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Abstract. In this study, a new model has been developed to monitor the con-

tamination in connected three lakes. The model has been motivated by two
biological models, i.e. cell compartment model and lake pollution model. Haar

wavelet collocation method has been proposed for the numerical solutions of

the model containing a system of three linear differential equations. In addition
to the solutions of the system, convergence analysis has been briefly given for

the proposed method. The contamination in each lake has been investigated by

considering three different pollutant input cases, namely impulse imposed pol-
lutant source, exponentially decaying imposed pollutant source, and periodic

imposed pollutant source. Each case has been illustrated with a numerical ex-

ample and results are compared with the exact ones. Regarding the results in
each case it has been seen that, Haar wavelet collocation method is an efficient

algorithm to monitor the contamination of a system of lakes problem.

1. Introduction. Pollution of water resources such as rivers, lakes, etc. is one of
the major issues of environmental pollution. Here we employ with the pollution in
the artificial lakes system. In order to monitor the pollution in lakes setting up a
mathematical model and then finding the pollution level in connected three lakes
is much cheaper than experimenting this phenomena in the real world. For this
purpose we consider a system of three artificial interconnecting lakes with various
pollution input sources. We are inspired by two well-known mathematical models
in biology to figure out the model. The first one is a compartment model, important
especially in screening the drugs used by humans. Compartment models are widely
used for describing the drug propagation in the human body. A system of two
compartments is 

du1(t)
dt = k

(
u2

V2
− u1

V1

)
,

du2(t)
dt = k

(
u1

V1
− u2

V2

)
,

(1)

where k is proportionality constant, ui denotes the mass of molecule and Vi denotes
the volume of the compartment i. We refer the interested reader to recent papers
[10] and [20] for recent applications of compartment models. We are also inspired
by another mathematical model in biology, a lake pollution model [1],

dm(t)

dt
= cin(t)Fin(t)− cout(t)Fout(t), (2)
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where m is the mass of the pollutant, c is concentration of the pollutant, F denotes
the flow rate, in and out represents the direction of flow. In order to model the

Figure 1. Illustration of the interconnected Lakes 1, 2, 3, and
flow F12, F13, F21, F23, F31, F32.

considered system we assume the volume of the each lake, the flow rate and the
reaction rate remain constant. Moreover we consider each lake as well mixed. The
main idea of developing our model is supposing each lake like a compartment as
in (1). So the flow between the lakes behaves like the molecules traveling between
the compartments in the process. Within this frame, model of the contamination
problem of interconnecting three lakes with channels could be developed by mixing
the (1) and (2) as the following system.

du1(t)
dt = F21

V2
u2(t) + F31

V3
u3(t) + f(t)− F12

V1
u1(t)− F13

V1
u1(t),

du2(t)
dt = F12

V1
u1(t) + F32

V3
u3(t)− F21

V2
u2(t)− F23

V2
u2(t),

du3(t)
dt = F13

V1
u1(t) + F23

V2
u2(t)− F32

V3
u3(t)− F31

V3
u3(t)

(3)

with the initial conditions

u1(0) = λ1, u2(0) = λ2, u3(0) = λ3.

Here, u1(t), u2(t), and u3(t) are the amount of pollutant in each lake at time t, the
function f(t) denotes the rate of pollutant entering the Lake 1 per unit time t. Fij
denotes the water flow from lake i to lake j and Vi denotes the volume of lake i. In
order to ensure the constant volume in each lake we assume

F12 = F21 + F31 − F13,

F23 = F12 + F32 − F21. (4)

The visualization of the lake contamination model is presented in Figure 1 for the
sake of convenience of the reader.

