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Abstract: In this paper, we introduce two new methods to solve systems of ordinary differential
equations. The first method is constituted of the generalized Bernstein functions, which are obtained
by Bernstein polynomials, and operational matrix of differentiation with collocation method. The
second method depends on tau method, the generalized Bernstein functions and operational matrix
of differentiation. These methods produce a series which is obtained by non-polynomial functions
set. We give the standard Bernstein polynomials to explain the generalizations for both methods. By
applying the residual correction procedure to the methods, one can estimate the absolute errors for
both methods and may obtain more accurate results. We apply the methods to some test examples
including linear system, non-homogeneous linear system, nonlinear stiff systems, non-homogeneous
nonlinear system and chaotic Genesio system. The numerical shows that the methods are efficient
and work well. Increasing m yields a decrease on the errors for all methods. One can estimate the
errors by using the residual correction procedure.

Keywords: nonlinearity; stiff system; ODE system; Bernstein polynomials; operational matrix
of differentiation

1. Introduction

Many real life phenomena can be modeled by systems of ordinary differential equa-
tions (ODEs). For instance, the mathematical models of circuits and mechanical systems
involving several springs connected in series can be given by a system of differential
equations. Generally, such systems are frequently encountered in chemical, ecological,
biological and engineering applications [1]. Various phenomena in chemical kinetics and
engineering are modeled with the stiff systems [2]. Explicit numerical methods may solve
these problems with some limitations on the step size which yields computational complex-
ity [3]. In control theory, ODE systems also have chaotic behaviors [4,5]. A chaotic system
is a structure that exhibits a sensitive dependence on initial conditions and is a nonlinear
deterministic system with complex and unpredictable behavior. The Genesio system is an
example of such a system [6]. It is one of the chaos paradigms as it has many properties of
chaotic systems.

A system of ODEs can be expressed in the form

u′j = f j(x, u1, . . . , ur), uj(x0) = u0,j, j = 1, 2, . . . , r, (1)

where f j are real-valued functions, x0 and u0,j are real numbers. By applying the variable
transformation x → x + x0, the systems (1) can be defined around the origin, and so we
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consider solving the equations of the form

u′j = f j(x, u1, . . . , ur), uj(0) = αj, j = 1, 2, . . . , r. (2)

Different numerical integration algorithms such as Runge–Kutta method for approxi-
mating solutions of the systems (2) have been proposed in the literature. However, these
algorithms calculate the values of approximate solutions on the nodes instead of giv-
ing a solution over the interval. Approximate analytical solutions of certain classes of
systems of ODEs based on the homotopy analysis method and homotopy perturbation
method have been given in [3,7] respectively. A relatively new analytical method based
on the Bernstein polynomials has been shown to be a promising method for solving lin-
ear and non-linear equations. Isik et al. [8] presented an approximate method based on
the Bernstein polynomials for solving high order linear differential equations. Approx-
imate Bernstein series solutions of fractional heat- and wave-like equations were given
by Rostamy and Karimi [9]. Yuzbasi [10] and Baleanu et al. [11] presented approximate
analytical methods constituted of the Bernstein polynomials for solving fractional Riccati
type differential equations. Bernstein series solutions of Lane–Emden type equations were
given by Pandey and Kumar [12] and Isik and Sezer [13]. Bernstein series solutions with
a priori error estimate for linear second-order partial differential equations with general
conditions were given by Isik et al. [14]. Maleknejad et al. [15] proposed a numerical
method for solving the systems of high order linear Volterra–Fredholm integro-differential
equations by using Bernstein operational matrices. Rostamy and Karimi [16] presented a
numerical method consists of the high-order derivative matrix of the Bernstein polynomials.
Multistage Bernstein polynomials (MB-polynomials) method which is a modification of
Bernstein polynomials method was developed by Alshbool and Hashim [17] for solving
fractional-order stiff systems. Bernstein operational matrix of derivative was adapted to
solve linear and non-linear fractional differential equations by Alshbool et al. [18]. Asgari
and Ezzati [19] solved two-dimensional fractional integral equations by two-dimensional
Bernstein polynomials operational matrix. An approximate solution method, called multi-
stage Bernstein collocation method, to solve strongly nonlinear damped systems was given
in [20]. Khataybeh et al. [21] demonstrated for the first time the applicability of the oper-
ational matrices of Bernstein polynomials method for solving directly third-order ODEs.
Direct solution of second-order system of ODEs using Bernstein polynomials was presented
in [22]. Bataineh et al. [23] presented a two-dimensional Bernstein polynomials method
for solving time-dependent Emden-Fowler type of equations. The Bernstein polynomials
method incorporating residual correcting procedure were applied to a system of second-
order BVPs, Brusselator system and nonlinear stiff system by Alshbool et al. [24]. Very
recently, Alshbool et al. [25] solved a class of fractional diffusion equations by fractional
Bersnsetin series solution.

