-th degree are given by the following equation [29].

Bt,n(x) =
(

n
t

)
xt(R− x)n−t

Rn , t = 0, 1, 2, . . . , n x ∈ [0, R], (2)

Similarly, the fractional Bernstein polynomials Bα
k,n(x) are constituted by using x → xα,

so Equation (2) becomes

Bα
t,n(x) =

(
n
t

)
xtα(R− xα)n−t

Rn , 1 < α < 2, (3)

t = 0, 1, 2, . . . , n x ∈ [0, R],
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We will use the definition of Caputo’s derivative, which is the modification of the defi-
nition of Riemann-Liouville. It has some advantages for solvinginitial value problems [36].

Definition 1 ([37,38]). The Riemann–Liouville integral operator of order α > 0 for a ≥ 0 is
defined as follows

(Jα
a f )(x) =

1
Γ(α)

x∫
a

(x− t)α−1 f (t)dt, x > a,

(
J0
a f
)
(x) = f (x).

Definition 2 ([37,38]). The Caputo fractional dervative of f of order α > 0 for a ≥ 0 is given
as follows,

(Dα
a f )(x) =

(
Jm−α
a f (m)

)
(x) =

1
Γ(m− α)

x∫
a

f (m)(t)
(x− t)α+1−m dt

for m− 1 < α ≤ m, m ∈ N, x ≥ a.

We will use the following multivariate fractional Taylor’s theorem [39] to bound the
absolute error.

Theorem 1. For a compact and convex domain D ⊂ R2, let Dkα f ∈ C(D) for k = 0, 1, . . . , m +
1 where

Dkα f = Dkα−nDn f , n is the smallest integer exceeding kα

Dn f =

(
∆x

∂

∂x
+ ∆y

∂

∂y

)n
f .

If (x0, y0) ∈ D, then

f (x, y) =
m

∑
k=0

Dkα f (x0, y0)

Γ(kα + 1)
+

D(m+1)α f (ξ, η)

Γ((m + 1)α + 1)

= Pα
m(x, t) + Rα

m(ξ, η)

where ξ = x0 + θ∆x, η = y0 + θ∆y, 0 < θ < 1 and

Pα
m(x, t) =

m

∑
k=0

Dkα f (x0, y0)

Γ(kα + 1)
(Truncated mult. frac. Taylor series) (4)

Rα
m(ξ, η) =

D(m+1)α f (ξ, η)

Γ((m + 1)α + 1)
(Remainder term).

3. Numerical Method

Let

fα pn,n(x, t) =
n

∑
i=1

n

∑
j=1

aij fαBi,n(x)Bj,n(t)

be the FBSS of Equation (1). Let us find the matrix forms of

fα pα
n,n =

∂α fα pn,n

∂xα
, 1 < α ≤ 2 and

∂ fα pn,n

∂t
.



Axioms 2021, 10, 6 4 of 19

First note that fα pn,n can be written as follows:

fα pn,n(x, t) = fαBn(x)Qn(t)A,

where

fαBn(x) =
[

Bα
0,n(x) Bα

1,n(x) · · · Bα
n,n(x)

]
,

Qn(t) =


Bn(t) 0 . . . 0

0 Bn(t) . . . 0
...

...
. . .

...
0 0 . . . Bn(t)

,

and

A = [a00 a01 . . . a0n a10 a11 . . . a1n . . . an1 an2 . . . ann]
T .

We write fαBn(x) as

fαBn(x) = fαX(x)DT,

where

D =


d00 d01 . . . d0n
d10 d11 . . . d1n

...
...

. . .
...

dn0 dn1 . . . dnn

, fαX(x) = [1 xα x2α . . . xnα],

dij =

{
(−1)j−i

Rj (n
i )(

n−i
j−i), i ≤ j

0 , i > j
.

