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Abstract
In recent times, operational matrix methods become overmuch popular. Actually, we have many more operational matrix 
methods. In this study, a new remodeled method is offered to solve linear Fredholm–Volterra integro-differential equations 
(FVIDEs) with piecewise intervals using Chebyshev operational matrix method. Using the properties of the Chebyshev 
polynomials, the Chebyshev operational matrix method is used to reduce FVIDEs into a linear algebraic equations. Some 
numerical examples are solved to show the accuracy and validity of the proposed method. Moreover, the numerical results 
are compared with some numerical algorithm.

Keywords Piecewise Fredholm–Volterra equations · Operational matrix method · Chebyshev polynomials

Introduction

Integro-differential equations are very important to model a 
real world phenomenons. Integro-differential equations usu-
ally are a combination of differential, Fredholm and Volterra 
integral equations. These type of equations arise in applied 
sciences such as wave mechanics, heat conduction, medi-
cine, chemistry, astronomy, electrostatics, etc.[1–4]. Hence, 
the solutions of these type equations gain prominence to find 
out the behavior of modeling.

These type of equations usually difficult to solve exactly 
since it has many parts of differential, Fredholm and Volterra 
integral. The Fredholm–Volterra integro differential equa-
tions (FVIDEs) have been widely studied by many more 
authors to obtain the numerical solutions. In [5], authors 
introduced an efficient Bernoulli matrix method to solve 
high order linear Fredholm integro differential equation with 
piecewise intervals. In [6], an efficient Bernoulli collocation 
method has been developed to gain numerical solution such 
an equations. In [7], Acar and Daşçıoğlu developed a projec-
tion method based on Bernstein polynomials for solution of 

linear FVIDEs. In [8], Kürkçü, Aslan and Sezer presented a 
collocation method using hybrid Dickson and Taylor poly-
nomials to obtain the numerical solutions of FVIDEs.

In [9], Yüksel et al. obtained a Chebyshev polynomial 
method for high-order linear Fredholm–Volterra integro-
differential equations. In [10], Ebrahimi and Rashidinia 
produced a cubic B-spline approach by using the New-
ton–Cotes formula for FVIDEs. Also, we have many more 
studies in literature such as Dickson polynomials solution 
[11], Lucas polynomials solution [12], a polynomial solution 
[13], the backward substitution method [14], He’s homotopy 
perturbation method [15], Mott polynomials solution [16], 
Laguerre polynomial solution [17], Taylor series solution 
[18], the semi orthogonal B-spline wavelet solution [19], a 
Tau method [20] and the power series method [21].

In this study, a operational matrix method is presented 
to solve the linear FVIDEs with piecewise intervals of the 
following form

with mixed conditions

(1)

m
∑

k=0

Pk(x)y
(m)(x) +

p
∑

m=0

�m

x

∫
cm

Vm(x, t)y(t)dt

+

q
∑

n=0

�n

bn

∫
an

Fn(x, t)y(t)dt = f (x)
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where the parameter �s , �r and �s are constants.Pk(x) and 
f (x) are known and belong to L2[0, 1] . We desire to find the 
unknown function y(x). For this purpose, the approximation 
series are defined by

where N  is any positive integer and T∗
r
(x) , r = 0, 1,… ,N 

denote the shifted Chebyshev polynomials [22] and N ≥ m.
This paper is organized as follows: Definitions and some 

properties of the Chebyshev polynomials are mentioned in 
Sect. 2. Section 3 is introduced representation of the matrix 
form of differential, Fredholm and Volterra integral part 
in Eq. (1). The numerical method establishes in Sect. 4. In 
Sect. 5, several treatments are presented. In Sect. 6, a con-
clude adds the paper. All computations have been calculated 
by Maple13. Figures have been plotted by Matlab.

The operational matrix method has been investigated by 
some author [23–29]. In these studies, this method is suc-
cessfully solved the Abel equation, fractional integro differ-
ential equations, the Lane-Emden equation, fractional order 
differential equations and nonlinear Volterra integro differ-
ential equations. All above issues motivate us to introduce 
an operational matrix method for FVIDEs.

