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Rainbow trout (Oncorhynchus mykiss) has become by far the most frequently farmed

freshwater fish species in Turkey, whereas very little is known about its establishment

and invasiveness potential. We explored this potential through a combination of Maxent

habitat suitability model and the Aquatic Species Invasiveness Screening Kit (AS-ISK)

on the river basin scale by generating an overall risk score (ORS). The outcome of this

approach was also incorporated with the spatial analysis of native salmonid species by

generating a relative vulnerability score (RVS) to prioritize susceptibility of native species

(or populations) and to propose risk hotspots by identifying their potential geographic

overlap and interaction with O. mykiss. Results suggest that the northern basins (Eastern

Black Sea, Western Black Sea and Marmara basins) are the most suitable basins for O.

mykiss. According to the Basic Risk Assessment (BRA) threshold scores, O. mykiss is

classified as “high risk” for 3 (12.0%) of the 25 river basins screened (Western Black

Sea, Eastern Black Sea and Maritza-Ergene), and as “medium risk” for the remaining

basins. The climate change assessment (CCA) scores negatively contributed the overall

invasiveness potential of O. mykiss in 22 (88.0%) of the river basins and resulted in zero

contribution for the remaining three, namely Aras-Kura, Çoruh river and Eastern Black

Sea. The ORS score of river basins was lowest for Orontes and highest for Western

Black Sea, whereas it was lowest for Konya-closed basin and highest for Eastern Black

Sea, when CCA was associated. The micro-basins occupied by Salmo rizeensis had the

highest mean habitat suitability with O. mykiss. Among the all species, S. abanticus had

the highest RVS, followed by S. munzuricus and S. euphrataeus. The overall outcome

of the present study also suggests that the establishment and invasiveness potential of
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O. mykissmay decrease under future (climate warmer) in Turkey, except for the northeast

region. This study can provide environmental managers and policy makers an insight into

using multiple tools for decision-making. The proposed RVS can also be considered as

a complementary tool to improve IUCN red list assessment protocols of species.

Keywords: aquaculture, aquatic species invasiveness screening kit, Maxent habitat suitability model, climate

change, invasiveness potential

INTRODUCTION

The spectrum of the impacts of invasive species on overall
biodiversity is so wide that ranges from behavioral changes of
native species to entire collapsing of ecosystem services and
extinction of native taxa (Charles and Dukes, 2008; Simberloff
et al., 2013; Gallardo et al., 2016). The economic burden
is also significant, reaching billions of dollars all over the
world, particularly in the United States, Australia and Western
Europe (Pimentel et al., 2005; Hoffmann and Broadhurst, 2016;
Bertolino et al., 2020). Therefore, environmental agencies have
struggled to manage the introduction and impact of invasive
species by strengthening their legislations and policies for nature
conservation and socio-economic issues globally (Copp et al.,
2005a). The most important step of this endeavor is to predict
species’ invasiveness– the capacity of a species to reproduce,
spread from its place of introduction, and establish in new
locations (Rejmánek, 2011)-, and which sources of introductions
are likely to become more prominent under current and future
climatic and socio-economic conditions (Rahel and Olden,
2008; Banerjee et al., 2019; Raffini et al., 2020). Escape from
farms, breeding/cultivation facilities, gardens or laboratories into
natural systems constitute important and unregulated sources
of introductions by which animals and plants become invasive
(Hulme et al., 2008; Essl et al., 2015). Concordantly, the
majority of aquatic inland species introductions are considered
as escapees from aquaculture, which have resulted in serious
aquatic invasions worldwide (Ju et al., 2020). This pathway is
even more crucial for countries like Turkey where aquaculture
predominantly depends on the farming of non-native species
and represents approximately 25% (by value) of the total
production of the fishery sector (TUIK, 2014). This pathway is
also highly important due to Turkey’s current efforts to align with
international quality standards (e.g., European Commission,
2014).

In Turkey, inland fisheries constitute a considerable
proportion of the total fish production both by capture
(5%) and aquaculture (44%) and are concentrated in inland
lakes (including reservoirs) and the coastal lagoons (FAO, 2019).
Aquaculture dates back to the late 1960s (Lök et al., 2018) with
farming of rainbow trout (Oncorhynchus mykiss) and common
carp (Cyprinus carpio), with non-nativeO. mykiss being the most
frequently farmed aquaculture species over the past few decades.
According to the up-to-date aquaculture statistics provided by
the Turkish General Directorate of Fisheries and Aquaculture,
the species is now being farmed in 74 of the 81 provinces
with ∼1,550 farms which are mostly located in inland waters

(dataset available at https://www.tarimorman.gov.tr/BSGM/
Belgeler/Icerikler/Su%20%C3%9Cr%C3%BCnleri%20Yeti%C5
%9Ftiricili%C4%9Fi/Su-Urunleri-Tesisleri-2019.pdf). On one
hand, O. mykiss has been listed as one of the 100 worst invasive
alien species identified globally by the IUCN (Lowe et al.,
2000) and ranks high in the list of the top 18 fish species that
cause severe ecological impacts, compiled from establishment
and impact assessment data contained in FISHBASE (Casal,
2006). Therefore, the impact mechanisms of the species, which
can be summarized as competition/monopolizing resources,
hybridization with native salmonids and predation, are very
well-documented (Scott and Irvine, 2000; Weigel et al., 2003;
Stanković et al., 2015). On the other hand, a recent review of
risk screenings conducted for the eastern Mediterranean region
(Vilizzi et al., 2019), indicated that the potential of O. mykiss to
be a highly invasive species is lower (i.e., yielded moderate risk)
than suggested by previous risk assessments where future climate
change may negatively affect its spread and impact. In a recent
study, the threats posed by O. mykiss in Greece has also been
reported to be lower than suggested by recent risk assessments
(Koutsikos et al., 2019), though its self-sustaining population has
become established on the Island of Crete (Stoumboudi et al.,
2017). In contrast, Hasegawa (2020) demonstrated that brown
trout in some Japanese islands show higher invasiveness than that
was suggested in previous studies, and this was associated with
the similarities in the life histories of native salmonids in Japan.
These results, therefore, indicate that the current approaches in
risk assessments tend to under- or overestimate the potential risk
of salmonids, probably due to the lack of integrated quantitative
habitat and niche suitability (or species distribution) and climate
change models. Furthermore, selecting coarse scales for the risk
assessments (e.g., biogeographical, climatic, or country scale)
especially for geographically heterogeneous risk assessment
(RA) areas (e.g., Turkey) may result in under- or overestimated
risk scores.

Although O. mykiss has had a relatively long history in
aquaculture in Turkey (Tarkan et al., 2015), escapes from farms,
which are known to occur very frequently, have been poorly
documented. Also, little is known on whether escapes have
resulted in viable (or resilient) populations in natural habitats.
These incidents are of great importance especially in Turkey,
which covers the entire natural distribution of at least 13 native
trout species, 6 of which are classified as threatened, 6 are
not evaluated and only one is classified as least concern by
the International Union for Conservation of Nature (IUCN).
Despite this rich diversity of native salmonids in Turkish
freshwaters, there remains a paucity of research exploring the
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habitat suitability and establishment risk of O. mykiss, which
may help to address its potential spatial overlap and interaction
with native salmonids. Previous studies on the effects of O.
mykiss aquaculture in Turkey have been focused on water quality
of natural waters around the facilities (Demir et al., 2001;
Cromey et al., 2002; Brooks et al., 2003), and there is only
one study reported some adverse impacts of escapee rainbow
trout in some streams (Biga peninsula, Çanakkale, NW Turkey)
on native ichthyofauna through abundance, diet preferences
and intraspecific feeding interactions (Ertürk-Gürkan and Yalçin
Özdilek, 2019).

