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Adenoviruses (AdVs) constitute a diverse family with many pathogenic types that infect a
broad range of hosts. Understanding the pathogenesis of adenoviral infections is not only
clinically relevant but also important to elucidate the potential use of AdVs as vectors in
therapeutic applications. For an adenoviral infection to occur, attachment of the viral ligand
to a cellular receptor on the host organism is a prerequisite and, in this sense, it is a criterion
to decide whether an adenoviral infection can potentially happen. The interaction between
any virus and its corresponding host organism is a specific kind of protein-protein
interaction (PPI) and several experimental techniques, including high-throughput
methods are being used in exploring such interactions. As a result, there has been
accumulating data on virus-host interactions including a significant portion reported at
publicly available bioinformatics resources. There is not, however, a computational model
to integrate and interpret the existing data to draw out concise decisions, such as whether
an infection happens or not. In this study, accepting the cellular entry of AdV as a decisive
parameter for infectivity, we have developed a machine learning, more precisely support
vector machine (SVM), based methodology to predict whether adenoviral infection can
take place in a given host. For this purpose, we used the sequence data of the known
receptors of AdVs, we identified sets of adenoviral ligands and their respective host
species, and eventually, we have constructed a comprehensive adenovirus–host
interaction dataset. Then, we committed interaction predictions through publicly
available virus-host PPI tools and constructed an AdV infection predictor model using
SVM with RBF kernel, with the overall sensitivity, specificity, and AUC of 0.88 ± 0.011,
0.83 ± 0.064, and 0.86 ± 0.030, respectively. ML-AdVInfect is the first of its kind as an
effective predictor to screen the infection capacity along with anticipating any cross-
species shifts. We anticipate our approach led to ML-AdVInfect can be adapted in making
predictions for other viral infections.
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INTRODUCTION

Adenoviruses (AdVs) are relatively large, nonenveloped,
icosahedral viruses composed of a complex protein capsid
surrounding the core proteins and the dsDNA genome. They
belong to a diverse family called Adenoviridae, with several
hundred recognized members capable of infecting a broad
variety of cell types across several organisms (Rowe et al.,
1953). As of the isolation of the first human AdV from
adenoid tissues in 1953, many other novel AdVs were
identified, such that, 103 human AdVs genotypes have been
classified, to date, into seven “species” named A to G (Author
Anonymous, 2020a). The pathogenic human AdVs (HAdV) may
lead to serious gastrointestinal, respiratory, urinary, and corneal
infections especially in immunosuppressed individuals (Gao
et al., 2020). Moreover, recombinant AdVs are the most
widely used viral vectors for gene therapy, accounting for
18.6% of vectors used in gene therapy clinical trials. AdVs
feature out with their current and potential usage in different
fields, including gene therapy, vaccine trials, and cancer
treatments as oncolytic viruses (Singh et al., 2019).

Before any further steps leading to the infection may take
place, viral pathogenesis requires the viral particle, the virion, to
enter into the host cell. For AdVs, the main mechanism of entry is
a two-step process, which starts with binding of a viral capsid
protein (i.e. hexon, penton base, or mostly the fiber) to a primary
receptor on the host cell to ensure attachment followed by
secondary interactions to enable penetration of virion by
clathrin- and dynamin-dependent endocytosis often involving
integrins, or by macropinocytosis (Zhang and Bergelson, 2005;
Lasswitz et al., 2018).

In explaining the pathogenesis of viral infections, therefore,
understanding the viral protein–host receptor interactions plays a
pivotal role. Expanding knowledge on AdV interactions, in
particular, is essential not only to enhance our understanding
of the life cycle, tissue tropism, host specificity/range, and cross-
species transmission of the AdVs but also to help researchers in
inhibiting adenoviral infections and in constructing efficient
adenoviral vectors. Thus, HAdVs serve as a good template to
elucidate virus–receptor interactions and as expectedly,
identification and characterization of AdV receptors have been
performed at varying levels of confirmation through different
experimental methodologies by several investigators.

Given their diversity, broad host range, and complex use of
receptors, the biological modeling of adenoviral infection poses a
challenge to decipher with gaps and controversies in the existing
literature. To this end, the use of computational methods on
publicly available data about PPIs and the application of machine
learning algorithms may accelerate and enrich our exploration of
virus–host interactions. The conventional definition of PPI,
however, refers to the physical contact with molecular docking
between proteins that occur in a cell or in a living organism in
vivo. As the definition implies, main databases and repositories
that include PPIs are not structured from a host–(viral) pathogen
point of view (De Las Rivas and Fontanillo, 2010). An exceptional
resource which provides interspecies protein interaction data is
the pathogen–host interaction search tool (PHISTO) (Durmus

Tekir et al., 2013) which has extracted and integrated all PPIs
between the human host and a non-human organism from
publicly available databases and then manually labeled the
respective organisms as pathogenic or not. For collected
interactions without a specified method of detection, PHISTO
includes a text mining module to predict the experimental
method of interaction detection and also houses a user
interface allowing visualization of protein networks. The
recently launched pathogen–host interactions database (PHI-
base), on the other hand, encompasses comprehensive expert-
curated molecular and biological information, but does not cover
viruses as a pathogen (Urban et al., 2020).

