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Abstract
It has been proposed that there was an abrupt climatic change event around 4.2 ka BP
that affected societies and even has been linked to the collapse of empires. Subsequent
studies have reached conclusions that both support and contradict the proposed event; yet
nevertheless, 4.2 ka BP has now been adopted as the stratigraphic boundary point between
the Middle and Upper Holocene. Time series plots of paleoclimate studies that claim to
support the abrupt climate change hypothesis show differing temporal patterns so, in this
study, we apply the Bayesian structural time series (BSTS) approach using the CausalIm-
pact package to test data from southeast Europe and southwest Asia for which it is claimed
that they demonstrate a climatic anomaly around 4.2 ka BP. To do this, each “affected”
time series is synthetically reconstructed using “unaffected” series as predictors in a fully
Bayesian framework by the BSTS method and then forecast beyond the assumed starting
point of the event. A Bayesian hypothesis test is then applied to differences between each
synthetic and real time series to test the impact of the event against the forecast data. While
our results confirm that some studies cited in support of the 4.2 ka BP event hypothesis
do indeed hold true, we also show that a number of other studies fail to demonstrate any
credible effect. We observe spatial and data patterning in our results, and we speculate that
this climatic deterioration may have been a consequence of an asymmetrical northward
expansion or migration of the Northern Hemisphere Hadley cell. Furthermore, we observe
that while the signals are generally not credible, types of proxy data from the Mesopotamia
region and east are consistent with aeolian dust storms.
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1 Introduction

There were numerous rapid climate change (RCC) events in high latitudes of the Northern
Hemisphere during the Late Pleistocene (Rasmussen et al. 2014). There have also been
attempts to define RCC events similar to those seen in the Pleistocene for the Holocene,
using available proxy data (Mayewski et al. 2004; Wanner et al. 2008). The possibility of
RCC events in the Holocene is especially interesting given they would have taken place
during a period of human history typified by complex human societies. RCC events can
therefore serve as models for understanding the interaction between the natural environment
and human cultures within the context of a rapidly changing climate.

One of the most controversial of the proposed RCC events is the so-called 4.2 ka BP1

event, first proposed by Weiss et al. (1993). In their study Weiss et al. (1993) claim that,
a major short-term climatic change between 4.2 and 3.9 ka BP contributed to the collapse
of the Akkadian Empire. Following Weiss et al. (1993), further studies were published
that appeared to confirm this hypothesis (see Weiss (2017) and Railsback et al. (2018) and
references therein). In their initial article, Weiss et al. (1993) used aeolian deposits from
archaeological contexts as well as excavated evidence and archaeological survey data to
propose that increased regional aridity in the Habur Plains of Syria led to a decline in human
settlement activity. Having begun as a drought phenomenon for the Upper Mesopotamia,
mounting evidence from subsequent studies in other regions gradually led to the controver-
sial (Voosen 2018; Middleton 2018; Ön et al. 2019; Bradley and Bakke 2019a) acceptance
of the 4.2 ka BP event as the geological stratigraphic boundary between the Middle and
Upper Holocene (Walker et al. 2019).

There are, however, problems with some of the evidence for the 4.2 ka BP event, even
that which is most widely cited (for a summary of the key evidences, see Walker et al.
2012; Weiss 2015; Weiss 2017). For example, in different proxy data measurements taken
from the same sample by Lemcke and Sturm (1997), the time series from quartz is one
of the most widely used forms of evidence claimed as a proxy for aeolian activity for the
4.2 ka BP event by researchers other than the original authors (e.g., Walker et al. (2012)
and Weiss (2017)), yet there is disagreement between that time series and any other time
series (notably, relative humidity reconstruction) from the same sample, namely Van 90-10
sediment core of Lake Van. Asynchrony is also present for the same proxies in samples taken
from adjacent, or identical, sampling sites. For example, a precipitation reconstruction by
Kaniewski et al. (2013) at Tel Akko (Israel) shows a dry period around 4.2 ka BP, whereas a
precipitation reconstruction during the same period from Dead Sea sediments reveals one of
the wettest periods of the Holocene (Litt et al. 2012). Another important example is from the
Mawmluh Cave (Meghalaya, India) because a previously studied speleothem sample from
the same cave (Berkelhammer et al. 2013) now serves as the stratotype of the Meghalayan
Stage (Walker et al. 2019). However, recently analyzed high-resolution samples from the
Mawmluh Cave (Kathayat et al. 2018) not only gave contradictory results about the timing
of the 4.2 ka BP event, they also suggest that the intensity of the event was lower than that
proposed by Berkelhammer et al. (2013).