Therefore, we can write fα pn,n and fα pα
n,n in the forms

fα pn,n(x, t) = fαBn(x)Qn(t)A, (5)

fα pα
n,n(x, t) = fαBα

n(x)Qn(t)A; (6)

respectively. As fαBα
n(x) can be written as

fαB(α)
n (x) = fαX(α)(x)DT, (7)

for fαX(α)(x), the relation
fαX(α)(x) = fαX(x)C(ff), (8)

is obtained where

C(ff) =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 Γ(2)

Γ(2−α)
x−α 0 · · · 0

0 0 0 Γ(3)
Γ(3−α)

x−α · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · Γ(n+1)

Γ(n+1−α)
x−α


.
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Substituting Equation (8) into Equation (7) we get

fαB(α)
n (x) = fαX(x)C(ff)DT. (9)

Note that Qn(t) can be given as

Qn(t) = Ȳn(t)D̄, (10)

where

Ȳn(t) =


Y(t) 0 . . . 0

0 Y(t) . . . 0
...

...
. . .

...
0 0 . . . Y(t)

, Y(t) = [1 t t2 . . . tn],

D̄ =


DT 0 . . . 0
0 DT . . . 0
...

...
. . .

...
0 0 . . . DT

.

The term
∂Qn(t)

∂t
can be written as:

∂Qn(t)
∂t

=
∂Ȳn(t)

∂t
D̄, (11)

where
∂Ȳn(t)

∂t
= Ȳn(t)B̄, (12)

and

B̄ =


B 0 . . . 0
0 B . . . 0
...

...
. . .

...
0 0 . . . B

,

and

B =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

... . . . . . .
. . .

...
0 0 0 0 . . . 1
0 0 0 0 . . . 0


.

Substituting Equation (12) into Equation (11) we get

∂Qn(t)
∂t

= Ȳ(t)B̄D̄. (13)
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Substituting Equations (9) and (13) into Equation (5) yields the matrix forms of

fα pn,n(x, t), fα pα
n,n(x, t) and

∂ fα pn,n

∂t
as

fα pn,n(x, t) = fαX(x)DTȲ(t)D̄A, (14)

fα pα
n,n(x, t) = fαX(x)C(ff)DTȲ(t)D̄A, (15)
∂ fα pn,n

∂t
= fαX(x)DTȲ(t)B̄D̄A, (16)

respectively. The use of (15) and (16) in (1) gives the fundamental matrix equation

[ fαX(x)DTȲ(t)B̄D̄− d(x) fαX(x)C(ff)DTȲ(t)D̄]A = g(x, t). (17)

Inserting the collocation points {(xi, yj) : 0 ≤ i, j ≤ n} in Equation (17) yields
the system

WA = G, (18)

where m-th row of W is obtained from {(xk, yI), k = [| m
n+1 |], I = m− k(n + 1)− 1 and

[G]1m = g(xk, tI), r =
[∣∣∣ m

n + 1

∣∣∣], I = m− k(n + 1)− 1.

For the conditions, we first put t = 0, x = L, and x = R into Equation (14), respectively.
Then, we obtain the following matrix relations by substituting the collocation nodes,

C1A = G1, (19)

C2A = G2,

C3A = G3,

where

[C1]1,i = X(xi)DTȲ(0)D̄,

[C2]1,i = X(L)DTȲ(ti)D̄,

[C3]1,i = X(R)DTȲ(ti)D̄,

[G1]1,i = F(xi),

[G2]1,i = 0,

[G3]1,i = bR(ti).

Combining [W, G] and [C1, G1], and [C2, G2] and [C3, G3], we obtain a new system
[W̃, G̃]:

[W̃, G̃] =


W , G

C1 , G1
C2 , G2
C3 , G3

.

Applying the Gauss elimination method to the augmented matrix [W̃, G̃] and deleting
the zero rows gives the system [W̄,Ḡ], where W̄ is square matrix and has full rank. Then,
the unknown matrix A can be obtained as

A = W̄−1Ḡ. (20)

4. Error Analysis

In this section, first an upper bound for the absolute error is given. Then, we give two
error estimation methods that can be applied easily and are useful practically. The first
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one is the residual correction procedure. The second one is specifying the consecutive
approximations which is similar to the error analysis of the RK4 method.

Theorem 2. Let fα pn,n and y be the FBSS and the exact solution of Equation (1), respectively.
By using the above notations, the absolute error is bounded as follows,

|y(x, t)− fα pn,n(x, t)| ≤ |Rα
n(x, t)|+ |Pα

n (x, t)− fα pn,n(x, t)|

provided that Dkα f ∈ C(D), where D is a rectangular domain contains the collocation nodes.