A similar concern also applies for the PPI prediction tools, yet
there are several tools developed to predict virus–host
interactions, and herein Section Background, we provide some
background information on the publicly available virus–host PPI
prediction tools DeNovo (Eid et al., 2016), HOPITOR (Basit et al.,
2018), VHPPI (Alguwaizani et al., 2018), and InterSPPI-HVPPI
(Yang et al., 2020) that we have used.

In the presented study, we have first curated the set of primary
protein receptors that are essential in the adenoviral entry into the
host cell based on the available evidence in the literature; herein
Section Adenoviral Receptors Background, we provide further
details regarding the included receptors. Then, using the public
bioinformatics resources, we have identified the host species of
adenoviruses, and also found the orthologs for our curated set of
protein receptors in identified hosts. Similarly, we also created the
set of adenoviral fiber proteins which stand for the ligands
occupied in the adenoviral attachment. Next, for each of the
fiber protein and adenoviral receptors, we had a dataset of pairs
composed of the corresponding host and pathogen pair. Thus,
altogether, we have compiled an extensive dataset on AdV–host
relations. Next, we calculated the predictions as to whether there
is an interaction between this particular virus fiber protein and
host receptor as generated by four different existing PPI tools.
Although these PPI tools are available individually, to this date,
there is no approach that brings predictions of these tools
together to make infection predictions. We recognize a virus-
host PPI is not sufficient to warrant infection, yet attachment of
the virus to a cellular receptor is a necessary condition and the
initial step of viral entry which has been used previously as a
decisive parameter for AdV infectivity by Hoffman et al.
(Hoffmann et al., 2007; Hoffmann et al., 2008). We cannot
accurately model, however, whether the viral interaction will
cause its internalization or any further viral pathogenesis
within the host cell. Taking these constraints into account, we
used PPI as a basis for infection prediction. To this end, we
applied a machine-learning, more specifically support vector
machine (SVM), based methodology to develop the ML-
AdVInfect predictor that uses virus-host PPI predictions from
several tools in addition to the taxonomy data. This predictor is
the first of its kind to carry the interaction prediction forward to
anticipate whether adenoviral infection may occur in a given host
species. The approach herein referred to yields a versatile and
promising method to predict the occurrence of infection,
investigate host-specificity, and anticipate cross-species
transmissions for viral infections.
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BACKGROUND

Adenoviral Receptors
The adenoviral receptors included in the present study contains
molecules that were characterized specifically as the primary,
proteinaceous, surface receptor for at least one HAdV type
according to the available literature, excluding glycan-based
interactions, interactions with secretory proteins, as well as
any other molecular interactions which are auxiliary in nature.
Based on the said criteria, we curated the set of receptors
composed of coxsackie and adenovirus receptor (CAR), cluster
of differentiation (CD) 46, CD80 and CD86, desmoglein-2
(DSG2), integrin subunit alpha-V (ITAV), macrophage
scavenger receptor 1 (MSR1), and lung macrophage scavenger
receptor SR-A6 (MARCO) and a brief overview on individual
receptors and experimental methodology of receptor
identification is given below (Lasswitz et al., 2018; Stasiak and
Stehle, 2020).

CAR is a member of the junction adhesion molecule (JAM)
family within the immunoglobulin (Ig) superfamily and is present
in specialized intracellular junctions. CAR functions as a receptor
for all HAdV species, except for the B species and interacts with
the knob domain of the viral fiber protein (Tomko et al., 1997).
CD46, also known as membrane cofactor protein (MCP), is
expressed on all nucleated cells and belongs to the family of
regulators of complement activation. For most species B HAdVs,
which do not bind CAR, CD46 was shown to function as a cellular
receptor (Gaggar et al., 2003). CD80 and CD86 are expressed on
the cell surface of human dendritic cells and mature B
lymphocytes (Caux et al., 1994). Species B AdVs use CD80
and CD86 as receptors and the fiber knob domain is required
for the interaction (Short et al., 2006). DSG2 is a protein that
belongs to the cadherin superfamily and was identified as the
main receptor for HAdV-3, -7, -11, and -14. Unlike CD46
interactions, high-affinity binding to DSG2 requires both
penton base and fiber protein (Wang et al., 2011). Integrins
are a family of transmembrane heterodimers combining into
24 proteins in vertebrates which are engaged in a plethora of
cellular functions. AdVs employ various integrins via their
penton protein to mainly act as co-receptors. However, in a
setting with little to no CAR expression, certain integrins from the
group of the αv integrins were shown to function as a primary
receptor. (Lyle and McCormick, 2010; Nestić et al., 2018).
Scavenger receptors constitute a large group of membrane-
bound receptors. The interaction with MSR1, also designated
as SR-A and CD204, was shown to be responsible for liver uptake
of HAdV5 (Haisma et al., 2009). Mutational analysis of AdV
capsid proteins and in vivo administration in mice revealed that
the SR-A interaction is mediated by the hypervariable regions of
the AdV hexon protein (Piccolo et al., 2013). Similarly, in murine
alveolar macrophage-like MPI cells MARCO was shown to be an
entry receptor for HAdV-C5 and hexon protein was suggested to
be relevant to the viral ligand (Stichling et al., 2018).