Furthermore, while the timing of the event was originally postulated by Weiss et al.
(1993) as being between 4.2 and 3.9 ka BP, some proxy data show a climatic event with
significantly different start and end dates. For example, precipitation reconstruction from
Tel Akko (Kaniewski et al. 2013) suggests a dry period starting at around 4.4 ka BP and

1Kiloannum before present, meaning thousand years before 1950 CE.
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the Soreq Cave geochemistry data (Bar-Matthews et al. 2003) show a drying trend starting
at around 4.7 ka BP (Arz et al. 2015). It has therefore subsequently been claimed that the
putative event may be a result of superimposed events starting before or around 4.7 ka BP
(Drysdale et al. 2006; Kuzucuoǧlu 2007). Yet, on the other hand, there are also numerous
examples of proxy data that do not show any abrupt change at all in the period around 4.2
ka BP (Göktürk et al. 2011; Arz et al. 2015; Jones et al. 2016; Ön et al. 2017; Bradley and
Bakke 2019b; Andrews et al. 2020).

The archaeological data is similarly complex and self-contradictory. For example, most
major ancient settlements in the upper Euphrates basin and western Syria appear not to
have been affected by any climate event, yet many settlements in the Khabur River basin
were abandoned (cf. Kuzucuoğlu and Marro 2007; Pfälzner 2017; Schwartz 2017), show-
ing a regionally differentiated response to the event. The collapse of the Old Kingdom
in Egypt appears not to have been abrupt, but rather a gradual de-urbanization process
that started several centuries before the 4.2 ka BP event (cf. Höflmayer 2015 and Moreno
Garcı́a 2015). In the Levant, Anatolia and Italy archaeological sites were to show differ-
ing responses to the collapse of the Early Bronze Age state system and no single pattern
can be discerned (see the articles in, Meller et al. 2015; Höflmayer F 2017a). We should
not, therefore, expect to see a uniform response to the 4.2 ka BP event. When working
with archaeological data, we must always bear in mind the complexity of human societies
and how they may respond differently to environmental change and not presume to predict
their actions in a deterministic manner. Human agency means that different social groups
can create different strategies to accommodate climatic change into their subsistence prac-
tices and societies. The nature of their pre-event agricultural strategies and social practices
will also affect their ability to cope with changed environmental circumstances (Ur 2015).
Not only will these pre-event conditions influence a society’s scope of action in response
to climatic change, so too will the responses made by neighboring communities. Collapse
of one state can affect inter-connected communities in a domino effect for which climate
may ultimately have been a contributory factor but to which different human communities
will respond to differently with changes to their own social organization, trade networks,
or through war (Höflmayer 2017b). Understanding this requires us to adopt an idiographic
approach to human responses to change, as each society responds independently to the
event, albeit within a context of inter-related social, commercial, and military networks. As
Ur (2015, p. 69) wrote: “only in rare circumstances does climate change force a uniform
response from human communities.” Human agricultural behaviors can change proxy data
sets by, for example, shifting between arable and pastoralism—a change that would affect
the near-environment of archaeological sites and become visible as aeolian deposits in the
archaeological record. Only when independent proxy data indicate that there has been cli-
mate change should we begin to examine archaeological or historical data, or else we risk
using unrelated human cultural dynamics as evidence of climate change. No archaeologi-
cal or historical evidence for environmental change should therefore be considered to be a
direct proxy for climate change, as it is always mediated by independent and unpredictable
human actions (cf. Akçer-Ön et al. 2020; Haldon et al. 2020).

Our strategy in this study has been to synthetically reconstruct in a Bayesian manner
every paleo-proxy time series for which it has been claimed that there is evidence of an
abrupt change around 4.2 ka BP from southeast Europe and southwest Asia. Although new
paleoclimate studies with high resolution data and robust age models will always be needed,
there are now enough spatial/temporal data on which to begin building Bayesian models.
While combining multiple time series and applying stochastic reconstruction within a large
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spatial scale and across spatially disparate data with age uncertainties is a challenging pro-
cess, by testing the 4.2 ka BP hypothesis through a hierarchical Bayesian approach, it is
possible to quantify the uncertainties of an impact2 of a possible event reflected in the proxy
data. By so doing, it is possible to plot a spatial distribution of any proven drought effect
and hypothesize an underlying physical mechanism for its causation.