In the literature (See [11]), it is seen that Haar wavelet collocation method has
efficient results for the approximate solutions for the system of linear ordinary dif-
ferential equations. Therefore here we focused on Haar wavelet collocation method
to obtain the solution of the system (3). Haar wavelet techniques have been attract-
ing several scientists in the field of numerical computation. In 2005, Lepik offers
solutions for both ordinary differential equations and partial differential equations
by using Haar wavelet techniques [11]. A Haar wavelets based efficient method was
proposed by Çelik in [4] for the solutions of nonlinear partial differential equations
and applied to generalized Burgers-Huxley equation. In [8], a Haar wavelets based
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approach was performed for solution of a prototypical reaction-diffusion equation,
Fisher’s equation. The study presented in [16], solves fractional-order differential
equations of the linear multi-point boundary value problems by employing a nu-
merical algorithm which is based on Haar wavelet operational matrices of integra-
tion. Rehman and Khan have obtained the solutions of boundary value problems
for linear fractional partial differential equations by using Haar wavelets in [17].
Within the frame of gene propagation and biological modeling the Burger’s equa-
tion, Cahn-Allen equation, Fisher’s equation, Fitz-Hugh-Nagumo equation, and
the Nowell-Whitehead equation were solved by using Haar wavelet or Haar trans-
form method in [6]. Approximate solution of convection-diffusion equations by
using Haar wavelet method has obtained by Singh and Kumar in [19]. In [14], the
fractional-order integration is derived by Haar wavelet operational matrix and it
is used in order to solve composite fractional oscillation equations and also some
of the fractional-order differential equations such as the Ricatti and Bagley-Torvik
equations. A Haar wavelets based numerical approach was presented in [12] to solve
the nonlinear integral equations. It is seen that, the proposed method can be used
for solving ordinary differential equations with boundary values and it is applicable
for Volterra integral and integro-differential equations. In recent paper [15], Haar
wavelet method has been applied to one dimensional coupled KdV equation to find
their numerical solutions. In [13], the author performs solutions for nonlinear evolu-
tion equations by using an efficient numerical method based on the Haar wavelets.
The proposed method was applied to the Burger’s and sine-Gordon equations. By
applying Haar wavelets, the authors in [21] presented approximate solutions for
Bratu-type equations which arise in fuel oxidization of the heat transfer applica-
tions and combustion theory. A Haar wavelet based method implementation was
presented in [7] in order to describe the reckoning of soil temperature at different
depths. Reduction of the the fractional Abel and Volterra integral equations into an
algebraic equations system was performed in paper of [18] by using a Haar wavelet
approximating method. In [2], an approximate solution of Fredholm and Volterra
integro-differential equations of second kind was presented by using a new Haar
wavelets approximation based method.

Some different lake pollution models have been solved by various numerical ap-
proaches. For instance, a collocation method based on Bessel polynomials is applied
in [22], and differential transform method is applied in [3]. Motivated by previous
studies, our aim is to apply Haar wavelet collocation method in order to obtain an
approximate solution for the model (3). For this purpose, the system (3) by Haar
functions is expressed in the form

uj(t) =

m−1∑
i=0

ai,jhi(t), j = 1, 2, 3 (5)

where ai,j , i = 0, 1, ...,m−1 are the unknown Haar coefficients, hi(t), i = 0, 1, ...,m−
1 are the Haar functions that are defined in the next section.

2. Haar wavelets and function approximation. In this section, basic notations
and definitions on Haar wavelets are summarized. Then approximation by Haar
function is given. Haar wavelet family for t ∈ [0, 1) is defined by

hi(t) =

 1 , for t ∈
[
α, β

)
−1 , for t ∈

[
β, γ

)
0 , otherwise

(6)
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where

α =
k

m
, β =

k + 0.5

m
, γ =

k + 1

m
.