The most commonly used strategies to explore any protein-
protein interactions (PPIs) are yeast two-hybrid (Y2H) and
affinity-purification mass spectrometry (AP-MS), in addition
to other experimental modalities of array-based screening as

well as flow cytometry-based binding assays, immunoadhesin/
co-immunoprecipitation, luminescence, protease assays, surface
plasmon resonance (SPR) and Förster Resonance Energy
Transfer (FRET)-based techniques. In order to identify host
factors of viral infection, initially, virus overlay protein binding
assays (VOPBAs) were employed. For example, VOPBA
successfully identified the AdV receptor CD46, among others
(Gaggar et al., 2003) https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7094377/- bb0405. Likewise, DSG2 was confirmed as a
HAdV-3 receptor through binding assays including surface
plasmon resonance and gain and loss of function assay. For
follow-up analysis and validation of screening hits, genetic and
drug-based validation methods including CRISPR/Cas9 and
RNA interference are also being utilized. Syrian hamster
models have been developed as an animal model for oncolytic
species C HAdV vectors; however, AdV receptor studies are
otherwise based on cell culture models. From a structural
biological point of view, among the primary AdV receptors,
only CAR and CD46 have solved structures in complex with
their adenoviral ligands according to the entries in Protein Data
Bank (PDB) database (Kilcher and Mercer, 2014; Brito and
Pinney, 2017; Lasswitz et al., 2018; Hensen et al., 2020; Li
et al., 2020; Stasiak and Stehle, 2020).

Machine Learning-Based PPI Prediction
Tools
So far, several computational methods have been developed to
predict virus-host protein interactions. As the publicly available
virus-host PPI data increased, the emphasis on this subject has
recently been shifted to machine-learning-based computational
techniques to identify virus-host PPIs. PPI prediction tools have
been developed based on different machine-learning models such
as support vector machines (SVM) (Shen et al., 2007; Cui et al.,
2012; Eid et al., 2016), random forest (RF) (Yang et al., 2020) and
gradient boosting machine (XGBoost) (Basit et al., 2018; Chen
et al., 2020).

An algorithm for predicting PPIs mediated by mimicked short
linear motifs (SLiM) between HIV-1 and human has been
developed by Becerra and colleagues (Becerra et al., 2017).
Also, Eid and colleagues introduced an SVM-based virus-host
PPI prediction model, called DeNovo, which uses amino acid
sequence similarity-based features (Eid et al., 2016). Based on
three PPI sets, containing several bacterial and human protein
interactions, DeNovo achieved an average accuracy, sensitivity,
and specificity of 97%, 94.5%, and 97.5% respectively. The most
important feature that distinguishes DeNovo from other SVM-
based prediction tools is that it employs a sequence similarity-
based strategy for sampling the negative virus-host PPI data set
for SVM training. The DeNovo sampling strategy has inspired
other researchers to develop new virus-host PPI methods.
HOPITOR, an XGBoost classifier-based host-pathogen
predictor, is another method using the DeNovo sampling
strategy. However, the sequence similarity between the
different virus and host types is rather low. As a consequence,
sequence similarity-based prediction methods have some
limitations. To cope with this problem, Zhou and colleagues
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applied Naive Bayes, RF, and SVM models on feature vectors
derived from amino acid compositions of interacting host-virus
proteins and introduced another SVM-based tool called
VirusHostPPI (Zhou et al., 2018). VirusHostPPI has been
compared with two different methods, including DeNovo (Eid
et al., 2016) and Barman’s SVM (Barman et al., 2014), and it
achieved an accuracy of 84.47%–79.95%, the sensitivity of
80.00%–76.14% and specificity of 88.94%–83.77% against
DeNovo and Barman’s SVM, respectively. As a result of the
latest efforts in virus-host PPI prediction, Yang and colleagues
introduced a doc2vec embedding-based RF classifier called
InterSPPI-HVPPI. Using Barman et al.’s dataset, InterSPPI-
HVPPI achieved 79.17% accuracy, 81.85% sensitivity, and
76.45% specificity.

In a similar manner to the overall experience in other research
fields, the number of machine learning-based approaches to
virus-host interaction prediction has been increasing rapidly
over time, bringing a gradual decrease in the difference of
performances between the developed methods. Besides,
considering the host and pathogen diversity, it would be more
efficient to develop new PPI prediction methods using ensemble
learning techniques instead of highlighting a single method in the
literature. Ensemble learning-based approaches use multiple
learning algorithms to achieve greater predictive performance
than is possible from any single of the constituent learning
algorithms alone (Polikar, 2006; Rokach, 2010).

Here, we introduce a machine-learning-based methodology to
predict AdV infections based on the utilization of an ensemble of
available virus-host PPI prediction tools.

MATERIALS AND METHODS

Identification of Adenovirus Hosts
We constructed a library of AdV hosts using the UniProt
knowledgebase (UniProtKB Release 2020_02) (The UniProt,
2017), the Virus-Host DB (Mihara et al., 2016), and the
National Center for Biotechnology Information GenBank
(Clark et al., 2016). We initially created a list of host
organisms using the curated “Virus Hosts” information
available in UniProtKB for the “Adenoviridae” family, primary
hosts curated in Virus-Host DB, and hosts curated in GenBank
records for Adenoviridae complete genomes. Next, we parsed out
the hostnames out of the AdV species names (e.g. “Human” for
Human Adenovirus). The hostnames from both steps were
further curated to obtain a species (or subspecies) level host
organism nomenclature, reviewing the related literature and/or
sequence submission records (e.g. “Gallus gallus” for UniProt:
R4N0P7, rather than “fowl”). The list of infecting AdV species is
also curated for each host and AdV–host pairs are generated.

