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Abstract

The causative agent of the pandemic identified as SARS-CoV-2 leads to a severe respira-

tory illness similar to SARS and MERS with fever, cough, and shortness of breath symptoms

and severe cases that can often be fatal. In our study, we report our findings based on

molecular docking analysis which could be the new effective way for controlling the SARS-

CoV-2 virus and additionally, another manipulative possibilities involving the mimicking of

immune system as occurred during the bacterial cell recognition system. For this purpose,

we performed molecular docking using computational biology techniques on several SARS-

CoV-2 proteins that are responsible for its pathogenicity against N-acetyl-D-glucosamine. A

similar molecular dynamics analysis has been carried out on both SARS-CoV-2 and anti-

Staphylococcus aureus neutralizing antibodies to establish the potential of N-acetyl-D-glu-

cosamine which likely induces the immune response against the virus. The results of molec-

ular dynamic analysis have confirmed that SARS-CoV-2 spike receptor-binding domain

(PDB: 6M0J), RNA-binding domain of nucleocapsid phosphoprotein (PDB: 6WKP), refusion

SARS-CoV-2 S ectodomain trimer (PDB: 6X79), and main protease 3clpro at room temper-

ature (PDB: 7JVZ) could bind with N-acetyl-D-glucosamine that these proteins play an

important role in SARS-CoV-2’s infection and evade the immune system. Moreover, our

molecular docking analysis has supported a strong protein-ligand interaction of N-acetyl-D-

glucosamine with these selected proteins. Furthermore, computational analysis against the

D614G mutant of the virus has shown that N-acetyl-D-glucosamine affinity and its binding

potential were not affected by the mutations occurring in the virus’ receptor binding domain.

The analysis on the affinity of N-acetyl-D-glucosamine towards human antibodies has

shown that it could potentially bind to both SARS-CoV-2 proteins and antibodies based on

our predictive modelling work. Our results confirmed that N-acetyl-D-glucosamine holds the

potential to inhibit several SARS-CoV-2 proteins as well as induce an immune response

against the virus in the host.
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Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the pan-

demic cases with significant rises in number of patients in the world. The main theory sup-

ported by scientific evidence was the outbreak started from a local seafood market in Huanan

showed that human-to-human transmission of the virus was not limited [1]. Globally, pan-

demic has already caused more than 160 million confirmed cases, in nearly 210 other countries

(including around 5 million cases in Turkey, 4.9 million cases in Russia and 371.000 cases in

the Republic of Belarus), which has become a unique public health event attracting public

attention [2].

SARS-CoV-2 is a positive-chain RNA virus that belongs to the beta group of coronaviruses.

The SARS-CoV-2 genome consists of approximately 29.700 nucleotides and has 79.5%

sequence identity with SARS-CoV. It has a long polyprotein ORF1ab at the 5’ end, which

encodes 15 or 16 non-structural proteins. The 3’ end of the genome encodes 4 major structural

proteins, including the spike protein (S), the nucleocapsid protein (N), the membrane protein

(M), and the envelope protein (E) [3,4]. SARS-CoV-2 binds to the receptor of angiotensin-

converting enzyme 2 (ACE2) on the host cell for virus penetration and subsequent pathogene-

sis, leading to severe respiratory disease with symptoms of fever, cough, shortness of breath

and severe cases that could be fatal [5,6].

Coronaviruses have error-prone RNA-dependent RNA polymerases, mutations, and

recombination events occurring frequently that raise the concern regarding its rapidly

strengthening and its increased capacity to cause disease [7]. Many mutations detected on the

virus genome suggest the formation of the strains with high pathogenicity and contagiousness,

which makes the control of the pathogen quite difficult [8]. In our previous study, we have

investigated unvarying regions with less mutations than the other parts of SARS-CoV-2

genome obtained from 134 different genome sequences of the GISAID database from distinct

parts of the world. The amino acid sequence of the conserved region (ORF1ab region) was

obtained, then subjected to homology modeling and introduced N-acetyl-D-glucosamine