Proof. Adding and subtracting the term Pα
n (x, t), the two-dimensional truncated gener-

alized Taylor polynomial defined in (4), into the left-hand side and applying triangle
inequality yields the desired result.

Let R be the function defined as

R(x, t) :=
∂ fα pn,n(x, t)

∂t
− d(x)

∂α fα pn,n(x, t)
∂xα

.

Adding the term R into both sides of Equation (1) yields the following fractional
differential equation for the absolute error

∂en,n(x, t)
∂t

= d(x)
∂αen,n(x, t)

∂xα
− ∂ fα pn,n(x, t)

∂t
+ d(x)

∂α fα pn,n(x, t)
∂xα

+ g(x, t), (21)

where en,n = y − fα pn,n. The initial and boundary conditions for the problem are con-
verted to

en,n(x, 0) = 0, (22)

en,n(L, t) = en,n(R, t) = 0.

We get an approximate solution, em,m
n,n , for the absolute error by applying the method

to Equation (21) with the conditions (22) on the nodes
{
(xi, tj) : 0 ≤ i, j ≤ m

}
⊂ Ω. Then,

the absolute error en,n can be estimated by em,m
n,n provided that

∥∥en,n − em,m
n,n
∥∥ < ε is small.

Corollary 1. Let fα pn,n be the FBSS. Then, fα pn,n + em,m
n,n is another approximate solution, cor-

rected FBSS, of Equation (1) and its error function is en,n − em,m
n,n . Moreover, if∥∥en,n − em,m

n,n
∥∥ < ‖y− en,n‖,

then fα pn,n + em,m
n,n is a better approximation than pn,n in any given norm ‖·‖.

Let fα pn,n and fα ps,s be any two FBSS of Equation (1), y be the exact solution of
Equation (1). Then, by using the triangle inequality, we find the following inequality,

‖en,n‖ − ‖em,m‖ = ‖y− fα pn,n‖ − ‖y− fα pm,m‖ ≤ ‖ fα pn,n − fα pm,m‖.

If ‖em,m‖ < ‖en,n‖, then we can write as follows

‖en,n‖ = C‖em,m‖, C > 1.

Therefore, we can bound the error as

‖en,n‖ − ‖em,m‖ = (C− 1)‖em,m‖ ≤ ‖ fα pm,m − fα pn,n‖ or

‖en,n‖ − ‖em,m‖ = (1− 1
C
)‖en,n‖ ≤ ‖ fα pm,m − fα pn,n‖.

• 
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Therefore, we can bound the error by

1
(C− 1)

‖ fα pm,m − fα pn,n‖ or
C

(C− 1)
‖ fα pm,m − fα pn,n‖. (23)

Then, we can bound the error ‖em,m‖ well in case of C ≥ 2, even when the exact
solution is not known. A similar argument may be proposed when the error sequence is
decreasing (or increasing). Thus, in case of a decreasing (or increasing) error sequence, one
of the following bounds is satisfied

‖en,n‖ ≤
1

C− 1
‖ fα pn+1,n+1 − fα pn,n‖

or

‖en,n‖ ≤
C

C− 1
‖ fα pn+1,n+1 − fα pn,n‖.

5. Numerical Stability

In this section, we will study the perturbation analysis with stability estimation of the
linear systems obtained by the FBSS method, which is similar to that in [40], for a given
problem. Perturbing the initial or boundary conditions yields the following perturbed
solutions, fα pper

n,n(x, t). There occur two cases:

Case 1: Only the vector Ḡ on the right hand side of (20) is perturbed, i.e.,

W̄A =Ḡ+∆Ḡ. (24)

Let us show the perturbed solution of (24) as Ap = A+∆A, where ∆A is the pertur-
bation of the solution resulting from the perturbations in the initial and boundary
conditions. Then, the change in the solution caused by the initial change is bounded
as [41]

‖∆A‖
‖A‖ ≤ cond(W̄)

∥∥∆Ḡ
∥∥∥∥Ḡ
∥∥ .