Creation of Adenovirus Host Receptor
Protein Sets
We identified orthologs of AdV receptors in the hosts using a
sequence similarity-based approach. We initially compiled the
human protein sequences for the list of receptors we have

manually curated, namely CAR/CXAR (UniProt Accession:
P78310), CD46 (UniProt Accession: P15529), CD80 (UniProt
Accession: P33681), CD86 (UniProt Accession: P42081), ITAV
(UniProt Accession: P06756), DSG2 (UniProt Accession:
Q14126), MSR1 (UniProt Accession: P21757), and MARCO
(UniProt Accession: Q9UEW3). Human receptors are selected
as a starting point, as human is the most well-studied AdV host.
We ran BLAST (Altschul et al., 1990) searches with human
receptor proteins (as query sequences) against locally
downloaded protein sequences from UniProtKB for all the
hosts with complete proteomes based on the UniProt
Proteomes database. Availability of complete proteome was
applied as a criterion to make sure that all orthologs are
potentially represented in the respective proteomes. We parsed
BLAST results to identify orthologs from various hosts using
e-value and overlap thresholds. As CAR is the first-identified and
most well-studied receptor in mammalian hosts, our aim was to
be able to catch all the CAR orthologs in 40 host organisms in the
study through BLAST searches. Moreover, we tried to avoid
partial CAR orthologs or fragments. Thus, we tried different
BLAST e-value and overlap thresholds, and the e-value (<1e-20)
and overlap (>66%) thresholds were chosen to maximize the
number of full-length orthologs of CAR receptors.

Creation of Adenovirus Fiber Protein Sets
In order to compile a comprehensive set of AdV fiber proteins, we
initially curated a fiber protein synonym list using UniProtKB
adenoviridae entries to cope with naming inconsistencies.
“Fiber,” “fibre,” “fiber protein,” “fiber homolog,” “protein
fiber,” “fibre protein” and “fibre homolog” were among the
few terms we identified as possible names assigned for the
fiber protein orthologs. We then used UniProt website REST
API and our terms to retrieve AdV fiber proteins. Furthermore, to
account for uncharacterized fiber proteins (i.e. uncharacterized
protein or hypothetical protein, or unknown), we BLAST’ed a
local database of AdV sequences using the curated fiber proteins
using the same e-value and overlap thresholds described in
Section Creation of Adenovirus Host Receptor Protein Sets.

Preparing Dataset for Adenovirus Infection
Prediction
To apply machine learning classification algorithms to predict
adenoviral infection, we created a dataset containing AdV–host
pairs. The dataset contained all possible host and AdV pairs,
where hosts are from the final list at Section Creation of
Adenovirus Host Receptor Protein Sets and AdVs are the ones
that have the fiber proteins as identified in Section Creation of
Adenovirus Fiber Protein Sets.

For each AdV and host species pair, we computed a feature
vector with two major components and a class label. The first
component is predictions of virus–host protein interaction for
AdV fiber protein and host receptors; the basic prerequisite for
adenoviral infection. The second component is which was
incorporated to account for a potential taxonomic preference
toward host receptors. Finally, the class label indicates whether
the AdV in question is known to infect the respective host based
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on the known AdV–host pairs generated in Section Identification
of Adenovirus Hosts.

To serve as the first component of the feature vector, we
utilized four virus–host PPI predictors with their respective
default parameters DeNovo (run locally, using a dissimilarity
threshold of 0.8), HOPITOR (run locally, with default
parameters), VHPPI (online version1 with default parameters),
and InterSPPI-HVPPI (run locally, using default specificity
threshold of 0.95 as per its web site2). In an attempt to factor
in the strengths and weaknesses of individual virus-host PPI
prediction tools, and their varying prediction performance for
different receptors, we applied a stacking-like ensemble technique
using DeNovo, HOPITOR, VirusHostPPI, and InterSPPI-HVPPI
models. For each one of 10,237 AdV–host pairs, 4 interaction
predictions were computed per receptor which resulted in 32
predictions (4 predictors; DeNovo, HOPITOR, VirusHostPPI,
and InterSPPI-HVPPI x 8 receptors; CAR, CD46, CD80, CD86,

ITAV, DSG2, MSR1, and MARCO). Each feature in this
component had a binary value; either 1 (interacting) or 0
(otherwise). For practical purposes, the lack of a specific host
receptor is treated as if there were no interaction between that
receptor and the fiber protein.

As the second component, we captured host taxa at four
taxonomic levels; genus, family, order, and class. National
Center for Biotechnology Information (NCBI) Taxonomy
Database was used to gather the taxon of each organism
(Federhen, 2012).

Finally, the infection class label, for each AdV–host pair, is
computed to constitute the ground truth as to whether that
particular AdV infects that respective host. For this purpose,
we looked at the host portion in the pair to see whether it is
identical to the known host of the AdV in that pair (e.g., the
known host for human AdV is “homo sapiens”). If these two are
identical, class label 1 is assigned as an indication of infection
under the assumption that there are no cross-species
transmission, while 0 is assigned as an indication of AdV
being not infectious for the host in question. Consequently,
the feature vectors with class label 1 (one) form the positives
(i.e., adenoviral infection happens) while those with class label 0
(zero) form the negatives of our dataset.

An illustration of the creation of a Dataset for Adenovirus
Infection Prediction is provided as part of Figure 1.