In this study, we present two new methods, namely generalized Bernstein function
(GBF) tau and GBF collocation methods, to numerically solve the systems of ODEs. The
methods are obtained by a special generalization of m-th degree Bernstein polynomials
and collocation or tau methods. To introduce the methods, we first give the definitions of
Bernstein polynomials (BPs) and GBFs in Section 2. We give the approximation functions
in the same section. In Section 3, we give the operational matrices for BPs and GBFs.
Then, the new methods are formed by using tau method or collocation method. We also
give Bernstein collocation method and Bernstein tau method to show how these new
methods are generated. Residual correction procedure is modified for all methods. The
numerical stabilities of the methods are also given in Section 3. Several examples are
studied to demonstrate the accuracy and efficiency of the methods. We apply the methods
for different values of m to show the dependency of m values.
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2. Existence and Uniqueness Theorem

Let the function f (x, u1, . . . , ur) be defined on the set

D = {(x, u1, . . . , ur) : a ≤ x ≤ b,−∞ < ui < ∞ for each i = 1, 2, . . . , r}.

Then we say f satisfies the Lipschitz condition on D in the variables ui for i = 1, 2, . . . , r
if there exists a constant L > 0 such that

‖ f (x, u1, . . . , ur)− f (x, z1, . . . , zr)‖ ≤ L
r

∑
j=1

∥∥uj − zj
∥∥

for all (x, u1, . . . , ur), (x, z1, . . . , zr) ∈ D.
As a result of the mean value theorem, f satisfies the Lipschitz condition on D in the

variables ui for i = 1, 2, . . . , r, if f and its first partial derivatives are continuous on D and if∣∣∣∣∂ f (x, u1, . . . , ur)

∂ui

∣∣∣∣ ≤ L

for all (x, u1, . . . , ur) ∈ D. The existence and uniqueness theorem can be found in [26,27].

Theorem 1. Suppose fi, i = 1, 2, ..., r be continuous and satisfy a Lipschitz condition on the set

D = {(x, u1, . . . , ur) : a ≤ x ≤ b,−∞ < ui < ∞ for each i = 1, 2, . . . , r}.

Then, the system of (2) subject to the initial conditions has a unique solution for 0 ≤ x ≤ T0.

3. Bernstein Formulas and Their Operational Matrices
3.1. Bernstein Polynomials

The BP of degree m are defined by

Bi,m(x) =
(

m
i

)
(x)i(1− x)m−i, i = 0, 1, . . . , m, x ∈ [0, 1], (3)

where the binomial coefficient is(
m
i

)
=

m!
i! (m− i)!

.

There are m+ 1 BPs which are degree m that are formed as a base for the n dimensional
polynomial space. It is set Bi,m = 0 in case of i < 0 or i > m.

3.2. Generalized Bernstein Functions

Let us define a GBF of degree m
s similar to (3) as

B̂i,m(x) =
(

m
i

)
(x

1
s )i(1− x

1
s )m−i, i = 0, 1, . . . , m, s = 1, 2, . . . , x ∈ [0, 1]. (4)

Again we get m + 1 functions for m
s th-degree GBF and set B̂i,m = 0 for i < 0 or i > m.