The main goal of this study was therefore 2-fold: to
evaluate the establishment and invasiveness potential of O.
mykiss in Turkey on the river basin scale, and to identify
its geographic overlap probability with the native salmonid
species of conservation concern. The first step was addressed by
predicting the establishment potential of non-native O. mykiss
in Turkey following the habitat suitability approach using the
Maxent species distribution modeling, and by assessing its
invasiveness potential across the main river basins of Turkey
using the Aquatic Species Invasiveness Screening Kit (AS-ISK).
By collecting and assessing the available occurrence records
of farm escapements, this study also has the potential to
contribute to fill up the common gaps by minimizing possible
inconsistencies between current and future invasiveness of
species and current and projected risk assessments.

The second objective was met by conducting spatial analysis
for documenting the distribution of native salmonids and for
examining the suitability of their natural geographic range
against O. mykiss. It is a well-known fact that cost-effective
conservation of species requires prioritization. Therefore, to
prioritize and categorize the sensitivity of native salmonids
against the overlap and interaction (including hybridization)
with rainbow trout, we proposed a metric by blending the
benefited risk assessment approach with the spatial analysis of
the native trout species. By this way, hotspots for potential
hybridization and antagonistic interactions between the non-
native O. mykiss and the native trout species are also proposed.
The overall outcome of the present study is also expected to
provide environmental managers and stakeholders insight into
the potential use of AS-ISK with habitat suitability models
as an integrated set of decision-support tools for informing
policy makers and for suggesting management options for the
potential, existing and future undesired non-native fishes of
aquaculture importance.

MATERIALS AND METHODS

Habitat Suitability Model
Since O. mykiss is a non-native species in Turkey, and no
established populations have been officially confirmed yet, the
distribution data of the species which is needed for calibration
of the habitat suitability was downloaded from the Global
Biodiversity Information Facility (GBIF, 2020). The spatial
data represented the natural distribution of O. mykiss, which
extends from Alaska to Mexico in the northwest of North
America (Behnke, 1979; Crawford and Muir, 2008) (Figure 1).

FIGURE 1 | Occurrence data and the output of the habitat suitability map of
Oncorhynchus mykiss in calibration phase. GBIF Occurrence Download.
https://doi.org/10.15468/dl.r7ht8c.

The occurrence data is comprised of 94,275 georeferenced
records from 4,476 unique locations which were compiled
from 40 published datasets covering this native range. To
model the habitat suitability, common topographical and
climatic parameters within BasinATLAS database were used
and seven environmental variables were significant in terms of
explaining the habitat suitability of O. mykiss. These variables
are average annual minimum temperature, average annual
maximum temperature, average annual temperature, slope,
aridity index, elevation and precipitation. All these variables
were examined on the basis of hydrological subunits (i.e., micro-
basin scale provided by the BasinATLAS Attributes) and the
highest resolution of sub basin division (level 12) (Lehner and
Grill, 2013) were used. Commonly used species distribution
model Maxent (Phillips et al., 2006, Version 3.3.3) was employed
to generate the habitat suitability of O. mykiss across Turkey
with 10-fold cross-validation method. Maximum iterations were
set to 10,000, random test percentage was 20, and maximum
number of background points were set as 10,000. For each run,
2,974 presence records were used for training, 743 records for
testing and 12,590 points were used to determine distribution
including both background points and presence points. First,
the model was calibrated for North America (native range)
for the occurrence data downloaded from GBIF and then, the
calibrated model was projected for habitat suitability of O.
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mykiss in Turkey.Multivariate Environmental Similarity Surfaces
(MESS, Elith et al., 2010) analysis, which were also embedded
in Maxent software were applied to assess the similarity of the
predictor variables between the training dataset (United States)
and projection dataset (Turkey). The accuracy of the results was
evaluated by True Skill Statistics (TSS) and the area under the
receiver operating characteristic (ROC) curve (AUC), which are
commonly used as threshold-independent measures for model
performance (Manel et al., 2001; Allouche et al., 2006). These
model evaluation statistics range between 0 and 1 for AUC and
between −1 and 1 for TSS, where AUC and TSS values close to 1
indicates excellent model performances.

Screening of Invasiveness
Aquatic Species Invasiveness Screening Kit (AS-ISK) v2.2
(available at www.cefas.co.uk/nns/tools) was used to identify the
invasiveness potential of O. mykiss. AS-ISK is a risk screening
decision-support tool that is fully compliant with the “minimum
standards” (Roy et al., 2018) for the assessment of non-
native species for the European Commission Regulation on the
prevention and management of the introduction and spread of
invasive alien species (European Union, 2014). This decision-
support tool has already been used successfully to screen non-
native fishes in several RAs including biogeographic (Glamuzina
et al., 2017; Tarkan et al., 2017a) and climatic risk RAs (Dodd
et al., 2019). AS-ISK consists of 55 questions, which are grouped
into 49 Basic Risk Assessment (BRA) and six Climate Change
Assessment (CCA) questions to assess the biogeographical and
historical traits of the taxon and its biological and ecological
interactions. The BRA questions have two main sections:
the Biogeography/Historical and the Biology/Ecology that are
complemented by an additional six questions asking the assessor
to assess how predicted future climate conditions are likely to
affect their responses to Qs related to the risks of introduction,
establishment, dispersal and impact. For each question in AS-
ISK, the assessor must provide a response, justification and level
of confidence. The screened species eventually receives both a
BRA and a BRA+CCA (composite) score, which respectively
range from −20.0 to 68.0 and from −32.0 to 80.0 (Dodd et al.,
2019). AS-ISK scores < 1.0 suggest that the species is unlikely
to become invasive in the RA area and is therefore classified as
“low risk” whereas higher scores classify the species as posing
either a “medium risk” or a “high risk” of becoming invasive. The
ranked levels of confidence (1 = low; 2 = medium; 3 = high;
4 = very high) associated with each response in AS-ISK mirror
the confidence rankings recommended by the International
Programme on Climate Change (IPCC, 2005).

Turkey is divided into 25 main hydrological units which
herein we called the river basins. For O. mykiss, AS-ISK
assessments were undertaken at the river basin level to increase
the resolution of the scores as much as reasonably possible.
The assessments were carried out by a subset of co-authors,
whose knowledge of the species is specialized to a certain region,
namely the western basins were assessed by AST, the central
and northern basins by BY, and the eastern and north-eastern
basins by CK. All assessments then were peer-reviewed by all
authors. A literature survey was carried out pertinent to the

species and the RAs to obtain valid evidences for each of
the question in the risk assessment panel. Although there is
extensive peer-reviewed literature on the species itself, we mainly
utilized review papers with relatively broader extent and some
common databases (e.g., FishBase and Global Invasive Species
Database) in which respectable and goal-directed information
are available. Information on the general climate and future
predictions inherent in the CCA questions were based on the
Köppen–Geiger climate classification system (Peel et al., 2007).