Chebyshev polynomials

It is well known that the fundamental theorem of approxi-
mation is called Weierstrass Theorem which says us any 
continuous function can be approximated uniformly by poly-
nomials (See [30] for details). If you need a polynomial to 
make an approximation, you should choose an ordinary Fou-
rier series (See [31] for details). The first type Chebyshev 
polynomial is a Fourier cos series.

Describe Tn(x) which is called the Chebyshev functions 
family by formula, for n ≥ 0

Theorem  1 The family of Tn(x) satisfy the following 
properties.

a. The degree of  Tn(x) is n.
b. For n ≥ 1 , Tn+1(x) = 2xTn(x) − Tn−1(x).

c. Tn(x) = 2n−1xn +⋯

(2)

m−1
∑

k=0

(

aiky
(k)(a) + biky

(k)(b) + ciky
(k)(c)

)

= �i, i = 0, 1,… ,m − 1.

(3)yN(x) =

N
∑

r=0

arT
∗
r
(x), x ∈ [0, 1],

Tn(x) = cos(n arc cosx), x ∈ [−1, 1]

d. (Ti, Tj)w = ∫ 1

−1
w(x)Ti(x)Tj(x)dx = 0  ,  i ≠ j  w h e r e 

w(x) = (1 − x2)−1∕2 is called weight function.
e. The roots of the Tn+1(x) are xk = cos

(

(2k+1)�

2(n+1)

)

 , 0 ≤ k ≤ n 
which is called the Chebyshev nodes to compute inter-
polating approximations for continuous functions.

Proof: See [22].

Theorem 2. Let  f ∈ Cn+1[−1, 1] and the n degree polyno-
mial pn(x) interpolate to f . Using the Chebyshev nodes, we 
have.

Proof: See [22].

Theorem 3. Let yN(x) be an approximation to y(x). The 
truncation error ET (N) can be bounded by the following 
inequality. If.

then

Proof: See [22].

Since Tn(x) is a function of cos �, −1 ≤ Tn(x) ≤ 1. . If we 
want to change the interval of Tn(x) as [0, 1], we can use the 
transformation y = 2x − 1. Then the Chebyshev polynomi-
als become

which is called the shifted Chebyshev polynomials of the 
first kind.

Some properties can be written as [22]:

 (i) 
are roots of T∗

n+1
(x).

 (ii) 
where 

∑′

 denotes a sum whose first term is halved.

Clearly, Theorems 1, 2 and 3 can be converted for the 
shifted Chebyshev polynomials.

(4)‖

‖

f − pn
‖

‖∞
≤ 1

2n(n + 1)!

‖

‖

‖

f (n+1)
‖

‖

‖∞

(5)yN(x) =

N
∑

r=0

arT
∗
r
(x)

ET (N) =
‖

‖

y(x) − yN(x)
‖

‖

≤
∞
∑

r=N+1

|

|

ar
|

|

T∗
n
(x) = Tn(y) = Tn(2x − 1)

(6)xi =
1

2

(

1 + cos

(

(2(n − i) + 1)�

2(n + 1)

))

, i = 0, 1,… , n

(7)xn = 2−2n+1
n
∑

k=0

�

(

2n

k

)

T∗
n−k

(x), 0 ≤ x ≤ 1
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Matrix relations

In this section, the matrix–vector form of the each part of 
Eq. (1) is introduced by using Eqs. (3) and (6).