We should note that B̂i,m for 0 < i < m have to be continuous on [0, ∞).
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3.3. Approximation of Functions

First at all, we approximate the functions uj(x) and u′j(x) for j = 1, 2, . . . , r with the
mth-degree BP and the m

s th-degree GBF respectively as follows

uj(x) ∼= uj,m(x) = CT
j Φ(x), (5)

u′j(x) ∼= u′j,m(x) = CT
j Φ′(x), (6)

uj(x) ∼= ûj,m(x) = CT
j Φ̂(x), (7)

u′j(x) ∼= û′j,m(x) = CT
j Φ̂′(x), (8)

where CT
j , Φ(x), Φ′(x), Φ̂(x) and Φ̂′(x) are an arbitrary (m + 1)× 1 matrices defined as

CT
j = [c0,j, c1,j, . . . , cm,j],

Φ(x) = [B0,m(x), B1,m(x), . . . , Bm,m(x)]T,

Φ′(x) = [B′0,m(x), B′1,m(x), . . . , B′m,m(x)]T,

Φ̂(x) = [B̂0,m(x), B̂1,m(x), . . . , B̂m,m(x)]T,

Φ̂′(x) = [B̂′0,m(x), B̂′1,m(x), . . . , B̂′m,m(x)]T,

where c0,j, c1,j, . . . , cm,j are to be determined. Let us call uj,m and ûj,m as BP series solution
obtained by collocation method (BPSSC) or tau method (BPSST) and GBF series solution
obtained by collocation method (GBFSSC) or tau method (GBFSST).

4. Applications of Operational Matrices

In this section, we will obtain the approximate solutions of systems (2). We will first
consider tau methods, i.e., we will obtain BPSST and GBFSST by using the operational
matrices of mth-degree BP and the m

s th-degree GBF, respectively. To solve (2) by means of
the operational matrices, we employ Equations (5)–(8) and then we define the residuals
<(x) and <̂(x) for Equation (2) respectively as

<(x) = CT
j Φ′(x)− f j

(
x, CT

1 Φ(x), . . . , CT
m Φ(x)

)
. (9)

<̂(x) = CT
j Φ̂′(x)− f j

(
x, CT

1 Φ̂(x), . . . , CT
m Φ̂(x)

)
. (10)

4.1. The Approximate Solutions Obtained by Tau Method

Multiplying and integrating <(x) and <̂(x) yields m equations sets

1∫
0

<(x)Bi,m−1(x)dx = 0, i = 0, . . . , m− 1. (11)

1∫
0

<̂(x)Bi,m−1(x)dx = 0, i = 0, . . . , m− 1. (12)

Also, by imposing the initial conditions of Equation (2) into Equations (5) and (7)
we have

uj,m(0) = C
T

j Φ(0) = αj, (13)

ûj,m(0) = C
T

j Φ̂(0) = αj. (14)

Equation (11) with Equation (13) or Equation (12) with (14) generate m+ 1 sets of equa-
tions respectively. Solving these equations gives the unknown coefficients c0,j, c1,j, . . . , cm,j.
Consequently, uj,m(x) and ûj,m(x) given in Equations (5) and (7) can be calculated, respec-
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tively. Thus, BPSST and GBFSST are obtained.
Let us call the standard tau method with Bernstein polynomials which yields BPSST

solution as Bernstein tau method. Similarly, let us call the new method depending on tau
method and GBF which produces GBFSST as GBF tau method..

4.1.1. Residual Correction Procedure for Bernstein Tau Method and GBF Tau Method

We will constitute the residual correction procedure for Bernstein tau method. Let
u1,m, u2,m, . . . , ur,m be the approximate solution set of the system (2). Adding the equality
u′j,m = u′j,m into the both sides of (2) yields as

e′j(x)− f j(e1 + u1,m, . . . , er + ur,m) = −u′j,m (15)

where ej(x) := uj(x)− uj,m(x) and uj(x) is the exact solution. A similar argument for the
initial conditions yields

ej(0) = 0, j = 1, 2, . . . , r. (16)

Let us approximate to ej by using the present method

ej(x) ∼= ej,m(x) = Ce,T
j Φ(x)

where
Ce,T

j = [ce
0,j, ce

1,j, . . . , ce
m,j].

Let us define the residue <e(x) as

<e(x) = Ce,T
j Φ′(x)− f j

(
Ce,T

1 Φ(x) + u1,m, . . . , Ce,T
r Φ(x) + uj,m

)
+ u′j,m. (17)

Then, the constants ce
0,j, ce

1,j, . . . , ce
m,j can be obtained by constructing m + 1 sets of

equations by applying a typical tau method

1∫
0

<e(x)Bi,m−1(x)dx = 0, i = 0, 1, . . . , m− 1, (18)

with the initial conditions (16). Thus, ej,m(x) can be obtained by solving these sets of linear
or nonlinear equations.