The calibrated AS-ISK threshold score (i.e., 27.75) established
for categorization of potential risk status of non-native freshwater
fish species (i.e., distinguishing between high risk from low-to-
medium risk) for whole Turkey (Tarkan et al., 2017b) was used
in the present study for O. mykiss in the assessed river basins.
However, as no BRA+CCA threshold in Tarkan et al. (2017a)
was provided, Receiver Operating Characteristic (ROC) curve
analysis (Bewick et al., 2004) was used to assess the predictive
ability of AS-ISK to discriminate between non-native freshwater
fish species posing a high risk and those posing a medium or low
risk of being invasive for the RA area. For ROC curve analysis to
be implemented, species need to be categorized a priori in terms
of their documented invasiveness (i.e., non-invasive or invasive).
Since this information is readily available in Tarkan et al. (2017a),
we used it for a new threshold value calculation of BRA+CCA.
Briefly, a ROC curve is a graph of sensitivity vs. 1 – specificity (or
alternatively, sensitivity vs. specificity) for each threshold value,
where in the present context sensitivity and specificity will be
the proportion of a priori invasive and non-invasive species,
respectively, that are correctly identified by AS-ISK as such.
The Area Under the Curve (AUC) known as a measure of the
accuracy of the calibration analysis typically ranges from 0.5 to
1, and the closer to 1 the greater the veracity in differentiating
between invasive and non-invasive species. When the test is
100% accurate, AUC is equal to 1. Because both sensitivity and
specificity are 1, and there are neither “false positives” (a priori
non-invasive species classified as high risk, hence invasive) nor
“false negatives” (a priori invasive species classified as low risk,
hence non-invasive). Conversely, when the test is 0% accurate
it means the AUC is equal to 0.5, as it cannot discriminate
between “true positives” (a priori invasive species classified as
high risk, hence invasive) and “true negatives” (a priori non-
invasive species classified as low risk, hence non-invasive).

Following ROC analysis, the best AS-ISK threshold value
that maximizes the true positives rate and minimizes the false
positives rate was determined using Youden’s J statistic; whereas,
the “default” threshold of 1 was set to distinguish between low
risk and medium risk species (Copp et al., 2005b). ROC analysis
was carried out with package pROC (Robin et al., 2011) for R
x64 v4.0.0 (R Core Team, 2020) using 2000 bootstrap replicates
for the confidence intervals of specificities, which were computed
along the entire range of sensitivity points (i.e., 0–1, at 0.1
intervals). The ranked levels of confidence (1= low; 2=medium;
3 = high; 4 = very high) associated with each response in
AS-ISK mirror the confidence rankings recommended by the
International Programme on Climate Change (IPCC, 2005; see
also Copp et al., 2016a). Based on the confidence level (CL)
allocated to each response for a given basin, a confidence factor
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(CF) is obtained as:

∑
(CLQi) / (4 x 55) (i = 1, . . . , 55)

where CLQi is the CL for question i (Qi); 4, is the maximum
achievable value for confidence (i.e., very high: see above) and
55 is the total number of questions comprising the AS-ISK
questionnaire. Based on the BRA and the CCA only, the CLBRA
and CLCCA are also computed. The CF ranges from a minimum
of 0.25 (i.e., all 55 questions with CL equal to 1) to a maximum
of 1 (i.e., all 55 questions with CL equal to 4). Two additional
CFs are also computed, namely the CFBRA and the CFCCA, as per
the CL.

Overall Assessment
We employed an integrated approach in which both habitat
suitability and the invasiveness potential are jointly considered
in evaluating the overall risk of O. mykiss. A common way
for estimating overall risk exposure is to multiply probability
and impact. Here, we consider habitat suitability (Maxent
scores) as the establishment probability of O. mykiss; whereas,
we considered invasiveness screening outputs as the impact.
To obtain the possible maximum resolution to incorporate
establishment probability and the invasiveness screening was to
estimate the habitat suitability and to screen the invasiveness
potential on the same scale. To this end, we selected each
river basin as RA area, and performed AS-ISK separately for
all river basins. After that, to calculate the descriptive statistics
of Maxent habitat suitability values for each of the river basin,
we aggregated the micro-basin level habitat suitability values.
Therefore, the overall risk score (ORS) of basin “i” is calculated
by the following equation;

ORSi = Maxenti × AS-ISKi

Where “Maxenti” is the average habitat suitability of O. mykiss
for basin “i”, and “AS-ISKi” is the invasiveness screening score of
O. mykiss for basin “i“. We generated two ORSs for each basin,
one is based on BRA (ORSBRA) and the other is on BRA+CCA
(ORSBRA+CCA) scores.

To propose risk hotspots and to prioritize native endemic
trout, we estimated their extent of occurrence (EOO) by
calculating the area (km2) of minimum convex polygon around
all present native occurrences of a species. We also took
the number of independent populations (IP) of a species
into account. IP was primarily determined by considering the
number of hydrologically independent river catchments that
actually occupied by the native trout species. Secondly, each
of the discrete (or isolated) populations within the same river
catchment, if available, are regarded as IP. Following this, we
complemented the assessment of their occurrence ranges with
the habitat suitability of O. mykiss. For this, the habitat suitability
of O. mykiss was estimated for the all of the micro-basins which
bear at least one site-scale record of a native salmonid species.
The EOO calculations of the native species were based on these
site-scale records and achieved using the spatial analysis module

of RAMAS Red List Pro software (Akçakaya and Root, 2007).
To avoid overestimating the EOOs for the species with multiple
discrete populations that dispersed over different river basins,
EOOs were calculated separately for each river basin and then
were summed up to obtain the species’ EOO. The occurrence
datasets of the native trout species were derived from the available
recent literature (Turan et al., 2010, 2011, 2012, 2014a,b; Turan
et al., 2017, 2020; Yoğurtçuoğlu et al., 2020). The confirmed
occurrences of O. mykiss from natural water bodies was also
compiled from both published literature and data obtained by
our own field explorations, which were dotted on the habitat
suitability map together with the occurrence of native salmonids
in order to visually match the model outcome and the real escape
cases of O. mykiss.

To prioritize the native salmonid species and their habitats
against the potential of establishment and invasiveness of O.
mykiss, we proposed a Relative Vulnerability Score (RVS) based
upon blending the ORS, Maxent outputs and the spatial range
of the native species. RVSs were calculated for two ORSs i.e.,
both with BRA based ORS (RVSBRA) and BRA+CCA based
ORS (RVSBRA+CCA). If a species occurs in more than one river
basin, RVSs were calculated separately for each of those basin.
Therefore, RVS of species i in basin a (RVSia) was calculated by
the following equation;

RVSia = (ORSa x
MB1 + MB2 · · ·MBni

ni
) / log (EOOi x IPi);

Where MBni is the mean Maxent value of the micro-basins
that contain at least one site-scale record of species i in basin
a. EOOi is the extent of occurrence of species i, and IPi
is the number of independent populations of species i. The
extreme difference between EOO × IP values of the widespread
and localized species was down-weighted by applying a log-
transformation. After detecting the outliers (scores outside 1.5
times the interquartile range), we simply considered the mean
of the RVSs that were calculated by excluding outliers as the
threshold i.e., distinguishing between high and low vulnerability.
Finally, we highlighted and proposed the micro-basins that are
occupied by a native species with high RVS as the hotspots for
potential antagonistic interactions with O. mykiss.