Reconstruction during the period prior to the putative 4.2 ka BP RCC event is handled by
the BSTS method (Scott and Varian 2014), which is mainly a linear regression model plus
a trend component. BSTS is an effective way of constructing synthetic controls for time
series data. The spike and slab regression component selects and weights the appropriate
candidate controls, while the time series component captures temporal trends and serial
correlation. If one assumes that there is a steady relation between the response variable
and the BSTS model, then the forecast of the BSTS model can be used as a proxy for the
response variable. In this study, time series from the same broad region that do not show
any abrupt change during the period of interest are used as the control set (see Fig. 1a,
Table 1 and Fig. S1) and they are used as predictor variables in the regression model to
reconstruct each response variable (see Fig. 1b and Table 1) which are claimed to show the
4.2 ka BP event through a spike, wiggle, or a similar geometric shape in time series of proxy
data. The control set consists of time series that are assumed to describe the same dynamic
process with the response variables, but must themselves not be affected by the impact, in
either positive or negative direction. Furthermore, it is assumed that the underlying relation
between the control set and the response variable, except for the impact itself, also continues
to exist after the impact. Therefore, synthetic reconstructions of each response variable from
the control set and a trend should not show any significant sign of the expected impact.
According to the BSTS model, reconstructed time series are forecast from the point of
impact by assuming a continuing dynamic relation between each response variable and each
BSTS model. We infer the credibility of the impact of the conjectured climatic event on each
proxy data, by finding the differences between the original and the posterior distribution of
the predicted data during the temporal interval of interest. Consequently, we claim that the
effect is credible (not credible) if the 95% posterior interval of the resulting semiparametric
Bayesian distribution excludes (includes) zero.

Within this framework, the aim of this study is to generate synthetic time series of
regional paleoclimate proxy data, for which it is claimed that they include evidence of an
abrupt climate change around 4.2 ka BP and accordingly test the statistical credibility of
that presumed abrupt change upon each of them.

2 Materials andmethods

2.1 Data

Since no recorded climate data exist for the specified time period, if we are to apply a
test to the validity or spatial distribution of the 4.2 ka BP event, we must rely on various
types of noisy paleoclimate proxy data time series from different environmental contexts.
Paleoclimate proxies are assumed to be noisy indicators of regional and to some extent
large-scale environmental changes. Their climatic interpretation is not straightforward and

2Within the scope of this study, the term “impact” signifies only a change in the nature of the time series. We
do not presuppose the physical cause of that impact, which may be external or created by an extreme climate
state as a result of nonlinear interactions within the dynamic climate system itself without any external trigger.
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b

Fig. 1 Map of the broader region discussed in this study. a The locations of the control set variables shown
with numbers. b The locations of the response variables. Red uppercase letters indicate the data confirming
the hypothesis, whereas red Greek letters indicate the locations which confirm the hypothesis with an endur-
ing level shift (for details, see Section 3). Blue lowercase letters indicate the locations which do not confirm
the hypothesis. For the references of the whole data, see Table 1. This map is prepared using GMT (Wessel
et al. 2019) and ETOPO1 relief model (Amante and Eakins 2009)

requires “careful calibration and cross-validation procedures” (Folland et al. 2001, p. 130).
We therefore leave the environmental interpretations of data to the original authors of the
selected studies. Different proxy types exist, and they differ in output data and noise levels
(for an extensive review, see Bradley 2015). Ideally, we would discuss this problem using
the same type of proxy data sets from the case study region. However, the whole available
data according to the selection criteria explained in the next paragraph are given in Table 1
and even this selection leaves us spatially scarce (Fig. 1) and different types of proxy data
from a wide geographical region.

The longer the data sequences used to reconstruct a targeted time series (response vari-
able) by BSTS, the more robust it will be and the application of BSTS is only possible if
the control set contains no missing values. With this in mind, it is important to note that
there is another suggested climate event similar to the 4.2 ka BP event, at around 8.2 ka BP
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Table 1 Paleoclimate proxy data used in this study