The following results are the same when the residual correction procedure is used for
the error estimates. Let ‖·‖ be any norm defined on continuous function space. If∥∥ej − ej,m

∥∥ < ε, j = 1, 2, . . . , r

where ε > 0 is sufficiently small, then the absolute errors ej can be estimated by ej,m for
j = 1, 2, . . . , r, respectively. Hence, the optimal m for the absolute errors may be obtained
measuring the error functions ej,m for different m values in any norm. If uj,m, j = 1, 2, . . . , r
are the BPSST of (2), then uj,m + ej,m, j = 1, 2, . . . , r are also approximate solutions for (2).
Moreover, their error functions are ej − ej,m, j = 1, 2, . . . , r.

Note that the approximate solution set
{

uj,m + ej,m : j = 1, 2, . . . , r
}

is a better approx-
imation set than

{
uj,m : j = 1, 2, . . . , r

}
in the norm if∥∥ej − ej,m
∥∥ ≤ ∥∥uj − uj,m

∥∥
where

{
uj : j = 1, 2, . . . , r

}
are the exact solution of (2). Let us call the approximate solutions

uj,m + ej,m, j = 1, 2, . . . , r as corrected BPSST.
Similar arguments can be done to estimate the error obtained by GBF tau method. For

j = 1, 2, . . . , r, adding the terms û′j,m into the both side of the j-th equation in (2) gives
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ê′j(x)− f j(ê1 + û1,m, . . . , êr + ûr,m) = −û′j,m(x) (19)

where êj(x) := uj(x)− ûj,m(x) and uj(x) is the exact solution with the conditions

êj(0) = 0, j = 1, 2, . . . , r. (20)

Approximating êj by using the method

êj(x) ∼= êj,m(x) = Ce,T
j Φ̂(x).

Finally, we get the ce
0,j, ce

1,j, . . . , ce
m,j by solving tau method to the following system

<̂e(x) = Ce,T
j Φ̂′(x)− f j

(
Ce,T

1 Φ̂(x) + û1,m, . . . , Ce,T
r Φ̂(x) + ûr,m

)
+ û′j,m(x)(x). (21)

Hence, êj,m(x) can be obtained by solving these sets of equations. In case of∥∥êj − êj,m
∥∥ < ε, j = 1, 2, . . . , r

where ε > 0 is sufficiently small, the absolute errors êj can be estimated by êj,m for j =
1, 2, . . . , r, respectively. Again, the optimal m for the absolute errors might be obtained
by measuring the errors êj,m. We obtain another solutions, namely corrected GBFSSTs, by
adding the error to the GBFSSTs ûj,m + êj,m, j = 1, 2, . . . , r.

4.2. Approximate Solutions Obtained by Collocation Method

Let the collocation nodes be {0 ≤ x1 < x2 < . . . < xm = 1} ⊂ [0, 1]. By inserting the
nodes into the (9) or (10) with impose the initial conditions (13) or (14), we get the residuals
<(x) or <̂(x) defined in respectively

<(xi) = CT
j Φ′(xi)− f j

(
xi, CT

1 Φ(xi), . . . , CT
m Φ(xi)

)
, i = 0, 1, 2, . . . , m− 1, (22)

<̂(xi) = CT
j Φ̂′(xi)− f j

(
xi, CT

1 Φ̂(xi), . . . , CmeT Φ̂(xi)
)

, i = 0, 1, 2, . . . , m− 1. (23)

Solving these equations yields the coefficients c0,j, c1,j, . . . , cm,j. Thus, uj,m(x) and
ûj,m(x) given in (5) and (8) are founded.

Let us call the standard collocation method with Bernstein polynomials which yields
BPSSC solution as Bernstein collocation method. Similarly, let us call the new method
depending on collocation method and GBF which produces GBFSSC as GBF collocation
method. The collocation nodes using in this work are the roots of Chebyshev polynomials

xi =
1
2
+

1
2

cos
(
(2i + 1)π

2m

)
, i = 0, 1, . . . , m− 1.