Statistical Analyses
Differences between mean confidence levels of Basic Risk
Assessment (BRA) and Climate Change Assessment (CCA)
(in AS-ISK) were tested by permutational analysis of variance
(PERANOVA) based on a one-factor design with two levels:
BRA and CCA (note that testing of the same differences for the
Confidence Factor leads to the same results as the two measures
differ only by a constant).

Significant difference among the mean Maxent suitability
of the micro-basins of the native species was also tested
by PERANOVA based on a one-factor design with 13 levels
(all native species) (The dataset for Maxent descriptive data
of microbasins and related statistical design is deposited in
Supplementary Data sheet 3).

PERANOVAwas carried out in PERMANOVA+ for PRIMER
v6, where we normalized the data and used an Euclidean distance
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FIGURE 2 | Habitat suitability map of Oncorhynchus mykiss in Turkey. The inset at the bottom-right corner shows the codes for 25 river basins namely 1,
Maritza-Ergene; 2, Marmara; 3, Susurluk; 4, North Aegean; 5, Gediz; 6, Small Menderes; 7, Great Menderes; 8, Western Mediterranean; 9, Burdur; 10, Akarçay; 11,
Sakarya; 12, Western Black Sea; 13, Antalya; 14, Eastern Mediterranean; 15, Konya Closed Basin; 16, Kizilirmak; 17, Seyhan; 18, Ceyhan; 19, Orontes; 20,
Yeşilirmak; 21, Euphrates and Tigris; 22, Eastern Black Sea; 23, Çoruh; 24, Kura and Aras; 25, Lake Van Basin.

measure (for BRA-CCA); or square rooted the data and applied
a Bray-Curtis dissimilarity measure (for micro-basins). Both
analyses ran with 9999 unrestricted permutations of the raw
data (Anderson et al., 2008) with statistical effects evaluated at
α = 0.05.

RESULTS

Habitat Suitability
The output of the Maxent model for O. mykiss habitat suitability
during the calibration phase is given in Figure 1. There is
a good concordance between the occurrence data and model
outputs and AUC (area under ROC curve) value for training
0.82, while it was 0.83 for testing (the ROC curve simulation
results were depicted in Supplementary Figure 1). Average TSS
results for 10 replicate runs was also calculated to be 0.54.
The most significant variables determining the distribution of
O. mykiss were average annual minimum temperature (59.5%),
slope (12.2%) and average annual maximum temperature
(9.7%). Considering the results of the MESS analysis, similarity
between the environmental variables of the training dataset
and projected dataset was >0 for all microbasins, indicating
native range data was suitable for modeling the potential
distribution of O. mykiss in Turkey (see also the map
of the MESS analysis in Supplementary Figure 2). Hence,
the calibrated model was extended to project the habitat
suitability of O. mykiss across the river basins in Turkey
and the output was given in Figure 2. Given the average
Maxent values, the most suitable river basins for O. mykiss

FIGURE 3 | Receiver Operating Characteristic (ROC) curve (solid line) for
BRA+CCA (Climate Change Assessment) of the non-native freshwater fish
species screened with the Aquatic Species Invasiveness Screening Kit
(AS-ISK) for Turkish freshwaters. Smoothing line and confidence intervals of
specificities (gray area) are also provided. The raw data analyzed is taken from
Tarkan et al. (2017a).

were predicted as the northern basins namely Eastern Black
Sea, Western Black Sea and Marmara basins (Figure 2).
According to the model, Orontes river basin, Konya-closed
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TABLE 1 | Oncorhynchus mykiss screened with Aquatic Species Invasiveness Screening Kit (AS-ISK) for each of the river basins, i.e., risk assessment (RA) areas, that
comprise Turkey, numbered (in [ ]) as per Figure 2.

Basin Assessment component Confidence

BRA BRA+CCA CL CF

Score Outcome Score Outcome Delta Total BRA CCA Total BRA CCA

Akarçay [10] 14.0 Medium 8.0 Medium −6.0 2.8 2.8 2.7 0.69 0.69 0.67

Antalya [13] 21.0 Medium 15.0 Medium −6.0 2.8 2.8 2.0 0.69 0.71 0.50

Aras and Kura [24] 21.0 Medium 21.0 Medium 0.0 2.4 2.4 2.2 0.59 0.60 0.54

Burdur [9] 15.0 Medium 9.0 Medium −6.0 2.8 2.8 2.7 0.70 0.70 0.67

Ceyhan [18] 18.0 Medium 14.0 Medium −4.0 2.7 2.8 2.2 0.68 0.69 0.54

Çoruh [23] 24.0 Medium 24.0 Medium 0.0 2.6 2.6 3.0 0.65 0.63 0.75

Eastern Black Sea [22] 28.0 High 28.0 Medium 0.0 2.5 2.5 3.0 0.62 0.61 0.75

Eastern Mediterranean [14] 19.0 Medium 13.0 Medium −6.0 2.7 2.8 2.0 0.68 0.70 0.50

Euphrates and Tigris [21] 27.5 Medium 23.5 Medium −4.0 2.5 2.6 2.0 0.63 0.64 0.50

Gediz [5] 18.0 Medium 16.0 Medium −2.0 2.9 2.9 2.5 0.71 0.72 0.63

Great Menderes [7] 17.5 Medium 13.5 Medium −4.0 2.9 2.9 2.5 0.71 0.72 0.63

Kizilirmak [16] 21.0 Medium 13.0 Medium −8.0 2.8 2.8 2.5 0.69 0.69 0.63

Konya [15] 16.0 Medium 6.0 Medium −10.0 2.7 2.8 2.2 0.68 0.69 0.54

Marmara [2] 27.0 Medium 21.0 Medium −6.0 2.9 3.0 2.2 0.72 0.74 0.54

Meriç-Ergene [1] 28.0 High 24.0 Medium −4.0 2.8 2.9 2.3 0.71 0.72 0.58

North Aegean [4] 19.0 Medium 19.0 Medium 0.0 2.9 2.9 2.5 0.72 0.73 0.63

Orontes [19] 18.0 Medium 14.0 Medium −4.0 2.7 2.8 2.2 0.68 0.70 0.54

Sakarya [11] 24.5 Medium 16.5 Medium −8.0 2.8 2.8 2.2 0.69 0.70 0.54

Seyhan [17] 20.0 Medium 14.0 Medium −6.0 2.7 2.8 2.0 0.68 0.70 0.50

Small Menderes [6] 13.5 Medium 11.5 Medium −2.0 2.8 2.9 2.5 0.71 0.72 0.63

Susurluk [3] 22.5 Medium 18.5 Medium −4.0 2.9 2.9 2.5 0.72 0.73 0.63

Van [25] 23.5 Medium 19.5 Medium −4.0 2.5 2.5 2.0 0.62 0.63 0.50

Western Black Sea [12] 31.0 High 29.0 Medium −2.0 2.8 2.9 2.5 0.70 0.71 0.63

Western Mediterranean [8] 24.5 Medium 20.5 Medium −4.0 2.9 2.9 2.7 0.73 0.73 0.67

Yeşilirmak [20] 22.5 Medium 18.5 Medium −4.0 2.7 2.8 2.3 0.68 0.69 0.58

Basic Risk Assessment (BRA) and BRA plus Climate Change Assessment (BRA+CCA) scores and corresponding risk outcome rankings, difference (Delta) between BRA+CCA and

BRA, Confidence Level (CL) and Confidence Factor (CF) for all questions (Total) and separately for the BRA and CCA questions are given. Risk outcomes for the BRA are based on a

threshold of 27.75 (“Medium” for 1 to 27.75 and “High” for >27.75) and for the BRA+CCA on a threshold of 34.5.

basin and the lower parts of Tigris & Euphrates basin (the
southeast of Turkey) were the least suitable regions for
O. mykiss.