Case 2: The perturbations might be occurred both W̄ and Ḡ,

(W̄+∆W̄)A =Ḡ+∆Ḡ. (25)

As the same notation in Case 1, the change in A caused by perturbing the initials is
bounded above as [41]

‖∆A‖
‖A‖ ≤

cond(W̄)

1− cond(W̄)
‖∆W̄‖
‖W̄‖

(
‖∆W̄‖
‖W̄‖

+

∥∥∆Ḡ
∥∥∥∥Ḡ
∥∥
)

.

Thus, for Case 1,∣∣∣ fα pn,n(x, t)− f per
α pn,n(x, t)

∣∣∣ = | fαBn(x)Qn(t)(A−Ap)| (26)

≤ ‖ fαBn(x)‖‖Qn(t)‖‖∆A‖

≤ ‖ fαBn(x)‖‖Qn(t)‖cond(W̄)

∥∥∆Ḡ
∥∥‖A‖∥∥Ḡ
∥∥ .

and therefor we can specify the effect of the little changes in the initial and boundary
conditions on the FBSS by measuring cond(W̄). We omit the result for Case 2 by simplicity.
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6. Numerical Results and Discussion

In this section, three examples are provided to illustrate the properties and effective-
ness of the technique.

6.1. Example 1

Let us consider the FDE [17]

∂u(x, t)
∂t

= d(x)
∂1.8u(x, t)

∂x1.8 + g(x, t), (27)

where 0 < x < 1 and α = 1.8, the diffusion coefficient is

d(x) = Γ(2.2)
x2.8

6

and the source function

g(x, t) = −(1 + x)e−tx3.

The initial condition is

u(x, 0) = x3

and the boundary conditions are

u(0, t) = 0, u(1, t) = e−t, t > 0.

The exact solution to this problem is

u(x, t) = e−tx3.

By applying the procedure in Section 3, the matrix equation for Equation (27) is
found as

[X(x)DTȲ(t)B̄D̄− Γ(2.2)
x2.8

6
X(x)C(ff)DTȲ(t)D̄]A = −(1 + x)e−tx3. (28)

The collocation points that will be used are the Chebyshev interpolation nodes

{(xi, yj) : 0 ≤ i, j ≤ n, xi =
1
2
+

1
2

cos(
2i− 1

2n
)π, yj =

1
2
+

1
2

cos(
2j− 1

2n
)π}.

By substituting the collocation points in Equation (28), we will obtain W matrix.
The conditions matrices for (x, 0) = x3, u(0, t) = 0, u(1, t) = e−t are obtained as

pn,n(xi, 0) = X(xi)DTȲ(0)D̄A = x3
i ,

pn,n(0, tj) = X(0)DTȲ(tj)D̄A = 0,

pn,n(1, tj) = X(1)DTȲ(tj)D̄A = e−tj , 0 ≤ i, j, k ≤ n.

Then, [W̃, G̃] is obtained by combining these matrices. Thus, we obtain the coefficient
matrix A. As we perform the method for different n values, we obtain n different FBSS.
All calculations are done using the Maple program. The results for n = 5, 10, n = 15, and
n = 20 are given in Table 1. The absolute errors are graphed in Figure 1. Table 2 show the
absolute errors between consecutive approximations. The exact and approximate solutions
with n = 15 are graphed in Figure 2. The values of error functions and the exact solution,
at time t = 1, are given in Table 3 and graphed in Figure 3. The upper bounds of absolute
error at time t = 1 are given in Figure 4. A comparison of the method with the numerical
methods in [16,18] is made for t = 1. The absolute error for n = 5 with the errors obtained
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by the corrected FBSSs are given in Table 4. We can say that increasing n yields better
approximation results and the method provides better results. From Table 2, we deduce
that the absolute error en,n can be estimated approximately by the difference between en,n
and en+1,n+1. From Table 3, we can see the method gives more accurate results than the
methods in [16,18] for t = 1. From Table 4, increasing m yields more accurate corrected
approximate solutions. Table 5 shows the error norms (L2, L∞) resulting with CPU time (in
seconds) used in the Maple program to find the numerical solutions for different n values.
We provide the stability results for the method for some n values in Table 6. Increasing
n gives the condition numbers which are increasing. It can be said that the approximate
solutions will be more stable around n = 10 by using both the theoretical upper bounds
and the numerical results. The method produces approximately 105 as a condition number.
For n � 10, the solutions will be more sensitive to small variations since the number of
conditions is large. Thus, around n = 10, we can say that the method works well for
this problem.