Matrix representation of differential part

To obtain the numerical results of Eq. (1), we construct the 
fundamental matrix–vector relations. These relations help 
us when we use operational method. Firstly, we suppose 
that the numerical solution can be written in the shifted first 
kind Chebyshev series form. The matrix–vector form the 
approximate solution and its derivatives can be written

where

From Eq. (6), we get the following matrix relation

where

Since the matrix D is invertible, Eq. (9) can be clearly 
written

and

The following relation give us Y(k)(x) in terms of Y(x)

(8)yN(x) = �
∗(x)�, y

(k)

N
(x) = �

∗(k)(x)�, k = 0,… ,m

�
∗(x) = [T∗

0
(x) T∗

1
(x)⋯T∗

N
(x)], � = [a0 a1 … aN]

T

(9)(�(x))T = �(�∗(x))T and �(x) = �
∗(x)�T

�(x) = [ 1 x … xN ]

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

20

�

0

0

�

0 0 0 … 0

2−2

�

2

1

�

2−1

�

2

0

�

0 0 … 0

2−4

�

4

2

�

2−3

�

4

1

�

2−3

�

4

0

�

0 … 0

2−6

�

6

3

�

2−5

�

6

2

�

2−5

�

6

1

�

2−5

�

6

0

�

… 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

2−2N

�

2N

N

�

2−2N+1

�

2N

N − 1

�

2−2N+1

�

2N

N − 2

�

2−2n+1

�

2N

N − 3

�

… 2−2N+1

�

2N

0

�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)�
∗(x) = �(x)(�−1)T

(11)(�∗(x))(k) = �
(k)(x)(�−1)T , k = 0,… ,m.

(12)�
(1)(x) = �(x)�T

where

If the obtained the matrix forms Eqs. (11) and (13) are 
substituted into (8), the approximate solution function 
yN(x) =

∑N

n=0
anT

∗
n
(x) can be transformed into the follow-

ing matrix form

Matrix representation of Volterra and Fredholm 
integral part

In this section, we try to find matrix–vector form Volterra 
and Fredholm integral part in Eq. (1). For this purpose, sup-
pose that the kernel function Vm(x, t) can be written as:

and the matrix form of the Vm(x, t) become

where

(13)
�

(2)(x) = �
(1)(x)�T = �(x)(�T )2

⋮

�
(k)(x) = �

(k)(x)�T = �(x)(�T )k

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 … 0

1 0 0 … 0

0 2 0 … 0

… … … … …

0 0 0 N 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(14)y
(k)

N
(x) = �(x)(�T)k(�T )−1�, k = 0,… ,m

(15)Vm(x, t) =

N
∑

r=0

kmr(x)T
∗
r
(t).

(16)Vm(x, t) = �m(x)�
T (t)

�m(x) = [ km0(x) km1(x) km2(x) ⋯ kmN(x) ]
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Using Eqs. (14) and (16), we obtain the following 
matrix–vector form of the Volterra integral part

Now, assume that the kernel function Fn(x, t) can be writ-
ten as:

Then the matrix form of the kernel function Fn(x, t) 
become

where

Using Eqs. (14) and (19), we obtain the following 
matrix–vector form of the Fredholm integral part

Method of solution

In this chapter, the matrix–vector form of Eq. (1) and the 
operatinal matrix method are assembled to erect the numer-
ical method. Firstly, we have to change the form of f (x) 
into a matrix–vector form. The matrix form of f (x) can be 
considered

The obtained matrix–vector forms of differential part, 
Volterra and Fredholm integral part are put into Eq. (1), we 
obtain the following matrix–vector equation

(17)

⎡

⎢

⎢

⎣

p
�

m=0

�m

x

∫
cm

Vm(x, t)y(t)dt

⎤

⎥

⎥

⎦

=

p
�

m=0

�m

x

∫
cm

�m(x)�
−1
�

T (t)�(t)(�T )−1Adt

(18)Fn(x, t) =

N
∑

r=0

fnr(x)T
∗
r
(t)

(19)Fn(x, t) = �n(x)�
T (t)

Fn(x) = [ fn0(x) fn1(x) fn2(x) ⋯ fnN(x) ]

(20)