AS-ISK
The receiver operating characteristic curves for the Basic Risk
Assessment+ Climate Change Assessment resulted in an AUC
of 0.85 (0.75–0.94 95% CI) (Figure 3). These AUCs indicated
that AS-ISK was able to discriminate between non-invasive
and invasive O. mykiss for the assessed basins. Youden’s J
provided a threshold of 34.5 for the BRA+CCA, which was used
for calibration of the AS-ISK risk outcomes. Accordingly, the
BRA+CCA threshold allowed to distinguish between medium
risk species with scores within [1.0, 34.5[, and high-risk species
with scores within ]34.5, 80.0]. Species classified as low risk were
those with BRA+CCA scores within [−32.0, 1.0[(note the reverse
bracket notation indicating in all cases an open interval).

According to the BRA threshold, O. mykiss was classified
as “high risk” for 3 (12.0%) of the 25 river basin screened

(Western Black Sea, Eastern Black Sea, and Maritza-Ergene), and
as “medium risk” for the remaining ones. The species achieved
the highest BRA score inWestern Black Sea and lowest BRA score
in Small Menderes Basin (31.0 and 13.5, respectively) (Table 1).

The CCA negatively contributed the BRA+CCA scores of O.
mykiss in 22 (88.0%) of the river basins and resulted in zero
contribution for the remaining three, namely Aras-Kura, Çoruh
river, and Eastern Black Sea. The largest negative change in score
was obtained for Konya-Closed basin (1 = −10). Oncorhynchus
mykiss was classified as “medium risk” in all of the river basins
screened. The highest BRA+CCA score was achieved for the
Western Black Sea basin (Table 1).

The CL (over all 55 Qs) was 2.744 ± 0.030 SE, the CLBRA
2.784 ± 0.030 SE, and the CLCCA 2.376 ± 0.059 SE (hence,
in all cases indicating medium to high confidence), and the
CLBRA was significantly higher than the CLCCA (F#1.48 = 37.84,
P = 0.001). Similarly, mean values for CF = 0.683 ± 0.007 SE
and CFBRA = 0.692± 0.008 SE were higher than the mean value
for the CFCCA = 0.593 ± 0.015 SE, and the mean CFBRA was
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TABLE 2 | Overall Risk Score (ORS) of the river basins calculated based on their mean Oncorhynchus mykiss habitat suitability values (Maxent) and the Basic Risk
Assessment (ORSBRA ) and Climate Change Assessment (ORSBRA+CCA ) scores. MB, microbasin.

Basin Overall Risk Score O. mykiss habitat suitability (Maxent)

ORSBRA ORSBRA+CCA Number of MB Range (mean ± s.d.)

Akarçay [10] 6.09 3.48 7,027 0.30–0.56 (0.43 ± 0.05)

Antalya [13] 10.09 7.21 17,428 0.13–0.63 (0.48 ± 0.11)

Aras and Kura [24] 9.08 9.08 25,110 0.09–0.61 (0.43 ± 0.10)

Burdur [9] 6.49 3.89 5,470 0.27–0.55 (0.43 ± 0.04)

Ceyhan [18] 6.90 5.36 18,840 0.11–0.63 (0.38 ± 0.14)

Çoruh [23] 13.36 13.36 18,317 0.34–0.63 (0.56 ± 0.05)

Eastern Black Sea [22] 17.16 17.16 20,664 0.49–0.69 (0.61 ± 0.03)

Eastern Mediterranean [14] 8.80 6.02 18,639 0.11–0.64 (0.46 ± 0.10)

Euphrates and Tigris [21] 10.00 8.54 154,394 0.10–0.71 (0.36 ± 0.12)

Gediz [5] 8.97 7.97 15,086 0.25–0.61 (0.50 ± 0.06)

Great Menderes [7] 7.96 6.14 22,600 0.24–0.60 (0.45 ± 0.05)

Kizilirmak [16] 9.55 5.91 73,611 0.25–0.69 (0.45 ± 0.08)

Konya [15] 5.68 2.13 43,652 0.22–0.64 (0.35 ± 0.08)

Marmara [2] 16.13 12.55 20,695 0.48–0.71 (0.60 ± 0.02)

Meriç-Ergene [1] 14.75 12.65 13,254 0.46–0.63 (0.53 ± 0.02)

North Aegean [4] 10.38 9.29 8,719 0.33–0.63 (0.55 ± 0.05)

Orontes [19] 5.51 4.28 6,707 0.11–0.56 (0.31 ± 0.10)

Sakarya [11] 11.10 7.48 56,516 0.28–0.67 (0.45 ± 0.09)

Seyhan [17] 9.34 6.54 18,739 0.13–0.64 (0.47 ± 0.14)

Small Menderes [6] 6.76 5.76 6,034 0.37–0.60 (0.50 ± 0.05)

Susurluk [3] 12.67 10.42 21,686 0.41–0.66 (0.56 ± 0.04)

Van [25] 9.28 7.70 15,722 0.19–0.59 (0.39 ± 0.08)

Western Black Sea [12] 18.27 17.10 26,248 0.44–0.74 (0.59 ± 0.05)

Western Mediterranean [8] 11.40 9.54 17,927 0.18–0.61 (0.47 ± 0.07)

Yeşilirmak [20] 11.62 9.56 35,664 0.37–0.68 (0.52 ± 0.06)

numbers in ([ ]) stand for geographic ranges as per Figure 2.

significantly higher than the mean CFCCA (same significance
values as for the CLBRA vs. CLCCA comparison due to the two
indices being related). In all cases, the narrow standard errors
indicated overall similarity in CLs and CFs across the river basins
screened. Output reports of AS-ISK analyses of O. mykiss for all
river basins are provided in Supplementary Data sheet 1.

Overall Risk Assessment and Its
Implications for Native Trout Conservation
The Overall Risk Score calculated with only basic risk assessment
of river basins (ORSBRA) ranged from 5.51 to 18.27 (mean 10.29
± 0.70 SE) for Orontes river basin and the Western Black Sea,
respectively. The ORS calculated with basic risk and climate
change assessments (ORSBRA+CCA) ranged from 2.12 to 17.16
(mean 8.36± 0.78 SE) for Konya-Closed basin and Eastern Black
Sea basin, respectively. The ORSBRA calculated for Aras-Kura,
Çoruh river, and Eastern Black Sea were the same with their
ORSBRA+CCA due to the zero contribution of the CCA (Table 2).