Residual Correction Procedure for Bernstein Collocation Method and GBF
Collocation Method

Let us constitute residual correction procedure for Bernstein collocation method. We
omit the residual correction procedure for GBF collocation method. By using the same
method described in Section 4.1.1, we can get the coefficients ce

0,j, ce
1,j, . . . , ce

m,j of ej,m(x). To
do this, we construct m sets of linear or nonlinear equations such that

<e(xi) = 0, i = 1, . . . , m,

with the zero initial conditions. Then, ej,m(x) and hence corrected BPSSC can be obtained
by solving these sets of equations.
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5. Numerical Experiments

We demonstrate the efficiency of the present methods on five test examples. The first
three examples will be solved by using the Bernstein tau method and Bernstein collocation
method. The last two examples will be presented by using GBF tau method and GBF
collocation method.

5.1. Example 1

Let us consider the following linear system of ODEs [7]:

u′1(x) = u1(x) + u2(x), (24)

u′2(x) = −u1(x) + u2(x), (25)

with initial condition
u1(0) = 0, u2(0) = 1. (26)

The exact solution set is

u1(x) = ex sin(x), u2(x) = ex cos(x).

Let us perform both method to the problem.
First, we use Bernstein tau method to obtain the approximate solutions. For m = 2,

approximate solutions are of the forms

uj,2(x) = c0,j B0,2(x) + c1,j B1,2(x) + c2,j B2,2(x) = CT
j Φ(x), j = 1, 2.

Now, (11) gives

− 11
12 c0,1 +

1
4 c2,1 +

1
6 c1,1 − 1

4 c0,2 − 1
6 c1,2 − 1

12 c2,2 = 0,

− 11
12 c0,2 +

1
4 c2,2 +

1
6 c1,1 +

1
12 c2,1 +

1
4 c0,1 +

1
6 c1,2 = 0,

− 5
12 c0,1 +

5
12 c2,1 − 1

2 c1,1 − 1
12 c0,2 − 1

6 c1,2 − 1
4 c2,2 = 0,

− 5
12 c0,2 +

5
12 c2,2 +

1
6 c1,1 +

1
4 c2,1 +

1
12 c0,1 − 1

2 c1,2 = 0.

(27)

Additionally, we have from (13)

c0,1 = 0, c0,2 = 1. (28)

Finally by solving Equations (27) and (28) we get

c0,1 = 0, c1,1 =
6
13

, c2,1 =
30
13

, c0,2 = 1, c1,2 =
22
13

, c2,2 =
19
13

.

Thus

(
u1,2(x)
u2,2(x)

)
=

(
c0,1 c1,1 c2,1
c0,2 c1,2 c2,2

) 1− 2x + x2

2x− 2x2

x2

 ' ( 12
13 x + 18

13 x2

1 + 18
13 x− 12

13 x2

)
.

Now, let us constitute the procedure for the problem. The errors are the solutions of
the following equations for j = 1, 2

ej,2(x) = Ce,T
j Φ(x) = ce

0,j B0,2(x) + ce
1,j B1,2(x) + ce

2,j B2,2(x),
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or 

− 11
12 ce

0,1 +
1
4 ce

2,1 +
1
6 ce

1,1 − 1
4 ce

0,2 − 1
6 ce

1,2 − 1
12 ce

2,2 = 1
6 × 10−11,

− 11
12 ce

0,2 +
1
4 ce

2,2 +
1
6 ce

1,1 +
1

12 ce
2,1 +

1
4 ce

0,1 +
1
6 ce

1,2 = 1
3 × 10−10,

− 5
12 ce

0,1 +
5

12 ce
2,1 − 1

2 ce
1,1 − 1

12 ce
0,2 − 1

6 ce
1,2 − 1

4 ce
2,2 = 1

6 × 10−11,

− 5
12 ce

0,2 +
5

12 ce
2,2 +

1
6 ce

1,1 +
1
4 ce

2,1 +
1

12 ce
0,1 − 1

2 ce
1,2 = 1

3 × 10−10,

ce
0,1 = 0, ce

0,2 = 0.

The last row comes from (16). Therefore, the estimations of the errors are found as

ce
0,1 = 0, ce

1,1 = −0.5769230763× 10−11, ce
2,1 = 0.6615384615× 10−10,

ce
0,2 = 0, ce

1,2 = 0.3884615384× 10−10, ce
2,2 = 0.8923076921× 10−10,

that is
(

e1,2(x)
e2,2(x)

)
'
( −0.1153846153× 10−10x + 0.7769230768× 10−10x2

0.7769230768× 10−10x + 0.1153846153× 10−10x2

)
.