Location (sample name) Site type Proxy Proxy interpretation Reference

1. Arabian Sea (RC27-23) M δ15N Denitrification Altabet et al. (2002)

2. Qunf Cave (Q5) S δ18O Precipitation Fleitmann et al. (2007)

3. Gulf of Aqaba (GeoB 5804-4) M TSAR Aeolian depos. Lamy et al. (2006)

4. Eastern Med. (GeoB 7702-3) M TEX86 SST Castañeda et al. (2010)

5. Lake Kinneret (KI 10 I,II) M Diatom Lake level Vossel et al. (2018)

6. Lake Hazar (Hz11-P03) L Hz-ic4 Precipitation Ön et al. (2017)

7. Lake Hazar (Hz11-P03) L Hz-ic5 Temperature Ön et al. (2017)

8. Sofular Cave (So-1) S δ13C Effective moist. Göktürk et al. (2011)

9. Sofular Cave (So-1) S δ18O Moist. source Göktürk et al. (2011)

10. Aegean Sea (LC21) M Warm sp.(%) SST Rohling et al. (2002)

11. Lake Maliq (K6) L Pollen Precipitation Bordon et al. (2009)

12. Ascunsa Cave (POM2) S δ18O Temperature Drăguşin et al. (2014)

13. Scãrişoara Cave (SIC) S δ18O Temperature Perso̧iu et al. (2017)

14. Adriatic Sea (MD90-917) M foram. SST Siani et al. (2013)

A. Gulf of Oman (M5-422) M CaCO3 Aeolian depos. Cullen et al. (2000)

B. Red Sea (GeoB 5836-2) M δ18O SSS Arz et al. (2006)

C. Tel Akko (Akko core) AS Pollen Precipitation Kaniewski et al. (2013)

D. Jeita Cave (J-1) S δ18O Precipitation Cheng et al. (2015)

E. Aegean Sea (GeoTü SL148) M smect./ill. Drought Ehrmann et al. (2007)

F. Lake Ledro (LL081) L Pollen Summer precip. Peyron et al. (2013)

G. Buca della Renella (RL4) S δ18O Precipitation Drysdale et al. (2006)

α. Aegean Sea (GeoTü SL148) M δ13CUm Productivity Kuhnt et al. (2008)

β. Lake Dojran (Co1260) L CaCO3 Productivity Francke et al. (2013)

γ. Lake Ohrid (Lz1120) L CaCO3 Productivity Wagner et al. (2009)

δ. Lake Trifoglietti (S2) L Pollen Summer precip. Peyron et al. (2013)

a. Neor Lake L XRF-Ti Aeolian depos. Sharifi et al. (2015)

b. Lake Van (Van 90-10) L Quartz Aeolian depos. Lemcke and Sturm (1997)

c. Eski Acıgöl (ESK96-97) L δ18O Water balance Roberts et al. (2001)

d. Kocain Cave (Ko-1) S δ13C Winter temp. Göktürk (2011)

e. Gölhisar (GHA) L δ18O Water balance Eastwood et al. (2007)

f. Skala Marion Cave (MAR L) S δ18O Precipitation Psomiadis et al. (2018)

g. Poleva Cave (PP98-10) S δ18O Temperature Constantin et al. (2007)

h. Grotta di Ernesto (ER76) S δ13C Temperature Scholz et al. (2012)

The data given in the upper panel are the response variables that are claimed to show an abrupt change during
the period of interest, in the context of causal impact method. The letters are given according to the results
gathered in this study: upper case Latin letters confirm the abrupt change hypothesis; lower case Greek letters
indicate a change at the period of interest with a level shift; lower case Latin letters give no statistically valid
change (for details, see Section 3). The lower panel shows the control set in the context of causal impact
method, which do not show a change during the period of interest. Site type and other used abbreviations are
as follows: M marine, AS archaeological site, S speleothem, L lake, I ice core, SST sea surface temperature
TSAR terrigenous sand accumulation rate
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(see Walker et al. 2012), which we have excluded from our analysis. We therefore selected
paleoclimate proxy time series for the control set from the broader region using two crite-
ria: that they have to span the period between 7.45 and 2.7 ka BP and that the original data
should have an approximate temporal resolution of at least 50 years. The boundary points
of the interval, i.e., specifically 7.45 ka BP and 2.7 ka BP, were selected so as to take advan-
tage of almost continuous GeoB5804-4 (Lamy et al. 2006) and Qunf Cave (Fleitmann et al.
2007) data to be included in the control set. It would also have been possible to select 3.9 ka
BP as an end point but defining a longer period allows us to show the forecasting capability
of the method, at least for some response variables. Applying these criteria, we chose the
interval from 4.4 to 2.7 ka BP, a total forecasting period of 1700 years. The selection of 4.4
ka BP as the start point of the event avoids the possible creation of bias from age models
and to include the apparent event in the data of Drysdale et al. (2006) (see Section 3 for the
discussion).

The BSTS method (see Section 2.2 and supplementary material) requires evenly spaced
data and predictors and responses must be observed at the same set of discrete time points.
Since none of the time series data used in this study (Table 1) is synchronous, all of them are
linearly interpolated to 50 years resolution between 7.45 and 2.7 ka BP. For a description of
the pre-processing, see supplementary material.

2.2 Causal impact

Through BSTS, each response variable is defined in a structural time series model (Scott and
Varian 2014, 2015). The main component of the model for this study is linear regression.
Other components, such as trend, seasonality or autoregression can be defined modularly
in structural time series models (see Durbin and Koopman 2012). The basic structural time
series model used in this study is defined through the following set of equations:

yt+1 = μt+1 + βTxt+1 + εt+1,

μt+1 = μt + δt + ξt ,

δt+1 = δt + ζt .