We identified 13 native trout species whose known
distribution range fall entirely (or largely for S. coruhensis)
within Turkey. The most widespread species, distribute in more
than two basins are Salmo coruhensis (15 populations), S. opimus
(10 populations), and S. rizeensis (9 populations). The species

which are restricted to a single independent lake or stream
catchment are S. abanticus, S. chilo, S. fahrettini, S. kottelati,
S. munzuricus, S. tigridis, and S. platycephalus. The mean O.
mykiss habitat suitability of micro-basins that a native species
occupies ranged from 0.23 for S. opimus (Ceyhan population)
to 0.67 for S. rizeensis (Western Black Sea population) (see
Table 3); and were significantly different among the species
(or populations) examined (Pseudo-F = 7.327; P = 0.001; see
Supplementary Data sheet 4 for the entire outputs of the main
and pair-wise tests). The mean of the Relative Vulnerability
Scores that were calculated by excluding outlier values were
1.81 for RVSBRA and 1.50 for RVSBRA+CCA (Figure 4). The
four highest RVSBRA and RVSBRA+CCA were detected as the
outliers and belonged to Salmo abanticus, S. munzuricus, S.
euphrataeus, and S. fahrettini (by descending order). Other
populations that ranked as high in terms of both RVSBRA and
RVSBRA+CCA were S. coruhensis (Eastern Black Sea populations),
S. kottelati, S. labecula (Antalya population), S. platycephalus,
S. rizeensis (Eastern and Western Black Sea and populations),
and S. tigridis (Figure 5; Table 3). Salmo labecula from Seyhan
river basin and S. chilo ranked as high for RVSBRA, but not for
RVSBRA+CCA, suggesting that their vulnerability to O. mykiss will
significantly decrease by climate change. RVSBRA was also higher
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TABLE 3 | Native salmonid species and populations in Turkey with their Extent of Occurrence (EOO) and total independent population numbers (IP#).

Species Spatial analysis O. mykiss suitability of micro-basins Vulnerability

Basin code EOO (km2) IP# Range (mean ± s.d.) RVSBRA RVSBRA+CCA

Salmo abanticus 12 8.0 1 0.53–0.61 (0.56 ± 0.01) 11.17 10.45

Salmo chilo 18 89.7 1 0.44–0.54 (0.51 ± 0.01) 1.81 1.41

Salmo coruhensis 2 21225.7 15 0.57–0.58 (0.58 ± 0.01) 1.22 0.82

Salmo coruhensis 11 21225.7 15 0.56–0.61 (0.60 ± 0.01) 1.70 1.32

Salmo coruhensis 20 21225.7 15 0.44–0.57 (0.51 ± 0.01) 1.07 0.88

Salmo coruhensis 22 21225.7 15 0.55–0.62 (0.59 ± 0.01) 1.82 1.82

Salmo coruhensis 23 21225.7 15 0.41–0.63 (0.58 ± 0.03) 1.41 1.41

Salmo euphrataeus 21 8.0 1 0.41–0.58 (0.56 ± 0.01) 6.22 5.31

Salmo fahrettini 21 8.0 1 0.41–0.51 (0.47 ± 0.01) 5.24 4.48

Salmo kottelati 8 46.8 1 0.44–0.58 (0.55 ± 0.01) 3.73 3.13

Salmo labecula 13 215.5 2 0.50–0.60 (0.58 ± 0.02) 2.22 1.59

Salmo labecula 17 215.5 2 0.45–0.59 (0.54 ± 0.02) 2.08 1.45

Salmo munzuricus 21 3.5 1 0.43–0.58 (0.53 ± 0.02) 9.77 8.35

Salmo okumusi 21 2,214 2 0.34–0.45 (0.43 ± 0.01) 1.18 1.00

Salmo opimus 13 488 10 0.23–0.60 (0.49 ± 0.04) 1.33 0.95

Salmo opimus 14 861.5 10 0.47–0.59 (0.53 ± 0.01) 1.19 0.82

Salmo opimus 18 2513.4 10 0.25–0.61 (0.53 ± 0.03) 0.70 0.54

Salmo platycephalus 17 75.8 1 0.42–0.59 (0.55 ± 0.01) 2.85 2.00

Salmo rizeensis 12 5132.9 9 0.58–0.67 (0.65 ± 0.01) 2.54 2.37

Salmo rizeensis 20 5132.9 9 0.43–0.60 (0.52 ± 0.01) 1.30 1.07

Salmo rizeensis 22 5132.9 9 0.58–0.62 (0.61 ± 0.00) 2.24 2.24

Salmo rizeensis 23 5132.9 9 0.52–0.61 (0.56 ± 0.01) 1.61 1.61

Salmo tigridis 21 135.7 2 0.50–0.59 (0.58 ± 0.01) 2.37 2.02

Basin codes stand for the basins per Figure 2. RVSBRA+CCA and RVSBRA are the relative vulnerability scores calculated from ORSBRA+CCA and ORSBRA respectively.

Numbers in bold stand for high vulnerability (RVSs over thresholds).

than RVSBRA+CCA for all species except the Çoruh and Eastern
Black Sea populations of S. coruhensis and S. rizeensis (Table 3).
The known distribution ranges of the species (populations) with
high RVSBRA and RVSBRA+CCA are proposed as the hotspots
for potential overlap and interaction with O. mykiss (Figure 6).
The site descriptions of hotspots were provided in Table 4.
All the occurrence records of O. mykiss escapes compiled
from literature and the occurrence dataset is provided in the
Supplementary Table 1. The river tributaries where possess at
least one site-scale record of O. mykiss were highlighted. These
river patches located on the moderate to high dark areas indicate
a reasonable accuracy of the potential map (Figure 6). According
to the occurrence map, S. tigridis, S. kottelati and populations
of S. coruhensis and S. rizeensis in the Eastern Black Sea Basin
and S. labecula in Seyhan river basin seem to already exposed to
escapees of O. mykiss.

DISCUSSION

Establishment and Invasiveness Potential
of Oncorhynchus mykiss
As a risk screening (or identification) and decision support
tool, AS-ISK inherently makes use of expert opinion to respond
the assessment questions. There has been a debate on whether

the climate change assessment of AS-ISK is subjective as it
allows the use of Köppen-Geiger climate types, thus resulting
in the qualitative evaluation for climate matching (Marcot
et al., 2019). However, AS-ISK also primarily recommends to
benefit from a climate-matching approach (e.g., Climex, GARP,
Climatch) or physiological tolerances of species in question
(Copp et al., 2016a; Hill et al., 2020). To this end, we developed
an alternative way to the risk assessment by integrating AS-
ISK with the outputs of a species distribution model (Maxent),
which potentially reflects both environmental (including current
climate) matching and physiological tolerance. In the present
study, Maxent results constituted the quantitative base for the
establishment potential of O. mykiss in Turkey. However, our
ensemble approach can be applied in various ways such as the
addition of different climatic scenarios (future climate) into the
establishment potential component, that can, in turn improve
the Climate Change Assessment part of the AS-ISK. For risk
screening, using Maxent to predict the potential distribution
of an invasive species is a powerful method (Bosso et al.,
2017; Rodríguez-Merino et al., 2018) yet it has been inadequate
in utilizing such inputs as the potential impacts, introduction
pathways, successful introduction events or biogeographical and
historical traits of the taxon. AS-ISK mitigates these gaps by
its related query sections. For example, in the present study
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FIGURE 4 | Box-whisker plot representation of the Relative Vulnerability
Scores (RVS) of native salmonid species and populations in Turkey. RVSs were
calculated for two kinds of overall risk score (ORS), i.e., Basic Risk
Assessment (BRA)-based ORS (RVSBRA ) and Climate Change Assessment
(CCA)-based ORS (RVSBRA+CCA ). Boxes extend from the 25th to the 75th
percentile of each RVS’s distribution of values; whiskers above and below the
box indicate the 90th and 10th percentiles, respectively. Circles indicate the
outliers (scores outside 1.5 times the interquartile range). horizontal black lines
within the boxes denote median, asterisks denote the mean of the values.
Horizontal red lines within the boxes denote the mean RVSs calculated by
excluding the outliers.