(D-GlcNAc) as a potential inhibitor for the selected proteins; spike receptor-binding domain

bound with ACE2 (PDB 6M0J) and RNA-binding domain of nucleocapsid phosphoprotein

(PDB 6WKP) from SARS-CoV-2 [9]. Previous studies have also indicated that the effectiveness

of D-GlcNAc against influenza and as a starting material of oseltamivir, a purposed drug for

SARS-Cov-2 treatment, D-GlcNAc has been transformed into azido group followed by

implantation of a 3-pentoxy group of the desired chemical structure [10,11]. While, oseltami-

vir has very complex structure which causes side effects involving nausea, vomiting, headaches,

kidney, and psychiatric events [12]. In another study, Song and colleagues reported that the

O-GlcNAcylation of mitochondrial antiviral-signaling protein (MAVS) which is a key media-

tor of interferon signaling that plays role in regulation to activate the host innate immunity

against RNA viruses [13]. Accordingly, a previous research demonstrated that, azithromycin

can be combined with glucosamine early in the course of RNA virus infections, which could

aid the control of enhanced type 1 interferon induction [14]. Currently, there are some specific

antiviral vaccines or therapies to treat SARS-CoV-2, but their long-lasting effects remain

unclear. We should also consider drug repurposing due to its beneficial properties for search-

ing new advantages or purposes of the existing drugs that could reduce the cost and time of

drug development and lower the risk of unexpected side effects of the drug [15,16].

In this present study, we focused on the interaction of four different proteins playing major

role in SARS-CoV-2 pathogenesis with D-GlcNAc by using molecular docking and further val-

idating the results with molecular dynamics [9].
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Materials and methods

Retrieving the protein structures

We retrieved the crystal structure of SARS-CoV-2 spike receptor-binding domain (PDB:

6M0J), crystal structure of RNA-binding domain of nucleocapsid phosphoprotein from

SARS-CoV-2 monoclinic crystal form (PDB: 6WKP), electron microscopy structure of refu-

sion SARS-CoV-2 S ectodomain trimer covalently stabilized in the closed conformation (PDB:

6X79), and X-ray diffraction structure of SARS-CoV-2 main protease 3clpro (Mpro) at room

temperature (damage-free XFEL monoclinic, PDB: 7JVZ) from RCSB website. The structure

of the ligand D-GlcNAc was retrieved from PubChem (CID: 439174) [17–21]. The general

workflow applied to each protein analyzed is shown in Fig 1.

Preparation of structure files for molecular docking analysis

As for structure preparations, all of the four protein PDB files had their water and heteroatoms

(except for ions) removed using UCSF Chimera, then they were loaded into AutoDock 4.2

where only polar hydrogen atoms and Kollman charges were added, the structures were then

exported as PDBQT files. As for the ligand, it was prepared using a similar procedure with fur-

ther geometrical optimization using the MMFF94 forcefield [22–24].

Fig 1. General workflow applied for all the proteins analyzed in the study.

https://doi.org/10.1371/journal.pone.0252571.g001
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Molecular docking analysis

Docking experiments were performed using AutoDock Vina on a Linux cluster [25]. Docking

of 6M0J and 6WKP were performed with exhaustiveness of 64 and 24 modes, the grid

box calculated for each were 25 x 50 x 20 Å from their center (-12.972, 19.833, 0.667) and 14 x

16 x 12 Å from their center (4.36, -5.444, 22.056) along their X, Y, and Z axes, respectively.

Blind docking experiments were performed for 6X79 and 7JVZ with exhaustiveness of 128 and

32 modes, the grid box calculated for each were 122.456 x 130.663 x 149.16 Å and 40.222 x

63.997 x 61.273 Å from the center of the protein along their X, Y, and Z axes, respectively. The

best docking pose with the highest affinity (lowest kcal/ mol) was selected.

Preparation of structure files for molecular dynamics analysis

The best docking pose for each structure was produced using UCSF Chimera’s ViewDock

plugin and later the protein and ligand (D-GlcNAc) were saved in separate files. The ligands

poses were submitted to LigParGen for the generation of topology and parameter files using

OPLS-AA forcefield [26–28]. The protein structure files for each protein were generated using

OPLS-AA/M topology for proteins in VMD using the psfgen builder plugin [27,29]. The pro-

tein structure file (PSF) and the protein data bank file (PDB) for each protein was merged with

its corresponding ligand PSF and PDB files (from LigParGen) into a single protein-ligand

complex PSF and PDB files. Each protein-ligand complex was solvated with water in a rectan-

gular box, the box dimensions were determined such that every edge was 5 Å away from the

complex. The box was further neutralized with 0.15 mol/ L NaCl such that a distance of 5 Å
was maintained between the ions and the solute, and between the ions themselves.