(1)

At Eq. 1, yt is the observed data at time t (in this study, any of the time series at the
lower panel of Table 1), which in our case is proposed to show an abrupt change around
4.2 ka BP. The model includes a local linear trend μt and a linear regression component
with βT xt. Linear trend is defined via a dynamic slope δt which is a random walk. xt is
the K × 1 vector of contemporaneous covariates (in this study, vector of data points at time
t for the control set shown at the upper panel of Table 1) and β is the K × 1 regression
coefficient vector associated with the control set. At Eq. 1, εt , ξt , and ζt are statistically
independent and normally distributed error terms with zero mean. Parameters of the model
are variances of the error terms and β, regression coefficients. Regression coefficients are
selected in a hierarchical fashion within the model via Gibbs sampling, through a method
called Stochastic Search Variable Selection (George and McCulloch 1993). For details of
the synthetic reconstruction of each response variable through Bayesian estimation, cross-
validation procedure for parameter selection, and evaluation of the impact on response data,
see the supplementary material and references therein.

All the computations are made using the open source CausalImpact package (Brodersen
et al. 2015) under a free and open-source statistical software R (R Core Team 2019).
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3 Results and discussion

Our results are summarized in Fig. 1 and Table 1. Detailed explanation of the methods
by which these results were achieved can be found in the supplementary material. These
results are based on reconstructions of response variables via the control set on a broad
geographical area and calculation of the credibility of the impact across a specific interval.
Decisions and assumptions made about these processes and variables will affect the results.
Therefore, we present our discussion on these decisions and assumptions before the results.

Our method is to perform a BSTS fit to each data set for which it has been claimed
that they show an abrupt event around 4.2 ka BP and check the credibility of an effect of a
possible climatic event on the response variables. The selected control set (Table 1, upper
panel) is composed of time series from the same wide region, which show no abrupt change,
in either positive or negative directions, during the 4.4 to 3.9 ka BP interval. For this article,
we use all data, including age models, as presented in the original publications. All these
data come from different studies, which may themselves include certain biases in terms
of their own age models/uncertainties, laboratory measurements, and the specific nature
of different proxy data. However, the use of multiple time series with Bayesian stochastic
averaging is one of the most robust, holistic, and state-of-the-art approaches in the presence
of such uncertainties.

Unlike instrumental climate data, in paleoclimate science, proxy data are dependent upon
many different processes (cf. Roberts et al. 2008; Ön and Özeren 2018). Furthermore, they
are scarce and may have relatively low resolution. Some of them may contain hiatuses,
sections of the record needed to make the desired measurement may be unavailable or the
outputs of the analyses may not give quantitative results. Therefore, in order to achieve the
desired analysis, we selected all available data within the region that meet almost all the con-
ditions described in Section 2.1. Within this constrained picture, selection of the data mainly
depends on the assumption of dynamic atmospheric connection across the extended region
and therefore it is assumed that a relation between the proxy variables should exist. This
assumed weak connection is verified by analogy to the Late Pleistocene millennial scale
RCC events in the same region (e.g., Fleitmann et al. 2009; Torfstein et al. 2013; Çağatay
et al. 2014; Wegwerth et al. 2015). In some studies, chronologies are even constructed on
the basis of this assumption (e.g., Stockhecke et al. 2016; Zanchetta et al. 2016). The whole
region is also, to some extent, affected by multiple hemispheric pressure gradients and cir-
culation patterns (Cullen and deMenocal 2000; Bozkurt et al. 2012; Roberts et al. 2012;
Ulbrich et al. 2012); and therefore, we assume that all the data in this study can be assumed
to have dynamic interrelations throughout the analyzed period. With this assumption about
the data, the spike and slab prior variable selection technique is assumed to select the most
statistically appropriate predictor variables from the control set for each response variable
(George and McCulloch 1997; Scott and Varian 2014).

According to the original hypothesis proposed by Weiss et al. (1993), the onset of the
drought event in Tell Leilan was around 4.2 ka BP and it ended at around 3.9 ka BP.
Subsequent studies have since enlarged the length of this interval. For example, Drys-
dale et al. (2006) have suggested that the event took place between 4.4 and 3.8 ka BP
and, in a recent study, Zanchetta et al. (2018) bounded the interval of a possible event
for the central Mediterranean between 4.4 and 3.9 ka BP. The stochastic model used to
construct response variables in this study has two components, local linear trend and regres-
sion (see Section 2.2). The causal impact method applies a test to the differences between
the response variable and the synthetically reconstructed time series during the period of
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interest. Had we restricted the onset of the event to 4.2 ka BP, this might have generated
misleading results for some data series because, if the event starts before 4.2 ka BP in a data
set, the trend and/or the regression component would adapt themselves to the existing level,
which is clearly different from the normal conditions in the time series. A good example of
this situation is the adaptation of the red dashed lines to Neor Lake Ti count data (Sharifi
et al. 2015) between 6.4 and 4.8 ka BP (see Fig. 2). Therefore, if the test were applied to
all time series from 4.2 ka BP onwards only, then the results from time series such as Buca
della Renella δ18O (Drysdale et al. 2006) may have been misleading. Therefore, for all the
time series in this study, following Zanchetta et al. (2018), we assumed that the onset of the
climatic event was 4.4 ka BP and it ended at 3.9 ka BP.