Table 1. Comparisons of the absolute errors for different n for Example 1.

x t |e5,5| |e10,10| |e15,15| |e20,20|

0.0 0.0 8.096 × 10−5 1.030 × 10−6 9.528 × 10−8 1.678 × 10−8

0.2 0.2 7.314 × 10−5 2.828 × 10−7 9.191 × 10−9 6.885 × 10−9

0.4 0.4 1.148 × 10−4 3.347 × 10−7 2.655 × 10−8 7.076 × 10−10

0.6 0.6 5.966 × 10−5 9.071 × 10−7 2.046 × 10−9 5.669 × 10−9

0.8 0.8 3.015 × 10−5 8.664 × 10−8 1.116 × 10−8 9.309 × 10−8

1.0 1.0 7.439 × 10−7 1.744 × 10−10 1.789 × 10−10 5.641 × 10−11

Table 2. Upper bounds for the absolute errors for n = 9 and n = 10 of Example 1.

x t |y− y9| |y− y10| |y9− y10|

0.0 0.0 2.138 × 10−6 1.030 × 10−6 1.107 × 10−6

0.2 0.2 6.193 × 10−7 2.828 × 10−7 9.022 × 10−6

0.4 0.4 2.488 × 10−7 3.347 × 10−7 2.153 × 10−6

0.6 0.6 2.278 × 10−6 9.071 × 10−7 1.371 × 10−6

0.8 0.8 1.527 × 10−6 8.664 × 10−8 6.661 × 10−6

1.0 1.0 2.344 × 10−9 1.744 × 10−10 2.519 × 10−9

Table 3. Absolute errors on [0, 1], with n = 5, n = 10 and n = 15 for Example 1 at time t = 1.

x n = 5 n = 10 n = 15 Method in [16] Method in [18]

0.1 7.883 × 10−7 2.705 × 10−9 1.552 × 10−10 2.7 × 10−8 1.9 × 10−6

0.2 4.005 × 10−5 5.618 × 10−7 2.877 × 10−9 6.5 × 10−7 1.4 × 10−7

0.3 1.017 × 10−4 3.809 × 10−7 2.154 × 10−8 5.1 × 10−7 2.6 × 10−6

0.4 1.080 × 10−4 6.936 × 10−7 4.0434 × 10−8 3.2 × 10−6 3.8 × 10−6

0.5 9.053 × 10−5 8.913 × 10−7 3.881 × 10−8 5.8 × 10−6 3.4 × 10−6

0.6 6.758 × 10−5 8.504 × 10−7 2.398 × 10−8 6.1 × 10−6 2.0 × 10−6

0.7 4.838 × 10−5 4.054 × 10−7 5.763 × 10−9 3.1 × 10−6 4.5 × 10−7

0.8 3.355 × 10−5 7.251 × 10−7 1.025 × 10−8 2.2 × 10−6 3.3 × 10−7

0.9 1.872 × 10−6 2.869 × 10−7 1.335 × 10−9 6.1 × 10−6 9.7 × 10−8
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Figure 1. The absolute errors for Example 1: n = 5, n = 10 and n = 15.

Table 4. The absolute errors with the corrected FBSSs n = 5, and m = 10, 15, 20 of Example 1.

x t e5,5 e10,10
5,5 e15,15

5,5 e20,20
5,5

0.0 0.0 8.096 × 10−5 1.825 × 10−6 2.621 × 10−7 4.519 × 10−8

0.2 0.2 7.314 × 10−5 8.021 × 10−5 7.156 × 10−5 7.191 × 10−6

0.4 0.4 1.148 × 10−4 1.084 × 10−4 1.029 × 10−4 9.817 × 10−5

0.6 0.6 5.966 × 10−5 5.071 × 10−5 3.681 × 10−5 2.295 × 10−6

0.8 0.8 3.015 × 10−5 2.947 × 10−5 8.609 × 10−6 4.658 × 10−6

1.0 1.0 7.439 × 10−7 7.224 × 10−7 1.158 × 10−7 7.392 × 10−7

Table 5. Error norms L2, L∞ and CPU for different values of n for Example 1.