Creation of Adenovirus Infection Prediction
Models
We used machine learning classification algorithms RF, SVM,
and Multilayer Perceptron (MLP) on the dataset described in
Section Preparing Dataset for Adenovirus Infection Prediction.
The algorithms were chosen based on their use and reported
performance on similar problems in bioinformatics such as virus-
host protein interaction prediction (See Background). To cope
with the class imbalance problem between the number of
positives (i.e. adenoviral infection happens) and negatives, we
employed random oversampling of minority positives set during
the training of the infection prediction model. We experimented
using one level of host taxa (genus, family, order, or class) at a
time as part of feature vectors. For the classification algorithms
requiring numerical values, host taxa which is a categorical
feature are encoded using the label encoder in Scikit-Learn.
For each machine learning classification algorithm, we first
split our dataset into a training set (the 80% portion) to
conduct hyperparameter tuning and a test set (the 20%
portion) to assess respective performances. During
hyperparameter tuning, we used 10-fold cross-validation where
we first split the training set into 10 folds and then applied
random oversampling on 9 folds which were used for training the
classification model and then tested the model performance on
the remaining 1 fold. It has been documented that oversampling
and undersampling leads to similar performances, provided that
the sampling is correctly implemented on the training folds, as we
have done, during the cross-validation (Blagus and Lusa, 2015).
Following the hyperparameter tuning, the best models trained on
the training test (the 80% portion) are used to classify the test set

FIGURE 1 | Workflow for creation of adenoviral infection prediction
models from left to right: Creation of feature vector based on virus-host PPI
predictors, host taxa, and infection class; partitioning of the dataset according
to the class. Finally, creation of an infection predictor through various
machine-learning algorithms such as RF, SVM, and MLP.

1http://165.246.44.47/VirusHostPPI/Prediction
2http://zzdlab.com/hvppi/predict.php
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for assessment of the model performances. The following
performance metrics to compare our models where TP, FP,
TN and FN represent the number of true positives, false
positives, true negatives and false negatives, respectively.
True positives (TP) contain host proteins which are
predicted to correctly interact with a virus protein. True
negatives (TN) are non-interactive host proteins that are
correctly predicted to be non-interacting with a virus
protein. False Positive (FP) is a non-interactive host protein
that is wrongly predicted to interact with a virus protein. False
negatives (FNs) are host proteins that are wrongly predicted to
interact with a virus protein.

Precision measures the ability or quality of a measurement to
be consistently reproduced.

Precision � TP
TP + FP

Sensitivity measures the proportion of true positives that are
correctly identified.

Sensitivity � Recall � TPR � TP
TP + FN

Specificity measures the proportion of true negatives.

Specificity � TN
TN + FP

Accuracy is how close a measured value is to the actual (true)
value.

Accuracy � TP + TN
TP + TN + FP + FN

F-Score is a measure of a model’s accuracy on a dataset. It is
used to evaluate binary classification systems, which classify
examples into “positive” or “negative”.

F − Score � 2pPrecisionpRecall
Precision + Recall

Area Under Curve (AUC) refers to the area under the receiver
operating characteristics curve which is one of the most
important evaluation metrics for checking any classification
model’s performance. It tells how much the model is capable
of distinguishing between classes.

Area Under Curve � ∫
b

a

f (x)dx

Matthew’s Correlation Coefficient (MCC) is used in machine
learning. It is a measure of the quality of binary (two-class)
classifications.

MCC � TPpTN − FPpFN�����������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√
All the machine learning models are implemented using

Scikit-Learn library (2020b) and random oversampling was
implemented using the imbalanced-learn toolbox (Lemâıtre
et al., 2017) for the Python programming language. Unless

otherwise is specified, the default parameters of respective
implementations of RF, SVM, and MLP were used.

An illustration of the flow of our work steps from the creation
of Dataset for Adenovirus Infection Prediction until the creation
of Adenovirus Infection Prediction Models is provided in
Figure 1.

RESULTS

Adenovirus Host/Receptor and Fiber
Protein Sets
The identification of AdV hosts resulted in 297 unique species as
potential host species. The majority of the hosts (n � 179) are
mammalians and primates predominate this class. Once these
hosts were sorted out based on the availability of the complete
proteomes in UniProt, the remaining 40 host species were
included in our final set of hosts. See Supplementary Table
S1 for a full list of identified hosts as well as the information as to
whether complete proteome data for the relevant host is available
or not. Our results further confirm that the AdVs infect a wide
variety of organisms including mammals, lizards, birds, turtles,
and frog and toads (See Figure 2).

Out of 40 host species, CAR is found in 32 organisms, CD46 in
25, CD80 in 23, CD86 in 33, ITAV in 36, DSG2 in 38, and the
scavenger receptors MSR1 andMARCO exist in 25 and 17 of these
host species, respectively. For each of the 40 host species, the
UniProt accession numbers for existing receptors are provided in
Supplementary Table S2. As a validation, we have compared the
identified receptors’ orthologs against the respective orthologs
recorded in the OrthoDB database (Kriventseva et al., 2019).
Our orthologs included all those recorded in OrthoDB, and
further included some additional uncharacterized orthologs (eg.
UniProtKB: M3Y0B3 as a CD86 ortholog in Mustela furo).

Our set of AdV fiber proteins is composed of 254 fiber proteins.
A full list of these proteins together with the adenoviruses they
belong to is provided in Supplementary Table S3.