Second, we will find the approximate solutions by using Bernstein collocation method.
If the steps in Section 4.2 are performed to the problem, the BPSSC solution set of Equa-
tions (24)–(26) will be obtained as(

u1,2(x)
u2,2(x)

)
'
(

0.96x + 1.28x2

1 + 1.28x− 0.96x2

)
.

A similar argument to the first case yields the estimations of the errors as(
e1,2(x)
e2,2(x)

)
'
(

0.1500553308× 10−9x + 0.1157274735× 10−8x2

0.1786389502× 10−9x + 0.26797339× 10−9x2

)
.

In Figure 1, the absolute error, the estimation of absolute error and the corrected
absolute error are given for Example 1 and for m = 6. From these figures we can say
that the BPSST and BPSSC solutions are well fit to the exact solutions. On the other hand,
we can specify the absolute errors by using residual correction procedure. Moreover, the
corrected BPSST and BPSSC solutions are more accurate. Table 1 represents the maximum
absolute error for different values of m. We can say from Table 1 that increasing m yields a
decreasing on the errors.

e2(x)
e1(x)Tau Method; m = 6

x

A
b
so
lu
te

E
rr
or

10.80.60.40.20

7× 10−7

6× 10−7

5× 10−7

4× 10−7

3× 10−7

2× 10−7

1× 10−7

0× 100

e2(x)
e1(x)Collocation Method m = 6

x

A
b
so
lu
te

E
rr
or

10.80.60.40.20

1.6× 10−6

1.4× 10−6

1.2× 10−6

1.0× 10−6

8.0× 10−7

6.0× 10−7

4.0× 10−7

2.0× 10−7

0.0× 100

Figure 1. Cont.
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Figure 1. The absolute error, estimation of absolute error and the corrected absolute error to Example 1 for m = 6.

Table 1. The maximum absolute errors on the interval [0, 1] for different values of m for different m
values and Example 1.

Method m 5 10 15

Tau method ‖u1 − u1,m‖∞ 1.2 × 10−5 3.5 × 10−13 6.6 × 10−21

Tau method ‖u2 − u2,m‖∞ 6.8 × 10−6 1.3 × 10−12 1.2 × 10−20

Coll. method ‖u1 − u1,m‖∞ 2.0 × 10−5 6.8 × 10−13 1.1 × 10−20

Coll. method ‖u2 − u2,m‖∞ 1.2 × 10−5 2.2 × 10−12 1.9 × 10−20

5.2. Example 2

Consider the nonlinear stiff system of ODE [3]

u′1(x) = −1002u1(x) + 1000u2
2(x), (29)

u′2(x) = u1(x)− u2(x)− u2
2(x), (30)

subject to the initial conditions

u1(0) = 1, u2(0) = 1.

The exact solution is
u1(x) = e−2x, u2(x) = e−x.

By using Theorem 1, the f = ( f1, f2) satisfies the Lipschitz condition since f and its
derivative are continuous and bound on a rectangle D. Thus, the problem has a unique
solution set on an interval [0, T0].

The results obtained by tau method for m = 2 are given as follows(
u1,2(x)
u2,2(x)

)
'
(

1− 1.75x + 0.93x2

1− 0.95x + 0.31x2

)
,
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(
e1,2(x)
e2,2(x)

)
'
( −0.19× 10−8x + 0.25× 10−8x2

−0.36× 10−9x + 0.63× 10−9x2

)
.

Similarly, for collocation method, the results(
u1,2(x)
u2,2(x)

)
'
(

1− 1.85x + 1.03x2

1− 0.95x + 0.31x2

)
,

(
e1,2(x)
e2,2(x)

)
'
( −0.11× 10−8x + 0.26× 10−8x2

0.16× 10−9x + 0.36× 10−10x2

)
.

We also obtain the approximate solutions for m = 6 and give them in Figure 2 as
absolute error, corrected absolute error and corrected BPSST and BPSSC solutions to
Example 2. We can see from these figures, the methods will give again more accurate
results. The procedure again works well. Table 2 represents the maximum absolute error
for different values of m to display the impact of m.
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Figure 2. The absolute error, the corrected absolute error and corrected approximate solutions to Example 2 for m = 6.
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Table 2. The maximum absolute errors on the interval [0, 1] for different values of m and Example 2.