The proposed impact has different influences on the appearance of the time series (see,
Fig. 2). In some of them, the general trend of the time series returns to its pre-impact levels

Fig. 2 Causal impact analyses for the response variables given in Table 1. Black lines show the original
time series, interpolated to 50 years resolution, as explained in Section 2.1. Red dashed lines show the
reconstructed time series for the pre-period and green dashed lines show the forecast for the post-period,
respectively. Gray clouds in each plot indicate the 95% credible intervals. Dashed vertical lines mark the
interval between 4.4 and 3.9 ka BP, where the validity of the effect of an impact is checked. All the graphs
are plotted to represent the effect in the negative direction
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after the cessation of the impact interval, while in the other cases we do not observe any
such resilience and the signals experience an enduring level shift (often negative) that lasts
longer than the hypothesized impact interval (see discussion below). While the cause of
this shift may be explained by a possible deforestation due to human intervention in Lake
Dojran (Francke et al. 2013), we can find no explanation for it in other studies. For the
rest of the records, the event may have caused an enduring effect due to the impact on the
specific element of the environment from which the proxies were sampled. An example of
paleoceanographic changes would be that an extended drought may impose a significant
change in the oceanic convective overturning regime that, in turn, permanently changes the
residence time of δ13C (Kuhnt et al. 2008) leading to a level shift in the time series after the
cessation of the impact period. Further terrestrial examples of how a period of aridity may
cause an enduring change in the flora or sedimentary character of a watershed due to natural
and/or anthropogenic causes may be the pollen record from Lake Trifoglietti (Peyron et al.
2013) and geochemistry record form Lake Ohrid (Francke et al. 2013). These may be good
examples of a shift from one stable state to another stable state which can be explained by
multiple equilibria within a dynamical climate system.

In our results, three different behaviors can be discerned in the time series following
the onset of the presumed impact. The first group consists of seven time series (shown as
uppercase letters in Fig. 1b and Fig. 2, including Cullen et al. 2000; Arz et al. 2006; Drysdale
et al. 2006; Ehrmann et al. 2007; Kaniewski et al. 2013; Peyron et al. 2013-Lake Ledro;
Cheng et al. 2015) that confirm the hypothesis of Weiss et al. (1993) in that they not only
coincide with the suggested onset date but also have approximately the same duration as that
proposed by Weiss et al. (1993), or more correctly the revised date and duration proposed
by Zanchetta et al. (2018). The second proxy group consists of four time series (shown as
lowercase Greek letters in Fig. 1b and Fig. 2, including Kuhnt et al. 2008; Wagner et al.
2009; Francke et al. 2013; Peyron et al. 2013-Lake Trifoglietti) and displays an impact in
the time series but with an enduring level shift after cessation of the proposed impact period.

The third group consists of eight time series (shown as lowercase letters in Fig. 1b and
Fig. 2, including Lemcke and Sturm 1997; Roberts et al. 2001; Constantin et al. 2007;
Eastwood et al. 2007; Göktürk 2011; Scholz et al. 2012; Sharifi et al. 2015; Psomiadis
et al. 2018) and, according to the test against the reconstruction, indicates no abrupt change
during the period of interest. That is to say, in these eight cases, the time series continue to
fluctuate within predicted parameters of stochastic credible intervals and the effect of the
impact, if any, is negligible.