The level of the wavelet is indicated by the m = 2j where j = 0, 1, ..., J for the
maximal level of resolution J . Also note that k = 1, 2, ...,m − 1 is the translation
parameter and i is calculated by the formula i = m+ k + 1. The minimal value of
i is i = 2 for m = 1 and k = 0, and the maximal value is i = 2M = 2J+1. h1 ≡ 1 in
[0, 1) is assumed to be the scaling function for i = 1. The integral of equation (6)
is as follows:

pi,1(t) =

∫ t

0

hi(x)dx (7)

and by integrating (7), we get

pi,1(t) =

 t− α , for t ∈
[
α, β)

γ − t , for t ∈
[
β, γ)

0 , otherwise.
(8)

Let the collocation points be tl = (l − 0.5)/2M , for l = 1, 2, ..., 2M and the dis-
cretized Haar function hi(t). By this way we obtain the 2M × 2M dimensional
matrix of coefficients H(i, l) = (hi(tl)). The 2M × 2M dimensional operational
matrix P for integration is defined by

(PH)il =

∫ tl

0

hi(t)dt. (9)

The entries of matrices P and H are evaluated in [5] by using (8) and (9).

H2 =

(
1 1
1 −1

)
, H4 =


1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 ,

P2 =
1

4

(
2 −1
1 0

)
, P4 =

1

16


8 −4 −2 −2
4 0 −2 2
1 1 0 0
1 −1 0 0

 .

In [5] the authors stated that the following matrix equation holds for calculating
the matrix P of order m = 2j , where j is positive integer.

P(m) =
1

2m

(
2mP(m/2) −H(m/2)

H−1
(m/2) O

)
,

where O is a null matrix of order m
2 ×

m
2 . Here Hm is

H(m) =


h0(t)
h1(t)

...
hm−1(t)

 ,
where Haar functions hi(t) for i = 0, 1, ...,m − 1 are in row vector form. After
calculating for P(m) and H(m), both matrices will be applicable for solving any
differential equations.
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The convergence analysis of Haar wavelet series is investigated in [9]. The fol-
lowing theorem is stated and proved in order to show the convergence rate analysis
of Haar wavelets.

Theorem 2.1. Assume that u(t) ∈ L2(R) with the bounded first derivative on (0, 1),
then the following inequality holds.

‖eJ(x)‖ ≤
√
L

7
K2(−3)2J−1

, (10)

where K, L are some real constants and J is a positive number denoting maximal
level of resolution of the wavelet.

From (10), one can see that the error bound is inversely proportional J . There-
fore the convergence of the Haar wavelet approximation is guaranteed when J is
increased. Next, we present the function approximation by using Haar function.
Any function u(t) ∈ L2[0, 1) can be decomposed as

u(t) =

∞∑
i=0

cihi(t), (11)

where the coefficients ci are determined by

ci = 2j
∫ 1

0

u(t)hi(t)dt, (12)

where i = 2j + k, 0 ≤ k < 2j and j ≥ 0. Particularly c0 =
∫ 1

0
u(t)dt. The series

expansion of u(t) has an infinite terms. As long as u(t) is a piecewise constant
function, or approximated as a piecewise constant function for each subinterval,
u(t) will be concluded at finite terms as,

u(t) =

m−1∑
i=0

cihi(t) = cT(m)h(m)(t), (13)

where cT(m), h(m)(t), and p(m)(t) are defined as

cT(m) = [c0, c1, ..., cm−1],

h(m)(t) = [h0(t), h1(t), ..., hm−1(t)]T,

and

p(m)(t) = [p0,1(t), p1,1(t), ..., pm−1,1(t)]T,

where T denotes transpose and m = 2j .

3. Numerical solution. In this section numerical solution of the system (3) is
obtained. First, modifying (6) and (7) according to (3), we have

u′j(t) =

m−1∑
i=0

ai,jhi(t) = aT
m,jh(m)(t), j = 1, 2, 3 (14)

uj(t) =

m−1∑
i=0

ai,jpi,1(t) = aT
m,jp(m)(t) + uj(0), j = 1, 2, 3. (15)
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Then, imposing (14) and (15) into (3), we have that

aT
(m,1)h(m)(t) = aT

(m,2)p(m)(t) + u2(0) + aT
(m,3)p(m)(t)

+u3(0) + f(t)− aT
(m,1)p(m)(t)− u1(0),

aT
(m,2)h(m)(t) = aT

(m,1)p(m)(t) + u1(0) + aT
(m,3)p(m)(t)

−u3(0)− aT
(m,2)p(m)(t)− u2(0),

aT
(m,3)h(m)(t) = aT

(m,1)p(m)(t) + u1(0) + aT
(m,2)p(m)(t)

+u2(0)− aT
(m,3)p(m)(t)− u3(0).