Molecular dynamics analysis

Molecular dynamics simulations were performed using the University of Illinois Nanoscale

Molecular Dynamics (NAMD) software [30]. Each simulation was run using the solvated and

ionized protein-ligand complex with OPLS-AA/M protein parameter files and their respective

D-GlcNAc parameter files from the LigParGen server, as for the water and ions, the topology

file from CHARMM-GUI was utilized [31]. All the protein-ligand complexes were minimized

(energy minimization) with the steepest descent algorithm under NVT ensemble at 310 K for

50.000 steps except 6M0J which was minimized with NVT ensemble at 310 K for 100.000

steps, the graphs of backbone Root-mean-square deviation (RMSD) against the frames were

plotted to check if the systems were successfully minimized. After confirming the minimiza-

tion, each protein-ligand complex was simulated for 1.000.000 steps (�1 ns), each time step

was set to 1 fs and the outputs were written to the trajectory every 50 steps, the simulations

were run under Periodic Boundary Conditions (PBC) with space partitioning cutoff set to 10,

initial and bath temperature set to 310 K with Langevin dynamics at the same temperature. All

the water molecules and the protein-ligand complex were wrapped around the PBC. The

graph of backbone RMSD against the frames were plotted for each simulation to analyze the

protein-ligand complexes’ stability.

D-GlcNAc-antibody affinity analysis

Two neutralizing antibodies, one specific to the SARS-CoV-2 spike protein from PDB: 7JV2

and another anti-Staphylococcus aureus from PDB: 6P9H were extracted from their structures

via UCSF Chimera, the structures were prepared for docking with the same configurations in

the previous step, and blind docking was performed via AutoDock Vina. The top pose for each

antibody-D-GlcNAc was simulated via NAMD with the same procedures and configurations
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as the previous molecular dynamic simulation. The backbone RMSD of the antibodies and

D-GlcNAc was plotted for further analysis.

Results

Molecular docking

All the results are promising as D-GlcNAc has shown a decent affinity to each of the protein

structure. Table 1 shows the results of the best-docked pose in the molecular docking experi-

ment using AutoDock Vina. The docking poses corresponding to the values in Table 1 are rep-

resented with hydrophobicity surface representation for 6M0J (A), 6WKP (B), and 7JVZ (D)

and with ribbon representation for 6X79 (C) using UCSF Chimera in Fig 2 with red circles

Table 1. Docking pose of D-GlcNAc with the highest affinity (lowest kcal/ mol) to each of the tested proteins

from AutoDock Vina.

Docked structure Affinity (kcal/ mol)

6M0J -5.1

6WKP -6.6

6X79 -6.6

7JVZ -5.6

https://doi.org/10.1371/journal.pone.0252571.t001

Fig 2. Best docking poses for tested proteins. Hydrophobicity surface representation of the best docking pose with D-GlcNAc for a) 6M0J, b) 6WKP, d)

7JVZ and ribbon representation to the best docking pose with D-GlcNAc for c) 6X79. Red circles showing where D-GlcNAc is positioned within the protein.

Figures were produced with UCSF Chimera.

https://doi.org/10.1371/journal.pone.0252571.g002
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showing D-GlcNAc position. The log files showing all the poses generated by AutoDock Vina

are included in S1 Data.

The docked structures loaded into PyMol had 5 Å away from the ligand. All the potential

polar interactions within this range were highlighted with their measured distances (Figs 3

and 4).