Dataset for Adenovirus Infection Prediction
Our dataset contains a total of 10,237 AdV–host pairs, of which
220 are from the positive class and 10,017 are from the negative
class. For each AdV–host pair, each one of the 4 virus–host PPI
prediction tools was used separately to make predictions for 8 host
receptors. The prediction results where 1 indicates interaction and
0 indicates either no interaction or non-existence of the
corresponding receptor are provided in Supplementary Table S4.

We compared the prediction results for our dataset using the
correlation coefficients between individual virus–host PPI tools
which are provided in Table 1. The coefficient correlations
between the tools range between 0.13 and 0.79. InterSPPI-
HVPPI produced a rather low number of positive predictions
for the entire set of the receptors which is attributable to its
conservative nature. Therefore, it has been excluded from the
correlation with the other tools. The longer proteins, which are
DSG-2 and ITAV (ca. 1000 amino acids) had the poorest
correlation which suggests a size-dependency in the prediction
of these tools.
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The highest correlation, on average, is between DeNovo and
VHPPI followed by DeNovo and HOPITOR. The variance of
correlations between the tools per receptor reinforces the use of
an ensemble of virus-host PPI prediction tools rather than opting for
a single one. As none of these tools correlate 100%, we anticipate
each will complement each other and boost the overall performance
of virus–host PPI prediction. We also validated PPI predictions
against public databases. We checked PHISTO and identified that it
names only human adenoviral receptor CAR and its interactions

with human AdV2 and human AdV12 fiber proteins which we
checked against the results from 4 PPI prediction tools and
confirmed that all 4 predicted these interactions correctly.

Comparison of Adenovirus Infection
Prediction Models
We have used training set (the 80% portion) of our dataset which
was generated as described in Section Creation of Adenovirus

FIGURE 2 | The taxonomic distribution of identified host species by A) genus B) family C) order, and D) class.

TABLE 1 | Correlation coefficients of PPI predictors by adenoviral receptor.

VHPPI HOPITOR DeNovo VHPPI HOPITOR DeNovo

CAR VHPPI 1.00 CD46 VHPPI 1.00
HOPITOR 0.52 1.00 HOPITOR 0.41 1.00
DeNovo 0.79 0.51 1.00 DeNovo 0.55 0.54 1.00

VHPPI HOPITOR DeNovo VHPPI HOPITOR DeNovo
CD80 VHPPI 1.00 CD86 VHPPI 1.00

HOPITOR 0.14 1.00 HOPITOR 0.21 1.00
DeNovo 0.38 0.57 1.00 DeNovo 0.31 0.48 1.00

VHPPI HOPITOR DeNovo VHPPI HOPITOR DeNovo
ITAV VHPPI 1.00 DSG2 VHPPI 1.00

HOPITOR 0.13 1.00 HOPITOR 0.13 1.00
DeNovo 0.31 0.17 1.00 DeNovo 0.52 0.23 1.00

VHPPI HOPITOR DeNovo VHPPI HOPITOR DeNovo
MSR1 VHPPI 1.00 MARCO VHPPI 1.00

HOPITOR 0.35 1.00 HOPITOR 0.50 1.00
DeNovo 0.49 0.44 1.00 DeNovo 0.79 0.66 1.00
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Infection Prediction Models for hyperparameter tuning of SVM-,
RF-, and MLP-based models for adenoviral infection prediction.
SVM was tested with several kernels (polynomial, radial basis
function (RBF), and sigmoid) and gamma values (default � auto,
1, 10). For SVM, the highest sensitivity and AUC scores were
consistently achieved with the RBF and otherwise default
parameters. We experimented with MLP with activation
functions ReLU and tanh along with the different hidden layer
configurations. For MLP, tanh yielded the highest sensitivity and
AUC scores with a hidden layer configuration of [16, 4]. RF was also
experimented with several parameters including depth (50, default
� 100, 150), number of trees, and split metrics (gini and entropy)
where the best sensitivity and AUC scores were attained with the
depth � 16, number of trees � 50, and split metrics � entropy. The
results from hyperparameter tuning which were carried out without
the host taxa are available in Supplementary Table S5.

The performance metrics were computed on the test split (the
20% portion) for the best SVM-, RF-, and MLP-based models
which are identified through hyperparameter tuning. The
80%–20% train-test split was repeated 100 times and the mean
values and standard deviation are reported in Table 2. For our
study, we favored higher sensitivity models since our main focus
was correctly predicting infection. The implementation of the
SVM algorithm yielded the best performance in terms of
sensitivity for infection prediction for our particular dataset
for all the experiments (bolded in Table 2) we conducted with
or without the inclusion of the host taxa levels.

According to our findings, the inclusion of the host taxa level
led to a slight performance improvement in terms of sensitivity,
specificity and MCC. Although it was informative to see the
potential benefit of inclusion of host taxa to overall predictor
performance, we wanted to avoid any bias introduced by our
dataset’s limited representation of the real taxonomic diversity of

AdV hosts. Hence, we decided to exclude host taxa level in
training models at the moment, while deferring the inclusion
of host taxa to a later iteration of ML-AdVInfect when more AdV
host complete proteomes become available.

For the reasons mentioned above, in this study, we chose SVM
with RBF kernel model over alternative models trained without
host taxa level. The analysis reported in Section Discussion is
based on this model. Supplementary Table S4 also includes the
infection predictions of this SVM with RBF kernel-based model.