Marmara, Susurluk and North Aegean basins ranked high
for their Maxent values, whereas AS-ISK scores substantially
decreased their ranks, suggesting thatO.mykiss is likely to survive
in these basins but less likely to become invasive. Therefore,
Overall Risk Score has the potential to balance between these two
main components by combining the probability and impact.

One of the most frequently used spatial scales on which
species’ invasiveness potential is screened is the country-level
(Perdikaris et al., 2016; Tarkan et al., 2017a; Uyan et al., 2020;
Zieba et al., 2020), however, using national boundaries for risk
screening of taxa whose distribution is strongly related to climatic
conditions (like Salmonids) may result in rough estimates, if the
country covers great climatic and geographical heterogeneity. As
for risk screening of O. mykiss in Turkey, where several different
climate types and a diverse topography are found (Deniz et al.,
2011; Iyigun et al., 2013), use of an alternative spatial scale than
the country-level is needed. Selecting the river basins as a spatial
scale in this regard is more appropriate, as they are compact and
coherent hydrological units that also reflect biogeographical and
ecological boundaries to a certain extent. This can also enable
assessors to predict certain cases (e.g., species distributions and
traits) more precisely (e.g., Dodd et al., 2019) than considering
the whole country level. Still, increasing resolution of assessments
by decreasing spatial scale of risk assessment area would enhance
the predictions for the establishment and invasiveness likelihood

of salmonid species since they frequently show local adaptation
to each environment. For instance, in a country-level basin
screening O. mykiss yielded 20 in both its BRA and BRA+CAA
which resulted it in being categorized as medium risk potential
of being invasive in Turkey (Tarkan et al., 2017a). However, our
river basin screenings resulted in high potential risk for three
basins, which suggest that coarser scale RA selections may mask
true invasiveness potential, at least in cases of geographically
heterogenous RAs such as Turkey.

Oncorhynchus mykiss is a cold-water species native to the
Pacific drainages of North America and northeastern Siberia
(Behnke, 1979). It is therefore not surprising that the most
explanatory variables determining the distribution of O. mykiss
was the average annual minimum and maximum temperature
(ca 70% in the present study) (Clark et al., 2001; Coleman and
Fausch, 2007). This might largely explain why the northern river
basins are found to be more suitable for O. mykiss compared to
those warmer regions located in central and southern Turkey.
This was also clearly reflected by the CCA (Climate Change
Assessment) scores, which resulted in a negative contribution
for O. mykiss in most assessed basins under predicted climate
warming conditions (Table 1). However, there are still some
river basins with no change in CCA scores suggesting habitat
suitability of O. mykiss will not be affected in the short term by
means of climatic variables. Although BRA+CCA is significantly
lower than BRA (Basic Risk Assessment) due to the intrinsically
higher level of uncertainty in future climate change projections
(Killi et al., 2020, Uyan et al., 2020), this is supported by
the high confidence ranking of CCA reflecting both extensive
literature information available on the screened species and the
similar level of expertise amongst assessors, hence increasing the
reliability of the screening outcomes.

Some other factors such as flow regime (Fausch et al., 2001),
stream size (Rahel and Nibbelink, 1999), and gradient (Adams,
1999) have been shown to affect distribution and establishment
of O. mykiss. In the present study, slope was the second most
important defining variable that might explain higher habitat
suitability for northern RAs. This could be attributed to the
occurrence of steep and fast-flowing streams in Black Sea region
(northern part of Anatolia) that could have contributed the
species’ persistence (e.g., Fausch et al., 2001). However, the low
invasiveness potential of O. mykiss was attributed to the poor
persistence of rainbow trout populations to be locally established,
mainly due to biotic resistance from competition, predation and
parasites or diseases (Fausch, 2007). Angling and wild collecting
as other crucial factors hamper invasion success of O. mykiss in
the U.K (Fausch, 2007), and these cannot be ruled out for Turkey.

Priority and Conservation of Native
Salmonids
The diversity of trout species in Western Palearctic has long been
a subject of dispute among taxonomists. Salmo trutta had been
considered a widespread polymorphic species that distributed
throughout Europe reaching southwards to the Atlas Range
(Morocco, Algeria) and eastwards to the upper Amu-Darya
drainage in Afghanistan (Kottelat, 1997). In recent decades, large
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FIGURE 5 | Relative Vulnerability Scores (RVS) of native Salmo species and populations in Turkey. Brackets ([ ]) after species (or populations) present river basin codes
are as per Figure 2.

numbers of studies have uncovered the diversity of trout in
Europe by the recognition of several species that had been earlier
identified as morphs or ecotypes of S. trutta (Delling, 2003,
2011; Delling and Doadrio, 2005). The case for the Turkish trout
species has followed similar path. Only five species of trout had
been recognized up to 2010 (S. abanticus, S. caspius, S. labrax,
S. macrostigma, and S. platycephalus). In the last decade, 11
additional species have been described from Turkey, as well as
the existence of S. labrax and S. macrostigma in Turkey was
disproven by extensive molecular and morphological studies
(Turan et al., 2010, 2011, 2012, 2014a,b, 2017, 2020). Although
the number of trout species in Turkey is still tentative, and some
have been questioned for their validity (Kalayci et al., 2018; Ninua
et al., 2018), here we follow in-state taxonomy. In the light of
the Aichi Biodiversity Targets, agreed in 2010 (https://www.cbd.
int/sp/targets/), biodiversity has been recognized not only at the
ecosystem and species level, but also at the genetic diversity
level. Thereof, regardless of whether the current trout taxonomy
is established or not, we consider the geographically and/or
genetically distinct native trout populations as conservation and
management units.

Before the present study, the number of species or populations
of trout that have been directly exposed to O. mykiss in nature
was poorly documented and anecdotal in Turkey. The present
research, has demonstrated, for the first time, to what extent
the spatial overlap currently exists between O. mykiss and
native salmonids, and how this might change in the future.
On one hand, stocking of non-native salmonids for aquaculture
and recreational fishing, and escapement from these systems
into nature, is an important issue in salmonid conservation.

Several studies have documented negative impacts of escapee
non-native salmonids, mainly O. mykiss and the brown trout
(Salmo trutta), on native salmonids, with the latter not being
a farmed species in Turkey (for a detailed account, see Fausch,
2007; Stanković et al., 2015; Hasegawa, 2020). Among the
pronounced impacts, displacement of native salmonids by non-
natives through reduced fitness and survival (Muhlfeld et al.,
2009; Houde et al., 2015), competitive exclusion (Fausch, 1988;
Seiler and Keeley, 2009), hybridization (Weigel et al., 2003; Boyer
et al., 2008) or predation (Budy and Gaeta, 2018) have been
well-studied in many parts of the world, especially in the North
America, Europe, New Zealand and Japan, yet none of these
impacts have been documented in Turkey. On the other hand,
interpopulation introductions of native salmonids for wild stock
enhancements is another conservation issue, as mixing species
is always problematic. In Turkey, such an effort has been made
to support wild populations of salmonids, especially S. rizeensis,
S. coruhensis and S. abanticus (Akkan et al., 2016), and much
more care is needed to avoid mixing the populations of different
species and the mismatching of species to their native ranges
during introductions.