Molecular dynamics and all analyses

The RMSD for the backbone (C, Cα, and N) of each protein-ligand complex against their min-

imization plot was analyzed to check if the minimization steps have successfully minimized

the protein-ligand complex, as shown in Fig 5, all the slopes are plateauing near the end frames

hence 100.000 steps for 6M0J and 50.000 steps for 6WKP, 6X79 and 7JVZ have produced a

minimized structure for the molecular dynamic simulation. Similarly, the backbone RMSD of

the protein in protein-ligand complex against their corresponding frames were extracted and

plotted, the RMSD of the ligand within the same complex was also plotted in the same graph

(Fig 6). The data used for plotting the graphs of both the minimization and production runs

are included in S2 Data.

Both the docking analysis of S2H13 neutralizing antibody Fab fragment and that of anti-

Staphylococcus aureus antibody (STAU-281 Fab) with D-GlcNAc has shown an affinity of -6.5

kcal/ mol and -6.2 kcal/ mol which satisfies our hypothesis that D-GlcNAc has a significant

affinity towards human antibodies (Fig 7) regardless its specificity hence, it has the potential to

induce the immune response by bridging a bond between SARS-CoV-2 and antibodies. The

Fig 3. Best docking poses for tested proteins. Cartoon representation of the best docking pose of proteins (colored by secondary structures, clipped for

visibility of the ligand) with D-GlcNAc for a) 6M0J, b) 6WKP, d) 7JVZ, and ribbon representation to the best docking pose with D-GlcNAc for c) 6X79.

Figures were produced with PyMol [32].

https://doi.org/10.1371/journal.pone.0252571.g003

PLOS ONE Molecular dynamics analysis of N-acetyl-D-glucosamine with SARS-CoV-2

PLOS ONE | https://doi.org/10.1371/journal.pone.0252571 May 27, 2021 6 / 15

https://doi.org/10.1371/journal.pone.0252571.g003
https://doi.org/10.1371/journal.pone.0252571


RMSD analysis of both the antibodies tested has shown that D-GlcNAc remains at very close

proximity to the antibodies (Figs 7 and 8), supporting our hypothesis further. The detailed log-

file from the AutoDock Vina and the data used for the RMSD plot are included in S3 and S4

Datas, respectively.

Discussion

The structural differences considering the active sites of both Mpro proteins cause difficulties

in modelling for molecular target. In fact, computational prediction studies carried out involve

a massive virtual screening for Mpro inhibitors of SARS-CoV-2 using Deep Docking [33]. The

recent studies focused on virtual screening for putative inhibitors of the same main protease of

SARS-CoV-2 relied on the clinically approved drugs [34–39] and the compounds according to

different databases [40–42]. Molecular docking is a helpful tool to estimate the binding affinity

Fig 4. All potential polar interactions between D-GlcNAc (green stick) with a) 6M0J, b) 6WKP, c) 6X79 and d) 7JVZ with 5 Å from D-GlcNAc as predicted by PyMol.

The interactions between the residues as shown by yellow dots (length in Å). The amino acid residues are colored randomly for contrast.

https://doi.org/10.1371/journal.pone.0252571.g004
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between protein and ligand by using scoring functions [43]. Molecular dynamics simulation as

a computational method provides insights into the interaction and atoms according to laws of

physics [44].

It is also important to mention the British, South African, and Brazilian variants of SARS--

CoV-2 have circulated in the population (as of the time of this article). These variants have

shown higher transmissibility due to the collection of few mutations in its spike protein

sequence [45–47]. The findings of Cheng and colleagues provided a higher affinity to the

human ACE2 receptor, among the mutations, are the N501Y, K417N, and E484K mutations

[46]. All these mutations have affected the receptor-binding domain of the spike protein.

D-GlcNAc however; as shown in Figs 2 and 3C interacts with the transmembrane domain of

the spike protein. These mutations are also irrelevant for the therapeutic potentials of

D-GlcNAc we had investigated. Thereby, a molecular docking with the D614G variant of the

virus (PDB: 7KDK) and the results did not include any loss of affinity (S5 Data).