n L2 L∞ CPU

3 4.403 × 10−2 2.343 × 10−2 6.30
5 2.454 × 10−4 1.148 × 10−4 10.5
8 4.328 × 10−6 8.541 × 10−6 15.5
10 2.582 × 10−6 1.472 × 10−6 18.3
13 4.079 × 10−7 2.186 × 10−7 90.5
15 1.074 × 10−7 9.528 × 10−8 129.7
18 1.181 × 10−7 7.121 × 10−8 472.1
20 1.061 × 10−7 7.067 × 10−8 750.5

Absolute error ofnumerical solutions ofExample l, for n=5. Absolute error of nuınerical solutions of Example 1, for n= 1 O 

Absolute error of numerical solutions of Example 1, for n= 15 
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Figure 2. The exact solution and FBSSs for Example 1.

Figure 3. FBSSs and the exact solution for Example 1, with n = 5 and n = 10 at time t = 1.

Figure 4. Upper bounds of the absolute errors for Example 1, with n = 9, 10 and n = 15, 16 at time
t = 1.
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Table 6. Stability of the system related to the method for different values of n for Example 1.

n = 5 n = 10 n = 15

cond(W̄) 673.48 6.33× 105 1.68× 109

‖∆A‖ 1.0253× 10−16 1.5394× 10−15 4.9009× 10−9

‖A‖ 1.0000 1.0000 0.9999∥∥∆Ḡ
∥∥ 10−16 10−16 10−16∥∥Ḡ
∥∥ 1.0775 2.1642 4.1801

Upper Bound obtained by (26) 2× 10−10 5.9987× 10−7 3.9567× 10−2

6.2. Example 2

Let us consider the FDE [17]

∂u(x, t)
∂t

= d(x)
∂1.4u(x, t)

∂x1.4 + g(x, t), (29)

where 0 < x < 1 and α = 1.4. The diffusion coefficient is

d(x) =
1

24
Γ(5− 1.4)x1.4,

the source function

g(x, t) = −2e−tx4.

The initial and boundary conditions are as follows, respectively,

u(x, 0) = x4

u(0, t) = 0, u(1, t) = e−t, t > 0.

The exact solution of this problem is given by

u(x, t) = e−tx4.

We perform the method for n = 7, 10 and n = 15. The results are given in Table 7. The
absolute errors are graphed in Figure 5. A comparison of the method with the numerical
method in [17] is given in Table 7. We can say that increasing n yields better approximation
results and the method provides better results. The method gives more accurate results
than the method in [17]. From Table 8, we conclude that the absolute error en,n can be
bounded approximately by |en,n − en+1,n+1|. The absolute error for n = 5 with the errors
obtained by the corrected FBSSs are given in Table 9. The absolute errors for n = 11 and
n = 16 at time t = 1 are given in Figure 6. The errors with their upper bounds at t = 1
are given in Figure 7. Table 10 shows the error norms (L2, L∞), resulting with CPU time
(in seconds) used in the Maple program to find FBSSs for different n values. The method
again gives approximately 105 as a condition number. Therefore, around n = 10, we can
say from Table 11 that the method produces more stable approximations for this problem.

6.3. Example 3

Let us consider the fractional convection diffusion equation [42]

∂u(x, t)
∂t

+ d(x)
∂u(x, t)

∂x
= c(x)

∂2u(x, t)
∂x2 + g(x, t), (30)
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where 0 < x < 1 and. The diffusion coefficient is

d(x) =
x
3

, c(x) =
x2

6
.

the source function

g(x, t) = x3 cosh(t).

The initial and boundary conditions are as follows, respectively,

u(x, 0) = 0

u(0, t) = 0, u(1, t) = sinh(t).

The exact solution of this problem is given by

u(x, t) = x3 sinh(t).