According to our proposed relative vulnerability measure, S.
abanticus received the highest score, suggesting that the species
is represented by a low number of independent populations (IP
= 1) in a restricted area with relatively a higher potential than
other native salmonids to be exposed to O. mykiss. Among the
native trout species with the five highest Relative Vulnerability
Scores, only S. abanticus has an IUCN Red List category (VU,
Freyhof, 2019a), whereas the others have not been evaluated. This
calls for an urgent need to specify their conservation status. The
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FIGURE 6 | The distribution of native Salmo species and the range of Oncorhynchus mykiss farm escapes in Turkey. The colored circles represent site scale records
per native species; the river network patches (in yellow) represent the tributaries where O. mykiss farm escapements have been recorded. The map is black-white
equivalent of Figure 2 (i.e., habitat suitability map of O. mykiss). The red-dashed circles denote proposed hotspot areas, and are also coded by letters. The
coordinates and sources from which O. mykiss escape records taken were provided in Supplementary Table 1.

TABLE 4 | Description and geographic ranges of hotspots proposed for species and populations of native Salmo spp. in Turkey. Map codes correspond to the red circles
depicted in Figure 6.

Map

Code

Species Basin Hotspot description Latitude

range

Longitude

range

A S. abanticus Western Black Sea Lake Abant drainage nearly 30 km southwest of Bolu 40.53–40.81 31.19–31.65

B S. kottelati Western
Mediterranean

Alakir river drainage between the eastern Beydaglari mountain range and the western Gulf
of Antalya. The area from Alakir reservoir to the headwaters is of great importance

36.31–36.86 30.10–30.27

C S. labecula Antalya Köprüçay River drainage between the western Taurus Mountain range around Sütçüler
(Isparta) and south of the Köprülü Canyon National Park (Antalya)

37.12–37.94 30.94–31.40

D S. rizeensis Western Black Sea Small coastal streams from the west (Cide-Devrekani) to the east of (Çatalzeytin)
Kastamonu

41.76–42.01 33.32–34.25

E S. platycephalus Seyhan Zamanti River between Pinarbaşi and Kizlarsekisi in the upper Seyhan River drainage. 37.56–38.78 35.55–36.56

F S. munzuricus Euphrates and Tigris Munzur river (upper Euphrates) from the Gözeler springs (headwaters of the river) to the
north of Tunceli province.

39.19–39.52 38.77–39.68

G S. fahrettini Euphrates and Tigris Headwaters of Karasu river in the upper Euphrates. Streams Tekke and Ömertepesuyu in
west of Palandöken Montain (Erzurum)

39.71–39.98 40.84–41.25

H S. euphrataeus Euphrates and Tigris Streams Kuzgun, Senyurt and Ilica around Kuzgun Dam Lake in Karasu river drainage
(upper Euphrates), about 35 km northeast of Erzurum.

39.91–40.35 40.75–41.27

I S. rizeensis and
S. coruhensis

Eastern Black Sea Coastal streams between Hopa (Artvin) and Iyidere (Rize) in the eastern Black Sea region. 40.82–41.27 40.33–41.45

J S. tigridis Euphrates and Tigris Two headwaters of Botan River (uppermost Tigris drainage). Stream Müküs at Bahçesaray
and Çatak River at Çatak (Van)

37.98–38.24 42.65–43.35
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RVS alone reflects the relative vulnerability of the examined trout
species to the interaction potential withO. mykiss. Therefore, this
metric can be considered as a complementary tool to improve
conservation assessments (e.g., IUCN Red list assessment),
though it can help to propose relative priority for a range
of species (or populations) examined, when applied solely. In
this context, our tentative attempt, in which we determine
the threshold can be modified by any case-specific conditions,
such as, for example, considering RVS of certain species (or
populations) that is known to have a virtual interaction (reported
hybridization or competition) with O. mykiss as the threshold or
reference point.

As reviewed and suggested by Coates et al. (2018), infra-
specific entities have always been problematic for evolutionary
and conservation biologists in deciding conservation units.
However, it is widely recommended that distinct populations
within a species would be better accepted and treated as distinct
genetic lineages for the practical assessment of conservation
status or impact assessments (Frankham et al., 2012; Taylor et al.,
2017; Coates et al., 2018). In agreement with this conservative
approach, although S. rizeensis (LC) and S. coruhensis (NT)
are relatively wide-spread, some of their populations received
high RVS as their distribution ranges overlap with habitats
suitable to O. mykiss. Conversely, all populations of S. opimus
from southern drainages have been represented by relatively
low RVS, although the species is classified as Endangered by
the IUCN (Freyhof, 2019b). This result could be attributed
to the potential failure of O. mykiss in southern basins
(Table 2). This potential is expected to increase for this
spatial range by the predicted climate change. In parallel
with this assumption, RVSBRA+CCA of S. labecula population
from Antalya and S. chilo from Ceyhan remained under the
proposed threshold, even though their RVSBRA was above the
corresponding threshold.

CONCLUDING REMARKS

Whilst the use of non-native species has an indispensable
importance for international aquaculture, it also poses
considerably high risks to native biodiversity, as escaped
aquatic species may become invasive in certain environments.
Despite the fact that preventing organisms from escaping is
the best interest of aquaculturists—who engage in the farming
of fish, mollusks, crustaceans and aquatic plants—, it is widely
known that species in fact do escape. This is not only true for
fish species, as is the case in the present study, but also for
some mammals (American minks, Anderson and Valenzuela,
2011; Nutria, Simberloff, 2011), marine shellfish (Galil, 2011),
garden plants (Reichard and White, 2001) and aquatic plants,
as the most popular example being the killer algae, Caulerpa
toxifolia (Meinesz and Hesse, 1991), all of which could have been
successfully introduced to many parts of the World.

As for future prospects, it is crucial that we incorporate escape
probability from the farms to better quantify the overall risk
exposed by O. mykiss. Fish escapes from farms can be both
detrimental to the natural species and can also reduce income

of fish farms. For this aim, we highly anticipate receiving the
benefit of aquaculture-specific and post-screening risk analysis
tools such as European Non-native Species in Aquaculture Risk
Analysis Scheme (ENSARS) (Copp et al., 2016b; Tarkan et al.,
2020), by also implementing the information on farm intensity
(number of fish farms per unit area) and farm capacity. Fish
escape should also be taken seriously especially for the hotspots
we proposed, and relatedmeasures should be amended to prevent
or minimize it. According to the confirmed escape records,
several species and populations of native trouts have already been
exposed to escapees of O. mykiss, and we propose to give priority
to monitor those species or populations in near future.

There is still ongoing debate as to whether species distribution
models are accurate enough to predict potential establishment
and spread of introduced species (Bertolino et al., 2020).
Therefore, collecting field data would be needed to support
the validation of our modeling. Considerable gaps in the
knowledge have been identified in both the science and policy
for the effective management of biological invasions, which
indicate that non-native species are not properly managed
because they receive less attention from a wide range of related
groups (i.e., scientists, policy-makers, and managers). This is
substantially important in tackling invasive non-native species
through prevention, early detection, rapid response, eradication
and control, which are all considered to be financially demanding
(Britton et al., 2011). In cases where river basins contain both
native trout species and O. mykiss, implementation of such
measures significantly depend on the local authorities and public
perception mainly because of the economic value of O. mykiss.
However, as the results of the present study suggest a potential
impact on native and endemic trout species, a balance should be
found between the ecological impacts and the economic benefits
of O. mykiss.
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