Method m 5 10 15

Tau method ‖u1 − u1,m‖∞ 6.9 × 10−5 4.8 × 10−11 7.2 × 10−16

Tau method ‖u2 − u2,m‖∞ 6.4 × 10−7 4.8 × 10−14 3.3 × 10−16

Coll. method ‖u1 − u1,m‖∞ 6.1 × 10−5 3.5 × 10−11 8.1 × 10−16

Coll. method ‖u2 − u2,m‖∞ 1.0 × 10−6 4.3 × 10−14 3.3 × 10−16

5.3. Example 3

Let us consider the nonlinear Genesio system [3]

u′1(x) = u2(x), (31)

u′2(x) = u3(x), (32)

u′3(x) = −cu1(x)− bu2(x)− au3(x) + u1(x)2, (33)

subject to the initial conditions

u1(0) = 0.2 u2(0) = −0.3, u3(0) = 0.1, (34)

where a, b and c are positive constants, satisfying ab < c. The Genesio system includes a
simple square part and three simple ordinary differential equations that depend on three
positive real parameters [3]. The problem has a unique solution set on [0, T0] since f and
its first partial derivatives are continuous and bounded on a square region. Table 3 shows
the differences between the present results and that of Maple’s built-in RK4. We can see
that the present results agree with RK4 (step–size 0.001) at least up to 16 decimal places.
Figure 3 further reconfirms the accuracy of the present solutions as compared to RK4. The
maximum values of the absolute error using estimate of the absolute error on the interval
[0, 1] to display the convergence of the solutions as the order m of BPSST and BPSSC are
increased from 5 to 15 are given in Table 4.

Table 3. Differences between Bernstein series solution and RK4 solutions in the case a = 1.2, b = 2.92, c = 6, for i = 1, 2, 3.

x
∆ = |ui,6−RK40.001| ∆ = |ui,6 + ei,29−RK40.001|

∆u1 ∆u2 ∆u3 ∆u1 ∆u2 ∆u3

0.0 0 0 0 0 0 0
0.1 0.14 × 10−6 0.50 × 10−6 0.23 × 10−6 0.15 × 10−18 0.13 × 10−18 0.21 × 10−18

0.2 0.18 × 10−6 0.42 × 10−6 0.46 × 10−6 0.33 × 10−18 0.32 × 10−18 0.67 × 10−18

0.3 0.12 × 10−7 0.42 × 10−6 0.19 × 10−6 0.56 × 10−18 0.50 × 10−18 0.30 × 10−18

0.4 0.13 × 10−6 0.64 × 10−6 0.11 × 10−6 0.81 × 10−18 0.65 × 10−18 0.20 × 10−18

0.5 0.61 × 10−8 0.50 × 10−7 0.30 × 10−7 0.11 × 10−17 0.73 × 10−18 0.11 × 10−17

0.6 0.22 × 10−6 0.73 × 10−6 0.30 × 10−6 0.12 × 10−17 0.67 × 10−18 0.19 × 10−17

0.7 0.23 × 10−6 0.46 × 10−6 0.60 × 10−6 0.17 × 10−17 0.48 × 10−18 0.32 × 10−17

0.8 0.39 × 10−7 0.40 × 10−6 0.40 × 10−6 0.19 × 10−17 0.10 × 10−18 0.45 × 10−17

0.9 0.24 × 10−7 0.47 × 10−6 0.20 × 10−6 0.22 × 10−17 0.47 × 10−18 0.58 × 10−17

1.0 0.87 × 10−7 0.10 × 10−7 0.30 × 10−6 0.23 × 10−17 0.12 × 10−17 0.70 × 10−17
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Table 4. The maximum values of the absolute errors by using the estimations of the absolute errors
on the interval [0, 1] for Example 3.