Table 7. The absolute errors for different n values with a comparison with the method in [17] for
Example 2.

x t n = 8 n = 10 n = 15 Method in [17]

0.1 0.1 1.421 × 10−7 7.187 × 10−9 1.343 × 10−13 2.7 × 10−6

0.2 0.2 7.425 × 10−8 8.404 × 10−9 6.504 × 10−11 1.1 × 10−5

0.3 0.3 3.189 × 10−8 24.59 × 10−8 2.747 × 10−10 1.2 × 10−5

0.4 0.4 2.147 × 10−7 1.310 × 10−8 3.070 × 10−10 1.2 × 10−5

0.5 0.5 2.152 × 10−7 1.253 × 10−8 5.414 × 10−10 1.5 × 10−5

0.6 0.6 3.730 × 10−8 1.076 × 10−8 6.843 × 10−10 1.8 × 10−5

0.7 0.7 3.411 × 10−7 1.787 × 10−8 7.885 × 10−10 1.8 × 10−5

0.8 0.8 2.716 × 10−7 3.792 × 10−8 6.409 × 10−10 1.3 × 10−5

0.9 0.9 1.262 × 10−7 1.125 × 10−10 4.291 × 10−12 6.6 × 10−6

Table 8. Upper bounds of the absolute errors, for n = 10, n = 11 and Example 2.

x t |y− y10| |y− y11| |y10− y11|

0.0 0.0 3.201 × 10−9 9.861 × 10−10 7.911 × 10−10

0.2 0.2 8.404 × 10−9 4.976 × 10−9 2.924 × 10−8

0.4 0.4 1.310 × 10−8 2.389 × 10−8 2.576 × 10−8

0.6 0.6 1.076 × 10−8 3.348 × 10−8 1.682 × 10−7

0.8 0.8 3.792 × 10−8 4.166 × 10−8 1.076 × 10−6

1.0 1.0 9.600 × 10−10 7.996 × 10−11 2.110 × 10−6

Table 9. The absolute errors with the corrected FBSSs for n = 5 and m = 10, 15, 20 of Example 2.

x t e5,5 e10,10
5,5 e15,15

5,5 e20,20
5,5

0.0 0.0 3.401 × 10−3 5.042 × 10−7 3.603 × 10−7 6.510 × 10−8

0.2 0.2 5.411 × 10−4 2.017 × 10−4 2.174 × 10−4 2.009 × 10−5

0.4 0.4 6.232 × 10−4 1.646 × 10−5 1.600 × 10−5 2.641 × 10−5

0.6 0.6 1.356 × 10−3 2.266 × 10−5 3.024 × 10−5 4.091 × 10−5

0.8 0.8 1.201 × 10−3 2.752 × 10−5 3.847 × 10−5 6.655 × 10−5

1.0 1.0 1.413 × 10−5 1.143 × 10−6 2.427 × 10−6 4.372 × 10−7
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Figure 5. The absolute errors for Example 2, with n = 5, n = 10 and n = 15.

Figure 6. The absolute errors for Example 2, with n = 11, n = 16, and t = 1.

By applying the technique in Section 3, for different values of n, the FBSSs for the
problem are founded. From Tables 12 and 13, we can see obviously that the results obtained
by FBSS and the exact solution of the problem are agreement with each other. We compare
our results with [42], can see our results are more accurate. The condition numbers for the
systems that related to the method for various n are given in Table 14. We can say from
Table 14 that the method is insensitive to small variations for n = 10.
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Figure 7. Upper bounds of absolute errors for Example 2, with n = 10, n = 11, and n = 15, n = 16,
for case t = 1.

Table 10. Error norms L2, L∞ and CPU for different values of n for Example 2.

n L2 L∞ CPU

3 2.294 × 10−1 1.255 × 10−1 4.5
5 4.544 × 10−3 3.461 × 10−3 7.19
8 5.733 × 10−7 3.411 × 10−7 9.5
10 5.538 × 10−8 3.792 × 10−8 19.6
13 5.249 × 10−9 2.287 × 10−9 62.0
15 1.413 × 10−9 7.885 × 10−10 162.3
18 2.916 × 10−10 1.497 × 10−10 445
20 8.245 × 10−11 4.117 × 10−11 700

Table 11. cond(W̄) for different values of n for Example 2.