⎡

⎢

⎢

⎣

q
�

n=0

�n

bn

∫
an

Fn(x, t)y(t)dt

⎤

⎥

⎥

⎦

=

q
�

n=0

�n

bn

∫
an

�n(x)�
−1
�

T (t)�(t)(�T )−1�dt

(21)f (x) ≈ �
T
�(x)(�T )−1

(22)

m
∑

k=0

�k(x)�(x)(�
T)k(�T )−1�

+

p
∑

m=0

�m

x

∫
cm

�m(x)�
−1
�

T (t)�(t)(�T )−1�dt

+

q
∑

n=0

�n

bn

∫
an

�n(x)�
−1
�

T (t)�(t)(�T )−1�dt ≈ �
T
�(x)(�T )−1

Thus, the residual function RN(x) can be gained the fol-
lowing equation:

Using operational matrix method idea, we gain 
(N − m + 1) linear equations as follows:

where w(x) =
(

x − x2
)−1∕2 . The m-times initial conditions 

are obtained by

Hence, we have ( N + 1 ) times linear equations including 
the unknown coefficients in Eq. (3). If we figure out these 
linear equations by aid of Maple 13, the approximate solu-
tion yN(x) can be obtained from Eq. (3).

Error estimation and convergence analysis

Now, we will discuss error estimation and convergence 
analysis.

Theorem: Let assume that.

(which is the best approximation to y(x) ) are the shifted 
Chebyshev polynomials expansion of the exact solution 
y(x) ∈ CN+1 andis the approximate solution the obtained by 
proposed method. Then, we have

(23)

RN (x) ≈

m
∑

k=0

�k(x)�(x)(�
T)k(�T )−1�

+

p
∑

m=0

�m

x

∫
cm

�m(x)�
−1
�

T (t)�(t)(�T )−1�dt

+

q
∑

n=0

�n

bn

∫
an

�n(x)�
−1
�

T (t)�(t)(�T )−1�dt −�
T
�(x)(�T )−1

(24)

⟨

RN(x), T
∗
n
(x)

⟩

w
=

1

∫
0

w(x)RN(x)T
∗
n
(x)dx = 0, n = 0, 1,… ,N − m

(25)

m−1
∑

k=0

(

a
ik
�(a)(��)k(�T )−1 + b

ik
�(b)(��)k(�T )−1

+c
ik
�(c)(��)k(�T )−1

)

� = �
i

yB(x) =

∞
∑

r=0

brT
∗
r
(x) ≅

N
∑

r=0

brT
∗
r
(x) +

∞
∑

r=N+1

br

yN(x) =

N
∑

r=0

arT
∗
r
(x)

(26)

�

�

y(x) − yN(x)
�

�2
≤ 1

22N+1
�

�

�

y(N+1)(x)
�

�

�∞
+

�

3�

8
‖B − A‖2
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where

Proof: Firstly, the following inequality is held.

From Eq. (4), we have the following inequality

and we have

On the other hand, since the approximate solution yN(x) 
is the approximate solution of Eq. (1), then Eq. (1) must be 
approximately satisfied by the function yN(x).

The following comparison strongly advise by [20]:

A =
[

a0 a1 ⋯ aN
]

and B =
[

b0 b1 ⋯ bN
]

.

‖

‖

y(x) − yN(x)
‖

‖2
≤ ‖

‖

y(x) − yB(x)
‖

‖2
+ ‖

‖

yB(x) − yN(x)
‖

‖2
.

�

�

y(x) − yB(x)
�

�2

=

⎛

⎜

⎜

⎝

1

�
0

w(x)�
�

y(x) − yB(x)
�

�

2
dx

⎞

⎟

⎟

⎠

1∕2

≤
⎛

⎜

⎜

⎝

1

�
0

�

1

22N+1(N + 1)!

�

�

�

y(N+1)(x)
�

�

�∞

�2

dx

⎞

⎟

⎟

⎠

1∕2

=
1

22N+1(N + 1)!