In order to assess the infection prediction power of a single
receptor and a single PPI prediction tool, we used the same set of
machine-learning algorithms and parameters as in our
hyperparameter tuning experiments described above for the
overall AdV infection prediction model. The results for
hyperparameter tuning for single receptor/PPI prediction tool
experiments, which were carried out without the host taxa, are
available in Supplementary Table S6. In turn, the performance
metrics computed for the test set are available in Supplementary
Table S7. Based on their performance metrics, we conclude a
single-receptor-based or single-PPI-predictor-based infection
prediction model is not achievable.

DISCUSSION

AdVs are infectious microorganisms that are particularly harmful
to elderly and immunocompromised individuals. Along with
their clinical importance, AdVs have further implications as
they are promising vectors for gene and vaccine delivery.
Therefore, adenoviral interactions with their hosts have been
extensively searched. To the best of our knowledge, on the other
hand, there is no computational model to estimate whether AdV
can cause an infection or not in a given host. The model we

TABLE 2 | Performance metrics of adenoviral infection prediction models. RBF, Radial Basis Function; AUC, Area Under the Curve; MCC, Matthew’s Correlation Coefficient.

Host taxa
level

Classifier Sensitivity Specificity Accuracy F-score MCC AUC

Genus SVM (kernel = “rbf,” gamma = “auto”) 0.92 ± 0.009 0.86 ± 0.047 0.92 ± 0.009 0.96 ± 0.005 0.39 ± 0.035 0.89 ± 0.023
MLP (activation � “tanh,” hidden layer�(16,4)) 0.95 ± 0.009 0.73 ± 0.064 0.94 ± 0.009 0.97 ± 0.005 0.40 ± 0.045 0.84 ± 0.031
Random forest (number of trees � 50, criterion �
“entropy,” max_depth � 16)

0.96 ± 0.006 0.70 ± 0.071 0.95 ± 0.006 0.98 ± 0.003 0.42 ± 0.043 0.83 ± 0.035

Family SVM (kernel = “rbf,” gamma = “auto”) 0.91 ± 0.009 0.84 ± 0.057 0.91 ± 0.008 0.95 ± 0.005 0.36 ± 0.031 0.88 ± 0.027
MLP (activation � “tanh,” hidden layer�(16,4)) 0.94 ± 0.012 0.72 ± 0.064 0.94 ± 0.011 0.97 ± 0.006 0.37 ± 0.048 0.83 ± 0.031
Random forest (number of trees � 50, criterion �
“entropy”, max_depth � 16)

0.95 ± 0.007 0.66 ± 0.068 0.95 ± 0.007 0.97 ± 0.004 0.38 ± 0.043 0.81 ± 0.033

Order SVM (kernel = “rbf,” gamma = “auto”) 0.91 ± 0.009 0.82 ± 0.057 0.90 ± 0.009 0.95 ± 0.005 0.34 ± 0.028 0.86 ± 0.027
MLP (activation � “tanh,” hidden layer�(16,4)) 0.94 ± 0.011 0.70 ± 0.075 0.94 ± 0.011 0.97 ± 0.006 0.37 ± 0.051 0.82 ± 0.038
Random forest (number of trees � 50, criterion �
“entropy,” max_depth � 16)

0.95 ± 0.007 0.66 ± 0.070 0.95 ± 0.007 0.97 ± 0.004 0.37 ± 0.040 0.81 ± 0.034

Class SVM (kernel = “rbf,” gamma = “auto”) 0.88 ± 0.011 0.82 ± 0.061 0.88 ± 0.010 0.93 ± 0.006 0.30 ± 0.028 0.85 ± 0.029
MLP (activation � “tanh,” hidden layer�(16,4)) 0.94 ± 0.010 0.68 ± 0.067 0.93 ± 0.010 0.97 ± 0.005 0.35 ± 0.043 0.81 ± 0.032
Random forest (number of trees � 50, criterion �
“entropy,” max_depth � 16)

0.95 ± 0.007 0.63 ± 0.071 0.94 ± 0.007 0.97 ± 0.004 0.35 ± 0.043 0.79 ± 0.035

None SVM (kernel = “rbf,” gamma = “auto”) 0.88 ± 0.011 0.83 ± 0.064 0.88 ± 0.010 0.93 ± 0.006 0.30 ± 0.029 0.86 ± 0.030
MLP (activation � “tanh,” hidden layer�(16,4)) 0.94 ± 0.009 0.68 ± 0.079 0.93 ± 0.008 0.96 ± 0.005 0.34 ± 0.043 0.81 ± 0.038
Random forest (number of trees � 50, criterion �
“entropy,” max_depth � 16)

0.95 ± 0.007 0.63 ± 0.072 0.94 ± 0.007 0.97 ± 0.004 0.35 ± 0.041 0.79 ± 0.035

Bolded value indicates the implementation of the SVM algorithm yielded the best performance in terms of sensitivity for infection prediction for our particular dataset for all the experiments.
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propose here encompasses a machine learning-based approach to
predict the infection capacity of AdVs.

In our study, we favored models trained without host taxa level
as our dataset is not necessarily a representation of a wide
diversity of AdV hosts. The highest sensitivity predictor
among these models was based on SVM with RBF kernel with
performance metrics sensitivity, specificity, and AUC 0.88 ±
0.011, 0.83 ± 0.064, and 0.86 ± 0.030, respectively. Our
preference for favoring sensitivity rather than specificity is
tailored toward our main goal of correctly predicting infection,
but our approach does not preclude favoring higher specificity
models such as MLP and RF.