By using the collocation points t = tl and the initial conditions uj(0) = 0 for
j = 1, 2, 3, we obtain

aT
(m,1)(H(m) + P(m)H(m))− aT

(m,2)P(m)H(m) − aT
(m,2)P(m)H(m) = f(tl),

−aT
(m,1)P(m)H(m) + aT

(m,2)(H(m) + P(m)H(m))− aT
(m,3)P(m)H(m) = 0,

−aT
(m,1)P(m)H(m) − aT

(m,2)P(m)H(m) + aT
(m,3)(H(m) + P(m)H(m)) = 0.

Denoting the above system in the matrix-vector form, we have

Ac = B, (16)

where

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 , B =

 B1

B2

B3

 , c =

 a(m,1)

a(m,2)

a(m,3)

 .

Here the dimensions of the matrices Aij, (i = 1, 2, 3; j = 1, 2, 3) are m × m, the
dimensions of the matrices B1, B2 and B3 are m× 1. Therefore, the dimensions of
the matrices A, B and c are 3m× 3m, 3m× 1 and 3m× 1, respectively. Besides,

A11 = (H(m) + P(m)H(m))
T, A12 = −(P(m)H(m))

T, A13 = −(P(m)H(m))
T,

A21 = −(P(m)H(m))
T, A22 = (H(m) + P(m)H(m))

T, A23 = −(P(m)H(m))
T,

A31 = −(P(m)H(m))
T, A32 = −(P(m)H(m))

T, A33 = (H(m) + P(m)H(m))
T,

B1 = f(tl), B2 = 0, B3 = 0.

In the system (16), after using the above matrices, we can solve the obtained alge-
braic system. So we can calculate Haar coefficients ai,j in (15). As a result, we can
find approximate solutions of uj(t), j = 1, 2, 3 in the system (3).

4. Numerical simulation and discussion. This section consists of three parts in
order to simulate the proposed numerical method with three different types of pol-
lution sources imposed to the Lake 1. The three cases of pollutant sources regarding
to their frequency of release are classified as impulse released source, exponentially
decaying released source, and periodic released source. For each case a significant
numerical example is presented to show the accuracy and efficiency of the pro-
posed method. All approximate solutions are performed with an algorithm written
in a software, Mathematica 11.3. Also the exact solutions are obtained by using
DSolve tool in Mathematica 11.3 for comparison. Without loss of generality, in the
all cases we choose the parameters as V1 = 2900km3, V2 = 850km3, V3 = 1180km3,
F12 = 24km3/year, F13 = 22km3/year, F21 = 14km3/year, F23 = 18km3/year,
F31 = 32km3/year, F32 = 8km3/year. Besides, the initial conditions are given by
u1(0) = 0, u2(0) = 0, and u3(0) = 0.
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4.1. Impulse imposed pollutant model. The impulse released pollutant model
describes the behavior of the pollutants that have been imposed to the Lake 1 only
once. In this case functions of pollutant have a spike, then the function is zero
everywhere else. The spike occurs the time at when the waste was dumped. This
case can be interpreted by the function f(t) = ω where ω is a constant. This case
can be sampled as dumping one barrel of chemicals into a lake at time zero. In the
following example this process is illustrated by the proposed numerical method.

Example 4.1. We assume ω = 100 then f(t) = 100. Hence, system (3) turns into
du1

dt = 14
850u2(t) + 32

1180u3(t) + 100− 24
2900u1(t)− 22

2900u1(t),
du2

dt = 24
2900u1(t) + 8

1180u3(t)− 14
850u2(t)− 18

850u2(t),
du3

dt = 22
2900u1(t) + 18

850u2(t)− 32
1180u3(t)− 8

1180u3(t).