�

�

�

y(N+1)(x)
�

�

�∞

�

�

yB(x) − yN(x)
�

�2

=

⎛

⎜

⎜

⎝

1

�
0

�

N
�

r=0

(br − ar)T
∗
r
(x)

�2

dx

⎞

⎟

⎟

⎠

1∕2

≤
⎛

⎜

⎜

⎝

1

�
0

�

N
�

r=0

(br − ar)
2

��

N
�

r=0

�

�

T∗
r
(x)�

�

2

�

dx

⎞

⎟

⎟

⎠

1∕2

=

�

N
�

r=0

(br − ar)
2

�1∕2
⎛

⎜

⎜

⎝

N
�

r=0

1

�
0

�

�

T∗
r
(x)�

�

2
dx

⎞

⎟

⎟

⎠

1∕2

=

�

3�

8
‖B − A‖ .

(27)
|

|

|

|

|

|

|

m
∑

k=0

Pk(x)y
(m)(x) +

p
∑

m=0

�m

x

∫
cm

Vm(x, t)y(t)dt +

q
∑

n=0

�n

bn

∫
an

Fn(x, t)y(t)dt = f (x)

|

|

|

|

|

|

|

≈ 0

(28)EN =

m
∑

k=0

Pk(x)y
(m)(x) +

p
∑

m=0

�m

x

∫
cm

Vm(x, t)y(t)dt +

q
∑

n=0

�n

bn

∫
an

Fn(x, t)y(t)dt − f (x)

which is called error estimation function.

Illustrative examples

In this section, we apply our method some examples to check 
the accuracy and effectiveness of the method. In examples, 
some comparisons are dispalyed by below fundamental error 
types:

1. Absolute error ( Ne ) is defined by:

where y(x) are the exact solution and yN(x) denote the 
approximate solution.

2. relN is relative error which is defined by

Example 1. Firstly, we apply our method to following the 
linear FVIDE with piecewise intervals subject to y(0) = 1, 
y�(0) = −2, y��(0) − 2y�(0) = 7.

where

The exact solution is y(x) = (1 − x)e−x. Then, we have

Ne(x) =
|

|

y(x) − yN(x)
|

|

, x ∈ [0, 1]

relN =
|

|

y(x) − yN(x)
|

|

|y(x)|
, x ∈ [0, 1]

y���(x) − y�(x) +

x

∫
0

xty(t)dt

+

1∕2

∫
1∕4

(1 − t2x2)y(t)dt −

1

∫
1∕2

(1 − t)y(t)dt = f (x)

f (x) = (−2 + x + x2 + x3)ex + 0.0861606918 − 0.014742845x2

P0(x) = 0, P1(x) = −1, P2(x) = 0, P3(x) = 1
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If these values and functions are put into Eq. (24), we 
have the following approximate solutions for various N 
values

Comparison of these approximate solutions and exact 
solution are presented in Table 1. Table 2 gives us the com-
parison of the relative errors. Figure 1 shows us comparison 
of absolute errors, Fig. 2 and 3 display error estimation func-
tions and relative error functions, respectively. These figures 
say that if the N values are increased, the absolute values and 
relative errors are decreased. Hence, the numerical results 
are more close with the exact solution.

Example 2. Let us consider the following linear Fredholm 
integro-differential equation with piecewise intervals [5]

If the above numerical algorithm is applied, we have the 
following numerical solutions

Also, this problem has been solved by Bernoulli matrix 
method (BMM) [5]. Table 3 and Fig. 4 show the comparison 
of Present Method and BMM. From Fig. 4, our numerical 
results are better than BMM.

�1 = 1, F0(x, t) = xt, c0 = 0

�1 = 1,�2 = −1, V0(x, t) = 1 − x
2
t
2
, V1(x, t)