We assumed that the loading of D-GlcNAc binding on proteins playing role in pathogenic-

ity and the recognition of SARS-CoV-2 entering host cell through ACE2 receptor side could

Fig 5. Analysis of minimization trajectory. 100.000 step steepest descent minimization for 6M0J and 50.000 step steepest descent minimization for 6WKP, 6X79, and

7JVZ. Backbone RMSD (Å) along the Y-axis and frames (50 fs distance between any 2 frames) along the X-axis.

https://doi.org/10.1371/journal.pone.0252571.g005
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Fig 6. Analysis of molecular dynamics trajectory. Backbone RMSD (Å) along the Y-axis and frames (50 fs distance between any 2 frames) along the X-axis for each

protein-ligand complex 1.000.000 production runs. Redline indicating protein backbone RMSD and light blue indicating ligand RMSD.

https://doi.org/10.1371/journal.pone.0252571.g006

Fig 7. Top docked poses of D-GlcNAc with (a) S2H13 neutralizing antibody Fab fragment from PDB 7JV2 and (b) STAU-281 Fab anti-

Staphylococcus aureus antibody from PDB 6P9H. All images generated by PyMol, antibody structure represented as cartoons and colored by their

secondary structure whereas D-GlcNAc is represented with sticks and colored by element (green).

https://doi.org/10.1371/journal.pone.0252571.g007
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be increased by the immunologic response. Additionally, D-GlcNAc, which is present in the

cell wall of bacteria, has been the reason for the recognition of human IgG1 mAb (F598)

through a large groove-shaped binding site cause of the entire light- and heavy-chain interface

embedded at least five GlcNAc residues receptor affinity, which makes it possible to recognize

the bacterial cells [48,49]. Therefore, it can be suggested that D-GlcNAc can shift immune

response, which is responsible for combating with the invading bacteria [49,50], to SARS--

CoV-2. In a previous study, D-GlcNAc cluster antigens (TGCA) account for the highest

immunoreactivity [51], which could be suggested for the activation of the immune system

against SARS-CoV-2. In another study on HIV-1, cause of its structures involving along with

glycan-array binding with the variation of the oligosaccharide have shown an existing affinity

that affects the neutralizing of antibodies targeting the glycan-shielded trimer on the virus

[52]. Correspondingly, this structure and its binding with molecular dynamics could affect the

neutralizing of antibodies targeting the virus, we can postulate that this process could change

in favor of recognition by antibodies when D-GlcNAc is administrated. This D-GlcNAc stimu-

lated mechanism could also increase the defense capacity of the immunologic response to

SARS-CoV-2 invasion. Furthermore, N-acetyl-D-glucosamine-coated polyamidoamine struc-

tures induced upregulation of antibody formation on the rat recombinant cells [50] that the

similar response could be expected in the human cell.

Conclusion

The SARS-CoV-2 epidemic has been a major reason threatening human health and resulted in

an important economic recession in the world. Our previous findings indicated that

D-GlcNAc is a potential compound suggesting strong interaction with proteins involving the

ORF1ab region. The data of our previous study showed a drastically unvarying sequence frag-

ment in whole paired genome sequences that can be used as a target origin for designing an

effective drug to SARS-CoV-2 [9]. Our results stressed that D-GlcNAc could be considered as

a therapeutic option after testing its different concentrations which would be repositioned

against SARS-CoV-2.

Fig 8. Analysis of molecular dynamics trajectory. Backbone RMSD (Å) along the Y-axis and frames (50 fs distance between any 2 frames) along the X-axis for each

protein-ligand complex 1.000.000 production runs. Redline indicating protein backbone RMSD and light blue indicating ligand RMSD.

https://doi.org/10.1371/journal.pone.0252571.g008
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In the present study, we have carried out molecular dynamics analysis on different proteins

of SARS-Cov-2 besides the verification of our previous findings related to binding possibilities

with D-GlcNAc and docking analysis. Our results confirmed and highlighted the strong bind-

ing of D-GlcNAc to the domain region of the selected proteins on aggressive mutant variants

(D614G). We believe that the bacterial cell recognition system could be directed to virus neu-

tralization with the help of D-GlcNAc administration, which results in attaching on both virus

and antibodies surface that could increase the epitope binding possibilities via recognition sur-

face, besides the other antibodies. We strongly recommend testing of D-GlcNAc with designed

and conducted randomized clinical trials in patients due to its high potential as a repurposed

compound.
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S5 Data. Molecular docking of D-GlcNAc with the D614G variant of the virus (PDB:

7KDK).
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