(17)

Approximate numerical results for (17) are given in the Table 1 and 2. The illus-
tration of both the exact and the approximate results are presented in Figure 2 and
3. Regarding the graphical representation, we observe the numerical solutions pro-
posed by Haar wavelets, and the exact solutions are in good agreement. Moreover
regarding to the results in each table, it is seen that the absolute error of each result
decrease significantly while the interpolation level m increases.

Table 1. Numerical results for the case of the impulse input im-
posed pollutant source for m = 8.

App. sol. Abs. error App. sol. Abs. error App. sol. Abs. error

t of u1 in u1 of u2 in u2 of u3 in u3

0 0 0 0 0 0 0

0.2 22.9684 3.00002 0.0164893 0.0000103978 0.0151401 5.40755 × 10−6

0.4 41.8738 2.00003 0.0657719 0.0000194067 0.0604641 0.0000101545
0.6 57.7167 1.99995 0.147536 0.0000303268 0.135809 0.0000159672

0.8 76.4975 2.99994 0.26148 0.0000389783 0.241017 0.0000206502

1 99.2168 0.0000745642 0.407297 0.0000486384 0.375927 0.0000259258

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

HWCM

Exact

(a)

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

HWCM

Exact

(b)

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

HWCM

Exact

(c)

Figure 2. Graphical representation of approximate and exact so-
lutions of Example 4.1 for m = 8 of (a) the function u1(t) (pollution
in Lake 1), (b) the function u2(t) (pollution in Lake 2), and (c) the
function u3(t) (pollution in Lake 3).
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Table 2. Numerical results for the case of the impulse input im-
posed pollutant source for m = 256.

App. sol. Abs. error App. sol. Abs. error App. sol. Abs. error

t of u1 in u1 of u2 in u2 of u3 in u3

0 0 0 0 0 0 0

0.2 20.0309 0.0625 0.0164996 9.84289 × 10−9 0.0151455 5.11793 × 10−9

0.4 39.78 0.09375 0.0657913 1.95302 × 10−8 0.0604743 1.02186 × 10−8

0.6 59.8104 0.09375 0.147566 2.90455 × 10−8 0.135825 1.52923 × 10−8

0.8 79.4349 0.0624999 0.261519 3.83733 × 10−8 0.241038 2.03287 × 10−8

1 99.2167 7.28163 × 10−8 0.407345 4.74981 × 10−8 0.375953 2.53183 × 10−8

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

HWCM

Exact

(a)

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

HWCM

Exact

(b)

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

HWCM

Exact

(c)

Figure 3. Graphical representation of approximate and exact so-
lutions of Example 4.1 for m = 256 of (a) the function u1(t) (pol-
lution in Lake 1), (b) the function u2(t) (pollution in Lake 2), and
(c) the function u3(t) (pollution in Lake 3).

4.2. Exponentially decaying imposed pollutant model. This case is assumed
when heavy dumping waste is under consideration. A factory situated near the
Lake 1 stores its wastage and disposes it after a few days period. In this case
function of the pollutant input would be in the form f(t) = δe−ωt. The following
example illustrates the lake pollution model with exponentially decaying release of
the pollutant source.

Example 4.2. In this example, we assume δ = 200 and ω = 10 then we have
f(t) = 200e−10t. So (3) becomes

du1

dt = 14
850u2(t) + 32

1180u3(t) + 200e−10t − 24
2900u1(t)− 22

2900u1(t),
du2

dt = 24
2900u1(t) + 8

1180u3(t)− 14
850u2(t)− 18

850u2(t),
du3

dt = 22
2900u1(t) + 18

850u2(t)− 32
1180u3(t)− 8

1180u3(t).