In our analysis, we also identified that a single-receptor-based
or single-PPI-predictor-based infection prediction model is not
achievable. Yet, the overall performance of ML-AdVInfect
demonstrates the utility of a stacking-like ensemble of PPI
predictors for infection prediction.

In bioinformatics, several machine learning problems have
to handle class-imbalanced data. Ours is not an exception to
this. Oversampling techniques to randomly add instances
from the minority class or undersampling techniques to
randomly drop instances from the majority class are widely
used on such imbalanced data (Radivojac et al., 2004; Taft
et al., 2009; Kim and Choi, 2014; Li et al., 2014). Yet, as long as
the cross-validation is implemented correctly, choice of
sampling results in similar model performances (Radivojac
et al., 2004). In the light of this, we have opted for
oversampling with a correct implementation in the cross-
validation process.

According to the documented results in the literature, the
available virus–host PPI prediction tools (see Background) have
varying performance. The level of agreement between the
individual tools was limited based on our correlation analysis
(coefficients at a range of 0.13–0.79). This was our main
motivation behind using an ensemble of these tools for
infection prediction. As our model strictly relies on the
performance and use of virus–host PPI prediction tools,
improvement in the performance of existing ones and/or the
introduction of newly developed ones may help to attain better
infection predictions.

We have addressed the main adenoviral entry mechanism into
the cells, namely, binding to the primary membrane receptor on
the host cell by the viral ligand (namely, CAR, CD46, CD80,
CD86, ITAV, DSG2, MSR1, and MARCO) yet it is worth to
emphasize that occurrence and spread of adenoviral infection
may also make use of interactions between non-proteinaceous
portions of molecules, viral binding to soluble host proteins,
secondary interactions between the virus and host, as well as the
internalization of the virion through caveolin- or clathrin-
dependent mechanisms. Similarly, ligand-wize, our dataset
comprises merely the AdV fiber proteins which are the most
common but indeed are not necessarily the only domain of viral
binding. Here, we pursued an approach to ensure the proven
determinants of infection are encompassed through manual
curation of a set of receptors. This approach can be expanded

from both virus and host side to accommodate other interacting
proteins if needed.

Although we tried to identify primary human adenoviral
receptors and their orthologs to our best effort, we cannot rule
out the possibility that there may still be uncharacterized
proteins in various hosts or partially sequenced host
genomes. Hence, we restricted our dataset to include 40
complete proteomes as curated by UniProt. As a future
insight, completed proteomes might be added to this dataset
as they become available.

Cross-species transmission of viruses corresponds to the
capacity of a virus species to infect other host organism(s) in
addition to its original host. In order to assess the capability
of our predictor in detecting a potential interspecies shift, we
further investigated the false positives of our best predictor,
namely the SVMmodel with RBF kernel, as they might as well
catch a cross-species transmission event. Of our false-
positive results, 15% accounts for the cases where a HAdV
infects another non-human primate which is a well-
established zoonotic shift of AdVs (Hoppe et al., 2015).
Furthermore, in 26% of the cases a primate AdV was
predicted to infect another primate which could
potentially be an indication of cross-species transmission.
For the primates, we did a literature review and inspected
Virus-Host DB. One of our false positive predictions refers to
the human infection caused by a titi monkey adenovirus
ECC-2011. We have identified that both Callicebus cupreus
and Homo sapiens were reported as host organisms infected
by this virus. According to the documented transmission
(Chen et al., 2011), a novel adenovirus (TMAdV, titi monkey
adenovirus) was identified in a colony of titi monkeys
confined in a research center who experienced fulminant
pneumonia and hepatitis leading to a devastating outcome;
23 out of 65 monkeys were infected, of whom 18 were lost.
Furthermore, the researcher who was in closest contact with
these monkeys also developed upper respiratory symptoms
and found to be seropositive, and more concerningly, also
had a clinically ill family member with no colony contact who
was as well tested seropositive. Most likely, this new world
monkey colony has acquired the pathogen from an unknown
natural reservoir, but this outbreak implies the offending
pathogen is capable of breaking the species barrier and may
even cause human-to-human transmission. Although
remained at a smaller scale on this particular occasion,
viruses that can cross the species barrier and infect a
broad primate host range may lead to larger epidemics and
therefore needs closer attention. Similarly, AdVs may also be
transmitted within domestic settings, across humans and
domestic animals (Pauly et al., 2015). Out of false
positives, 34 could be attributed to the shift of AdVs host
from human to domestic animals including dog, goat,
and pigs.

The work presented here, namely ML-AdVInfect, is the
first of its kind in terms of allowing adenoviral infection
prediction. As a step toward this predictor, we have also
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constructed a comprehensive dataset of AdV–host
interactions which may accommodate other studies on
AdVs. The proposed approach is an effective predictor to
screen the infection capacity along with anticipating any
cross-species shifts. It is also versatile as it allows
expansion by the addition of novel virus–host PPI
predictors, new host organisms, and newly identified AdV
species. We anticipate such expansions will make positive
contributions to the overall performance of the ML-AdVInfect.
Our approach that is composed of identifying hosts, host–virus
interacting protein pairs, and creating a machine-learning-based
model leveraging individual virus–host PPI prediction tools, can
be adapted for making predictions of infection by other viruses.
As a prospective work, based on our tool ML-AdVInfect together
with its further expansions and/or adaptations, a web platform
with a user interface will also be provided.
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