However, we should comment here on some important points of note. Lack of an impact
does not mean the tested proxy data show no event. According to the test, the result is sta-
tistically not credible, which is not the same as non-existent. For example, there is a clear
local maxima of quartz content of Lake Van (Lemcke and Sturm 1997) at around 4.1 ka
BP but its temporal length does not span the entire hypothesized period and, rather, it cov-
ers only a relatively short period. Since our model tests the credibility of the differences
between original and reconstructed series from 4.4 through to 3.9 ka BP, the Lake Van result
appears as the conjectured impact having no credible effect on the time series. While this
may seem problematic, the physical reason for such a short-term transient event will be dis-
cussed in subsequent paragraphs. Secondly, the reverse circumstance is also possible. For
example, the event in the δ18O record from the Jeita Cave (Cheng et al. 2015) is weaker
than the events observed between 5.2 and 4.9 ka BP and after 3 ka BP in the same record.
However, the cumulative effect found by the summation of the differences between the orig-
inal and reconstructed data through the period of interest leaves us with a “barely” credible
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effect (see Fig. S23). Besides, changing the k value, which is a hyperparameter describ-
ing the weights of regression and trend found through cross-validation (see supplementary
material), may change the result of the test on the Jeita Cave data (since Bayesian one-sided
tail-area probability of the result is too close to 0.05 and which can be seen in Fig. S23).
However, a change in the result of a single series would not change our results. Thirdly, tem-
poral lengths from the Kocain Cave (Göktürk 2011), Skala Marion Cave (Psomiadis et al.
2018), and, to some extent, Tel Akko (Kaniewski et al. 2013) data are substantially shorter
than the rest of the response variables, a condition which reduces the confidence of the anal-
yses for these sites. Lastly, the Skala Marion Cave experienced a drought between 3.9 and
3.7 ka BP, yet this was put forward as further evidence for the 4.2 ka BP event by Psomiadis
et al. (2018). Since our hypothesis testing is applied strictly to the interval between 4.4 and
3.9 ka BP, this period is not taken into account by our analysis.

Initial consideration of our results may at first appear to suggest that the locations where
the proposed impact has been demonstrated do not form any coherent geographical pat-
terning or regional cluster because they are spatially diffuse across the study region. For
example, we detected the impact in Buca della Renella in Italy (Drysdale et al. 2006) to the
west and in the Gulf of Oman (Cullen et al. 2000) to the east, which are two of the most
extreme diametrically opposed locations within the region.

However, on closer inspection, it is possible to discern a potential spatial distribution
trend that does not follow a simple longitudinal or latitudinal division, but rather curves
across the study region along a southeast-northwest line. Almost all the locations showing
a drought during the 4.2 ka BP event lie roughly south of this hypothetical line (Fig. 3). A
similar north-south patterning has been observed in pollen data from the Italian Peninsula
(Di Rita and Magri 2019) and also for the Mediterranean region as a whole (Magny et al.
2013), but our results do not indicate quite such a strict north-south division.

The precipitation regime of the region shows a very high seasonality (see Fig. S24) and
this is mainly due to the latitudinal migration of the Intertropical Convergence Zone (ITCZ)
and, accordingly, the subtropical 380 high pressure belt (STHP) over northern Africa. In
winter, the region receives precipitation mainly through westerlies, but in summer it is dry.
The southeast-northwest spatial pattern offered in the previous paragraph may be due to
asymmetrical bending or expansion of the STHP affecting precipitation during the winter
months. Possible explanations to this phenomenon might be an asymmetrical migration
of the ITCZ, or an asymmetrical expansion of the Northern Hemisphere Hadley cell. If
it were an asymmetrical migration of the ITCZ, then in Northern Hemisphere winter one
would expect it to be wetter in the South African savanna (see Fig. S22). However, reported
data (green squares at Fig. 3, Chase et al. 2009; Railsback et al. 2018) from South Africa
suggest that the region was experiencing wetter conditions at this time. An asymmetrical
expansion of the Hadley cells to the north in the Northern Hemisphere and to the south
in the Southern Hemisphere would result in a drought over the Mediterranean and may, in
turn, result in more humid conditions, over the western parts of North and South African
savanna. To confirm such a hypothesis, it would be desirable to gather more paleoclimate
data from different sides of the spatial transect identified in this study and also to collect
more African subtropical paleoclimate data, similar to those presented by Chase et al. (2009)
and Railsback et al. (2018) which propose a wetter phase during our temporal period of
interest (see Fig. 3).

Furthermore, unlike the rest of our study region, the evidence from the Middle East cited
as evidence of drought is mainly in the form of proxies of increased aeolian deposits (see
Fig. 3) including quartz (%) in Lake Van (Lemcke and Sturm 1997), CaCO3 (%) in the Gulf
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Fig. 3 The map shows a speculative line (dashed black line) dividing the studied region from northwest to
southeast and a hypothesized cause showing the asymmetrical migration or expansion of the STHP. Red/blue
dots indicate locations showing/not showing a drought during the 4.2 ka BP event. The yellow ellipse covers
proxy data showing aeolian activity and the yellow squares show the locations of aeolian activity proxy
(Weiss et al. 1993; Carolin et al. 2019; Cullen et al. 2000; Lemcke and Sturm 1997; Sharifi et al. 2015) that
are mentioned in the main text. The green squares over Africa indicate the locations of the data (Railsback
et al. 2018; Chase et al. 2009) which show a wetter period during the period of interest. The January location
of the ITCZ is plotted after Yan (2005). This map is prepared using GMT (Wessel et al. 2019) and ETOPO1
relief model (Amante and Eakins 2009)