(18)

Approximate numerical results for (18) are given in the Table 3 and 4. The illustra-
tion of both the exact and the approximate results are presented in Figure 4 and 5.
Regarding Figure 4 and 5, we observe the approximate solutions proposed by Haar
wavelets, and the exact solutions are in good agreement except for the function
u1(t). From, Figure 4(a) and 5(a) it is seen that, we need high interpolation level
to approximate the exact solution of the function u1(t). In addition to the graphical
representation, it is seen from each table, the absolute error of each result decrease
dramatically while the interpolation level m increases.
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Table 3. Numerical results for the case of the pollutant source is
exponential decaying for m = 8.

App. sol. Abs. error App. sol. Abs. error App. sol. Abs. error

t of u1 in u1 of u2 in u2 of u3 in u3

0 0 0 0 0 0 0

0.2 21.1544 3.89703 0.0158795 0.00284471 0.0145808 0.00261002

0.4 21.6476 2.10907 0.0445744 0.00499602 0.0409975 0.00459647
0.6 15.2365 4.55673 0.0747691 0.00702142 0.0688998 0.00647562

0.8 13.554 6.22018 0.104924 0.00900802 0.0968779 0.00832662
1 18.4945 1.2239 0.134828 0.0109746 0.124735 0.0101665

0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

HWCM

Exact

(a)

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

HWCM

Exact

(b)

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

HWCM

Exact

(c)

Figure 4. Graphical representation of approximate and exact so-
lutions of Example 4.2 for m = 8 of (a) the function u1(t) (pollution
in Lake 1), (b) the function u2(t) (pollution in Lake 2), and (c) the
function u3(t) (pollution in Lake 3).

Table 4. Numerical results for the case of the pollutant source is
exponential decaying for m = 256.

App. sol. Abs. error App. sol. Abs. error App. sol. Abs. error
t of u1 in u1 of u2 in u2 of u3 in u3

0 0 0 0 0 0 0

0.2 17.3813 0.123881 0.0187212 3.00622 × 10−6 0.0171881 2.75854 × 10−6

0.4 19.3498 0.188703 0.0495652 5.197 × 10−6 0.0455892 4.78187 × 10−6

0.6 19.9795 0.18621 0.0817833 7.25942 × 10−6 0.0753687 6.69578 × 10−6

0.8 19.6479 0.126229 0.113923 9.28787 × 10−6 0.105196 8.58611 × 10−6

1 19.7171 0.00124969 0.145791 0.0000112953 0.134891 0.0000104645

4.3. Periodic imposed pollutant model. Most of the industrial waste sources
work during daytime so they produce more pollutant during a daytime more than a
nighttime. Therefore in such situations pollutant could be represented by a periodic
function f(t) = p

(
1 + ω sin

(
2π
T t
))

is considered as a pollutant function where p is
the average input concentration of pollutant, ω s the amplitude of fluctuations and
T is the period of fluctuations. Note that the peak value of pollutant function is
p(1 +ω). Next example illustrates the lake pollution model with periodic pollutant
source.
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(b)
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0.06

0.08

0.10
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0.14
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(c)

Figure 5. Graphical representation of approximate and exact so-
lutions of Example 4.2 for m = 256 of (a) the function u1(t) (pol-
lution in Lake 1), (b) the function u2(t) (pollution in Lake 2), and
(c) the function u3(t) (pollution in Lake 3).

Example 4.3. If p = 1, ω = 1 and T = 2π then the pollutant function would be
f(t) = 1 + sin(t). Thus, system (3) becomes

du1

dt = 14
850u2(t) + 32

1180u3(t) + 1 + sin(t)− 24
2900u1(t)− 22

2900u1(t),
du2

dt = 24
2900u1(t) + 8

1180u3(t)− 14
850u2(t)− 18

850u2(t),
du3

dt = 22
2900u1(t) + 18

850u2(t)− 32
1180u3(t)− 8

1180u3(t).