= 1 − t, a0 = 1∕4, b0 = 1∕4, a1 = 1∕2, b1 = 1

y5(x) = 1 − 2x +
3

2
x
2 − 0.6605636x

3

+ 0.18906493x
4 − 0.028481763x

5

y6(x) = 1 − 2x +
3

2
x
2 − 0.66617680x

3 + 0.20580958x
4

− 0.0452840x
5 + 0.0055757467x

6

y7(x) = 1 − 2x +
3

2
x
2 − 0.66663491x

3 + 0.2080941625x
4

− 0.0493161690x
5 + 0.008770421x

6 − 0.000912765x
7

y���(x) = ex − x − 4

1∕4

∫
0

ex+ty(t)dt + 2

1∕2

∫
0

xety(t)dt −

1

∫
0

et−xy(t)dt,

y(0) = 1, y�(0) = −1, y��(0) = 1

y6(x) = 1 − x + 0.5x
2 − 0.166602262x

3

+ 0.0413353094x
4 − 0.00770776517x

5

+ 0.00085415183x
6

y8(x) = 1 − x + 0.5x
2 − 0.166664113x

3 + 0.0416480144x
4

− 0.00828084359x
5 + 0.001315741562x

6

− 0.0001454724104x
7 + 0.61145088e − 5x

8

Example 3. Let us consider the following linear FVIDE with 
piecewise intervals.

y��(x) − (1 − x)y� + y

= f (x) +

1∕2

∫
0

xty(t)dt +

1

∫
1∕2

(1 − xt)y(t)dt

+

x

∫
0

(xt2 − x2t)y(t)dt, y(0) = 0, y�(0) = 0.

,

I f  w e  c h o o s e  f (x) = 24x3 − 12x2 − 10x4

+6x5 −
1

48
x +

19

640
+

1

56
x
9 −

1

42
x
8, the exact solution is x5 − x4. 

When solving this example by mention method, we get the 
exact solution for N = 5.

Example 4. Let us consider the following equation [33]

with nonlocal boundary condition

The exact solution of this problem is y(x) = ex. In Table 4, 
we compare our results with the existing method Chebyshev 
collocation method [33]. The comparison of these results in 
Fig. 5 and Table 4 shows that our numerical results have a 
perfect harmony with the exact solution.

Example 5. Let us consider the following Fredholm integro 
differential equation [7, 34]:

The exact solution is y(x) = cos(x). The Bernstein projec-
tion method (BPM), the variational iteration method (VIM) 
and the proposed method (PM) are compare in Table 5. It 
can be observed from Table 5 that PM has less errors com-
pare with BPM and VIM.

y�(x) − y(x) = −ex − e + 2 +

1

∫
0

y(t)dt +

x

∫
0

y(t)dt

y(0) +

1

∫
0

y(t)dt = e

y���(x) = sin(x) − x −

�∕2

∫
0

xty�(t)dt and

y(0) = 1, y�(0) = 0, y��(0) = −1
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Steps of Solutions

In this section, steps of solution have been presented the 
given numerical method. Maple program is used in this arti-
cle for run it. Readers can apply the algorithm any computer 
program.

Algorithm:

(a) Input values and function should be determined N , �
m
 , �

n
 , P

k
(x) , 

V
m
(x, t) , F

n
(x, t) , f (x) , c

m
 , a

n
 , a

ik
 , b

ik
 , c

ik
 , a , b , c and �

i
.

(b) Take suitable matrices for A , D , Y(x) , B , K
m
 , F

n
,G

(c) Using Eqs.(24)-(25), construct the R
N
(x) and (N − m) linear equa-

tions from mixed conditions
(d) Solve the obtained linear equations on (c) with conditions
(e) Substituting all coefficients into Eq. (3), this is approximate solu-

tion

Conclusion

The operational matrix method is treated as accurate, effec-
tive and plain method to gain numerical solutions of the 
FVIDEs. This method is based on polynomial approxima-
tion and basic operational method. By the aid of operational 
matrices, the all terms of Eq. (1) reduce to a linear alge-
braic equations. The present method has some consider-
able advanteges. Since the entry of operational matrices is 

Table 1  Error values of Ex. 1 for the x value

x Exact solution Ne = 5 Ne = 6 Ne = 7

0.1 0.8143536762 0.43818E−5 0.28141E−6 0.13865E−7
0.2 0.6549846024 0.24278E−4 0.11686E−5 0.37154E−7
0.3 0.5185727544 0.54243E−4 0.17378E−5 0.19435E−7
0.4 0.4021920276 0.80309E−4 0.12867E−5 0.28425E−7
0.5 0.3032653298 0.90721E−4 0.27736E−7 0.55326E−7
0.6 0.2195246544 0.81677E−4 0.11841E−5 0.33501E−7
0.7 0.1489755911 0.58648E−4 0.15469E−5 0.11121E−7
0.8 0.0898657928 0.33728E−4 0.94845E−6 0.29990E−7
0.9 0.0406569659 0.19464E−4 0.11238E−6 0.12180E−7
1.0 0.0 0.19555E−4 0.13123E−6 0.11126E−8