of Oman (Cullen et al. 2000), XRF-Ti count in Neor Lake (Sharifi et al. 2015), Mg/Ca ratio
in Gol-e Zard (Carolin et al. 2019), and even the aeolian deposits of Tell Leilan presented
by Weiss et al. (1993). However, other available proxies included in these same studies,
such as stable isotopes, generally do not show any drought pattern. This increased aeolian
deposition may be due to increased aridity in the central and eastern Mediterranean through
the mechanism proposed in the previous paragraph and correspondingly stronger westerlies
that may have increased the volume or strength of dust transportation to the Middle East.

A possible candidate that might account for such a climate phenomenon, and cited in
some of previous studies, would be a shift in the El Niño-Southern oscillation (Haug et al.
2001; Staubwasser and Weiss 2006; Sirocko 2015). Therefore, the drought which has been
observed asymmetrically in our study region of southeast Europe and southwest Asia may
find its origins in an event in or around the Indo-Pacific Ocean, and this possibility should
be investigated in further studies.
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4 Conclusions

Paleoclimate proxy time series that have previously been claimed to show evidence of the
4.2 ka BP abrupt climatic event have been synthetically reconstructed in this article within
a fully Bayesian framework, based on the BSTS method with trend and regression compo-
nents. Using this, the model is forecast for the 4.4 to 3.9 ka BP interval and the credibility
of any possible effect is inferred from the difference between the projected forecast and the
observed results. Three structural groups can be identified within the results of our analysis
and the results can be summarized as below.

(i) Data that show the proposed 4.2 ka BP event are from the Gulf of Oman (Cullen et al.
2000), the Red Sea (Arz et al. 2006), Tel Akko (Kaniewski et al. 2013), Jeita Cave
(Cheng et al. 2015), north Aegean Sea-Smectite/Illite (Ehrmann et al. 2007), Lake
Ledro (Peyron et al. 2013), and Buca della Renella (Drysdale et al. 2006).

(ii) Data that show an event during the 4.2 ka BP period of interest but with an enduring
level shift in the time series thereafter. This is observed in data from the north Aegean
Sea-δ13CUm (Kuhnt et al. 2008), Lake Dojran (Francke et al. 2013), Lake Ohrid (Wag-
ner et al. 2009), and Lake Trifoglietti (Peyron et al. 2013). Why a period of aridity
should cause such an enduring change in climate proxy data is as yet unclear. Possi-
ble explanations may include landscape evolution, such as deforestation that affected
human occupation strategies (or was or affected by a human response to environmen-
tal pressures caused by prolonged drought), or are due to the dynamical character of
the proxy data itself. This question will be the subject of future studies by the authors.

(iii) The third group of proxy data does not show any change that can be described as
an abrupt effect, including those from Neor Lake (Sharifi et al. 2015), Lake Van
(Lemcke and Sturm 1997), Eski Acıgöl (Roberts et al. 2001), Kocain Cave (Göktürk
2011), Gölhisar (Eastwood et al. 2007), Skala Marion Cave (Psomiadis et al. 2018),
Poleva Cave (Constantin et al. 2007), and Grotta di Ernesto (Scholz et al. 2012). The
fluctuations of these time series around the period of interest are acceptable within
stochastic credible intervals.

(iv) The geographic distribution of our results presented here is suggestive of a drought
mainly concentrated in the southwestern half of our study region. We speculate that
asymmetrical northward expansion or migration of the high pressure system over
North Africa may have been a potential mechanism governing this kind of a spatial
pattern.

(v) All available evidence in and around Mesopotamia are aeolian deposit proxies. This
would be consistent with a drought in the central Mediterranean and the Levant, rep-
resented in proxy data as increased dust storms in the semiarid region of Mesopotamia
and the Zagros Mountains to the east and north.
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Kuzucuoǧlu C (2007) Climatic and environmental trends during the third millennium B.C. in Upper
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Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte

Middleton GD (2018) Bang or whimper? Science 361(6408):1204–1205. https://doi.org/10.1126/science.
aau8834

Moreno Garcı́a JC (2015) Climatic change or sociopolitical transformation? Reassessing late 3rd millennium
BC in Egypt. In: Meller H, Arz HW, Jung R, Risch R (eds) 2200 BC: a climatic breakdown as a cause
for the collapse of the old world?: 7th Archaeological Conference of Central Germany, October 23-26,
2014 in Halle (Saale). Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum
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