Method m 5 10 15

Tau method ‖e1,m‖∞ 1.8 × 10−6 1.2 × 10−12 4.1 × 10−18

Tau method ‖e2,m‖∞ 3.6 × 10−6 7.8 × 10−12 1.6 × 10−18

Tau method ‖e3,m‖∞ 1.4 × 10−5 3.8 × 10−11 4.5 × 10−17

Coll. method ‖e1,m‖∞ 3.4 × 10−6 1.9 × 10−12 6.2 × 10−18

Coll. method ‖e2,m‖∞ 7.2 × 10−6 1.2 × 10−11 4.1 × 10−18

Coll. method ‖e3,m‖∞ 2.3 × 10−5 6.1 × 10−11 6.8 × 10−17

RK4
u3,6(x) + e1,29(x)
u2,6(x) + e1,29(x)
u1,6(x) + e1,29(x)Collocation Method
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Figure 3. The corrected approximate solutions to Example 3 for m = 6.

5.4. Example 4

Let us consider the following nonhomogeneous linear systems of ODEs:

u′1(x)− u1(x)− u2(x) =
2 3
√

x + 1− 3 3√x4 − 3x− 3x3 + 3 3√x11

3 3√x2
, (35)

u′2(x) + u1(x)− u2(x) =
7 3√x4

3
− 3 x2 +

3√x2 + 3
√

x− 3√x7 + x3, (36)

with initial condition
u1(0) = 0, u2(0) = 0. (37)

The exact solution set is

u1(x) = 3√x2 + 3
√

x, u2(x) = 3√x7 − x3. (38)

Let us perform the GBF tau method and GBF collocation method to obtain the approx-
imate solutions. Now for m = 9 and s = 3, approximate solutions are of the forms

ûj,9(x) =
m

∑
i=0

ci,j B̂i,m(x), j = 1, 2.

Now, (12) gives
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− 333
665 c0,1 + · · · − 1

1,175,720 c9,2 = 1,510,963
12,932,920

1
1330 c0,1 + · · ·+ 3

152,152 c9,2 = 36,551
25,865,840 ,

...
9

1,293,292 c0,1 + · · ·+ 477
2380 c9,2 = − 55,089

180,880 .

(39)

Also, we have from (14)
c0,1 = 0, c0,2 = . (40)

Finally by solving Equations (39) and (40) we get
c0,1 = 0, c1,1 = 1

9 , c2,1 = 1
4 , c3,1 = 5

12 , c4,1 = 11
18 ,

c5,1 = 5
6 , c6,1 = 13

12 , c7,1 = 49
36 , c8,1 = 5

3 , c9,1 = 2,
c0,2 = 0, c1,2 = 0, c2,2 = 0, c3,2 = 0, c4,2 = 0,
c5,2 = 0, c6,2 = 0, c7,2 = 1

36 , c8,2 = 2
9 , c9,2 = 0.

Thus (
û1,2(x)
û2,2(x)

)
=

(
3√x2 + 3

√
x

3√x7 − x3

)
.

which is the exact solution (38). Note that the exact solution (38) can be obtained for any
m ≥ 9.

5.5. Example 5

Finally we consider the non-homogeneous nonlinear systems of ODEs:

u′1(x)1002u1(x)− 1000u2
2(x) = −−1− 4

√
x− 6004 x + 2000

√
x3

2
√

x
, (41)

u′2(x)− u1(x) + u2(x) + u2
2(x) =

−1− 8 x + 2
√

x + 2
√

x3

2
√

x
, (42)

subject to the initial conditions

u1(0) = 1, u2(0) = 1.

The exact solution is

u1(x) = 1 +
√

x, u2(x) = 1−
√

x. (43)

The results obtained by tau method for m = 3 and s = 2 are given as follows(
û1,3(x)
û2,3(x)

)
'
(

1 +
√

x− 0.3× 10−17x + 0.31× 10−17
√

x3

1−√x− 0.2× 10−18x + 0.3× 10−18
√

x3

)
,

which is almost the exact solution (43).

6. Conclusions

We proposed two methods to numerically solve systems of ODEs. These methods
are direct methods. We gave a detailed error analysis for both methods. We also found
an upper bound of the absolute error for collocation method. As seen from the numerical
examples, the methods give more accurate approximate solutions for linear and nonlinear
cases of the problem with the stiff problem. Increasing the number of nodes yields a
decrease of the absolute errors. Residual correction procedure estimates the errors for
Example 1 and Example 2 with high accuracy. The corrected approximate solutions are
better than the BPSST and BPSSC. On the other hand, the results are consistent with the
results of RK4 method for Example 3. Even though the last two nonlinear problems have
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the exact solution set which are non-smooth, we obtain better approximation results by
GBF tau method and GBF collocation method for each problem.
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