(19)

Approximate results for (19) are given in the Table 5 and 6. The illustration of
both the exact and the approximate results are presented as Figure 6 and 7. We
see from the graphical representation, the numerical solutions proposed by Haar
wavelets, and the exact solutions are in good agreement. Regarding to the results
in each table, it is seen that the absolute errors decrease significantly while the
interpolation level m increases.

Table 5. Numerical results for the case of the periodic imposed
pollutant source for m = 8.

App. sol. Abs. error App. sol. Abs. error App. sol. Abs. error

t of u1 in u1 of u2 in u2 of u3 in u3

0 0 0 0 0 0 0

0.2 0.249602 0.0300057 0.000178068 2.08508 × 10−6 0.000163497 1.96112 × 10−6

0.4 0.497558 0.0200493 0.000748935 3.8634 × 10−6 0.000688452 3.6487 × 10−6

0.6 0.751366 0.0199072 0.0017721 5.90008 × 10−6 0.001631 5.59805 × 10−6

0.8 1.06715 0.0298126 0.00330008 7.43142 × 10−6 0.00304105 7.08325 × 10−6

1 1.44966 0.000281844 0.00537877 8.97633 × 10−6 0.00496263 8.59806 × 10−6

Table 6. Numerical results for the case of the periodic imposed
pollutant source for m = 256.

App. sol. Abs. error App. sol. Abs. error App. sol. Abs. error
t of u1 in u1 of u2 in u2 of u3 in u3

0 0 0 0 0 0 0
0.2 0.220221 0.000625009 0.000175985 1.97563 × 10−9 0.000161538 1.8579 × 10−9

0.4 0.476572 0.000937457 0.000745076 3.87845 × 10−9 0.000684807 3.66306 × 10−9

0.6 0.77221 0.0009376 0.00176621 5.66633 × 10−9 0.00162541 5.37572 × 10−9

0.8 1.09634 0.000624822 0.00329265 7.30236 × 10−9 0.00303397 6.96049 × 10−9

1 1.44937 2.75122 × 10−7 0.0053698 8.75757 × 10−9 0.00495404 8.38886 × 10−9
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Figure 6. Graphical representation of approximate and exact so-
lutions of Example 4.3 for m = 8 of (a) the function u1(t) (pollution
in Lake 1), (b) the function u2(t) (pollution in Lake 2), and (c) the
function u3(t) (pollution in Lake 3).
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Figure 7. Graphical representation of approximate and exact so-
lutions of Example 4.3 for m = 256 of (a) the function u1(t) (pol-
lution in Lake 1), (b) the function u2(t) (pollution in Lake 2), and
(c) the function u3(t) (pollution in Lake 3).

5. Conclusion. In this paper, the model of interconnected artificial three lakes
with single directional flow between them is developed to monitor the contamination
in the lakes. During the model developing process two well-known mathematical
models in biology, the cell compartment model and the lake pollution model are
used. Artificial lakes are assumed like cell compartments and the flow between
them is considered as traveling molecules between the cells. The model (3) has been
simulated by three different types of pollutant sources, namely impulse imposed
pollutant source, exponentially decaying imposed pollutant source, and periodic
imposed pollutant source. The system of differential equations implementing this
model is solved with the Haar wavelet collocation method. Approximate results
are compared with the exact ones. Detailed comparison between the exact results
and the results obtained by Haar wavelet collocation method shows the accuracy
of the proposed scheme and proves the applicability of the proposed method to the
environmental pollution problem. As a result it can be said that, the Haar wavelet
collocation method can be successfully used to solve pollution of the lake system
model.

For future studies, this study could be extended to the real world problems by
focusing on the lake systems of Great Mazurian Lakes in Poland, or Lake Tempe,
Lake Buaya, and Lake Sidenreng in North Indonesia. Moreover, the model devel-
oped in this study could be extended with fractional order derivatives by including
the memory effect to (3) for more realistic results. Also, some researchers may
compare the results of this study with other computational methods.
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