n = 3 n = 5 n = 8 n = 10 n = 13 n = 15

cond(W̄) 105.67 851.57 72.61× 103 8.99× 105 5.03× 107 9.18× 108

Table 12. Comparisons of the absolute errors for n = 3, 5, 7 of Example 3.

x [42] Our Method [42] Our Method [42] Our Method
n = 3 n = 3 n = 5 n = 5 n = 7 n = 7

0.1 1.63 × 10−5 2.05 × 10−6 3.06 × 10−6 1.20 × 10−7 2.68 × 10−6 6.02 × 10−11

0.2 4.85 × 10−5 5.21 × 10−6 2.08 × 10−6 1.65 × 10−7 1.42 × 10−6 1.50 × 10−10

0.3 5.24 × 10−5 2.70 × 10−6 2.60 × 10−7 3.40 × 10−7 2.06 × 10−6 1.23 × 10−10

0.4 3.67 × 10−5 9.91 × 10−5 9.20 × 10−7 4.09 × 10−7 4.05 × 10−7 6.05 × 10−10

0.5 1.04 × 10−5 2.53 × 10−4 9.70 × 10−7 6.17 × 10−7 6.90 × 10−7 1.49 × 10−10

0.6 1.76 × 10−5 5.04 × 10−4 1.10 × 10−7 1.29 × 10−7 6.00 × 10−7 2.28 × 10−9

0.7 3.85 × 10−5 8.35 × 10−4 1.10 × 10−6 2.60 × 10−6 7.00 × 10−8 3.13 × 10−9

0.8 4.33 × 10−5 1.20 × 10−4 1.92 × 10−6 4.09 × 10−6 3.90 × 10−7 5.34 × 10−9

0.9 2.33 × 10−5 2.19 × 10−4 2.14 × 10−6 4.03 × 10−6 1.84 × 10−6 8.06 × 10−9
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Table 13. Absolute errors for different values of n of Example 3.

x n = 10 n = 13 n = 15

0.1 1.92 × 10−15 5.65 × 10−18 3.13 × 10−17

0.2 1.93 × 10−15 9.15 × 10−18 7.82 × 10−18

0.3 2.12 × 10−15 2.14 × 10−17 4.31 × 10−17

0.4 2.64 × 10−14 6.28 × 10−17 1.81 × 10−17

0.5 6.36 × 10−14 1.26 × 10−17 1.49 × 10−16

0.6 9.33 × 10−14 1.34 × 10−17 3.22 × 10−16

0.7 1.65 × 10−13 4.82 × 10−17 2.47 × 10−16

0.8 2.35 × 10−13 8.36 × 10−17 1.78 × 10−16

0.9 3.52 × 10−13 4.98 × 10−17 6.67 × 10−16

Table 14. cond(W̄) for different values of n for Example 3.

n = 3 n = 5 n = 7 n = 10 n = 13 n = 15

cond(W̄) 47.24 308.70 2775.84 63340.64 3.05× 106 2.92× 107

7. Conclusions

In this paper, we proposed the FBSS to solve the FDE numerically. The method can be
easily implemented and is effective. It comprises fractional Bernstein polynomials and the
collocation method. First, the fundamental matrix equation is obtained and then it is solved
by the Gauss elimination procedure. Applying the initial and boundary conditions, we get
the solution for the given n value. Two error estimations, residual correction procedure and
estimations are obtained by the difference of the consecutive approximations. We applied
the method to some examples. Generally, the results demonstrate that the proposed
method achieves better approximation accuracy than some other well-known methods.
From the examples, we can bound approximately the absolute error en,n by |en,n − en+1,n+1|.
On the other hand, one can obtain more accurate results by using the residual correction
procedure. Increasing m gives more accurate corrected FBSS. For the stability of the method,
we can decide which size n yields more stable approximations by specifying at the number
of conditions of the related system. For the examples, the method produces condition
numbers approximately as 105 for n ≈ 10 approximately. Thus, around n = 10, we can say
that the method is suitable for these examples. The subjects of our future works can be
exemplified by applying fractional Bernstein series solution for solving fractional integral
differential equations and chaotic fractional order systems.
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