Fig. 2  Comparison of error estimation functions in Ex. 1

Table 2  Some values of relative 
error

N relN

5 0.4787E−4
6 0.2765E−5
7 0.3148E−6

Fig. 1  Comparison of absolute errors in Ex. 1

Fig. 3  Comparison of relative error functions in Ex. 1
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zeroes, the present method has lower operation count and 
shorter computation time. These advantages bring about 
less cumulative truncation errors. Also, from Ex.3, if the 
exact solution is a polynomial, our numerical method give 

us this polynomial. The proposed method presents us more 
convenient numerical results than compared methods from 
Exs. 2, 4 and 5.

Table 3  Numerical comparisons for Ex. 2

x BMM [5] Present method

Ne = 6 Ne = 8 Ne = 6 Ne = 8

0.1 0.31830E−8 0.29967E−10 0.35862E−7 0.114469E−8
0.2 0.22137E−7 0.506946E−9 0.15016E−6 0.332729E−8
0.3 0.37989E−7 0.265453E−8 0.22456E−6 0.247957E−8
0.4 0.12781E−6 0.898136E−8 0.16520E−6 0.103320E−8
0.5 0.11175E−5 0.254436E−7 0.37140E−8 0.353077E−8
0.6 0.45985E−5 0.684357E−7 0.17051E−6 0.271857E−8
0.7 0.14152E−4 0.182284E−6 0.22607E−6 0.14506E−10
0.8 0.36567E−4 0.476192E−6 0.15097E−6 0.142662E−8
0.9 0.83519E−4 0.119350E−5 0.40120E−7 0.486501E−9
1.0 0.17390E−3 0.283062E−5 0.74450E−8 0.266051E−9

Fig. 4  Comparison of PM and BMM in Ex. 2

Table 4  Numerical comparisons for Ex. 4

x CCM [33] Present method

Ne = 5 N
e
= 6 Ne = 5 Ne = 6

0.1 0.329E−3 0.593E−4 0.493E−6 0.119E−7
0.2 0.268E−3 0.388E−4 0.142E−5 0.571E−7
0.3 0.215E−3 0.305E−4 0.114E−5 0.186E−7
0.4 0.170E−3 0.233E−4 0.631E−6 0.654E−7
0.5 0.949E−4 0.170E−5 0.170E−5 0.160E−7
0.6 0.633E−4 0.116E−5 0.908E−6 0.523E−7
0.7 0.364E−4 0.680E−5 0.889E−6 0.390E−7
0.8 0.139E−4 0.246E−5 0.146E−5 0.333E−7
0.9 0.616E−5 0.153E−5 0.326E−6 0.208E−7
1.0 0.302E−4 0.495E−5 0.155E−8 0.140E−9

Fig.5  Comparison of PM and CCM

Table 5  Comparison of BPM, 
VIM and PM

x BPM [7] VIM [34] PM

Ne = 6 Ne = 12 k = 5 k = 10 Ne = 6 Ne = 12

0.2 6.6E−8 8.2E−15 2.1E−5 6.3E−7 1.03E−7 6.29E−13
0.4 6.6E−7 5.6E−14 3.4E−4 1.0E−5 3.01E−8 1.03E−14
0.6 2.2E−6 1.9E−13 1.7E−3 5.1E−5 6.57E−7 5.24E−13
0.8 5.7E−6 4.7E−13 5.4E−2 1.6E−4 1.80E−6 1.65E−13
1.0 1.2E−5 1.0E−12 1.3E−2 3.9E−4 4.11E−6 4.04E−12
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