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Abstract
The theory of time scales calculus have long been a subject to many researchers from different disciplines. Beside the
unification and the extension aspects of the theory, it emerge as a powerful tool for mimetic discretization process. In this
study, we present a framework to find normal vector fields of discrete point sets in R3 by using symmetric differential on
time scales. A surface parameterized by the tensor product of two time scales can be analogously expressed as the vertex
set of non-regular rectangular grids. If the time scales are dense, then the discrete grid structure vanishes. If the time scales
are isolated, then the further geometric analysis can be executed by using symmetric dynamic differential. Moreover,
we present an algorithmic procedure to determine the symmetric dynamic differential structure on the neighborhood of
points in surfaces. Our results indicate that the method we present has good approximation to unit normal vector fields of
parameterized surfaces rather than the Delaunay triangulation for some points.
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1 Introduction

The mimetic discretization of differential operators is a process that maintains the fundamental properties
of continuous differential operators. The main goal in this process is to ensure that the protected properties are
maximized and, if not, to give up most of the properties. Geometric partial differential equations are very impor-
tant to find discrete analogues of differential geometric operators such as mean curvature, Gaussian curvature
and Laplace Beltrami, which are defined by surface normal. The de facto methods, such as finite differences and
finite elements, are directly related to the discretization of the equation system. A disadvantage of this method is
that the selected discretization process may have little connection to the underlying physical problem. However,
mimetic methods start with discrete analogue of the continuous theory underlying the problem. Once discrete
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350 Ömer Akgüller, Sibel Paşalı Atmaca Applied Mathematics and Nonlinear Sciences 5(2020) 349–360

operators conform to extended physical laws, these mimetic operators can be applied to partial differential equa-
tions or integral equation systems. Consequently, it is possible to obtain the discretization of the boundary value
problem, which is in accordance with the physical laws on the considered set of definitions. Mimetic methods
are a fundamental tool for simulations that do not change their physical properties, whose solution is suddenly
variable, irregular grid structures, or long-running simulations, and it is getting more and more important [1].
Mimetic methods are generally used in logically uniform grids [2–4], in regular or unstructured grids [5–7], in
triangular grids [8–10], and in polygonal grids [11, 12].

In [1], authors particularly point out that mimetic discretization is more effective in practice. The time scale
calculus which is an efficient mathematical theory that unifies discrete and continuous calculus emerges as a
powerful tool for mimetic discretization process. The first link between effective discretization and generaliza-
tion of time scale theory and mimetic methods is presented in [13]. The theory of time scales calculus has also
provided considerable development in recent years [14–18]. The first work on the geometric interpretation of
the theory [19] provided the introduction of the concept of partial dynamic derivatives on time scales [20] and
various geometric studies are introduced [21–24, 28].

In this study, we present a framework to express the vertices of non-uniform rectangular grids as the points
of surface parameterized on a tensor product of two time scales. The mimetic discretization aspect of the theory
of time scales calculus in the geometric sense is first presented in [25] in the terms of symmetric differentiation.
The rest of paper is as follows: in Section 2, we present the symmetric differentiation on time scales and the
geometric aspect of the theory. We also explain how to compute normal vector fields of surfaces on time scales.
In Section 3, we introduce a method to find normal fields of set of discrete points by using symmetric dynamic
derivatives. To this end, we determine the set of discrete points in R3, namely point clouds, as the subset of a
grid like structure emerge from a surface on time scales. In Section 4, we present the numerical results of our
method and compare them with the results of well-known method Delaunay triangulation. Finally, in Section 5,
we give the conclusions of our study.

2 Symmetric Calculus on Time Scales

An n-dimensional time scale is defined by the Cartesian product as

Tn = T1× . . .×Tn,

where for i ∈ {1, . . . ,n} the sets Ti are time scales. A time scale Ti is a non-empty closed subset of reals. We
refer readers to [26, 27] for details on the theory of single and multivariable dynamic calculus on time scales.
Throughout this study we denote σi and ρi as the forward and backward jump operators of the time scale Ti,
respectively. Besides, we set that if Ti has a left scattered maximum M and right scattered minimum m, then
(Ti)

κ
κ = Ti \{m,M}, else (Ti)

κ
κ = Ti.

Definition 1. [25] A function f : Tn→R is symmetric differentiable at a point t0 ∈ (T1)
κ
κ× . . .× (Tn)

κ
κ if there

exist numbers A1, . . . ,An independent of t ∈ Tn such that for all t ∈Uδ (t0) and i ∈ {1, . . . ,n},

f (t0
1 , . . . ,σi(t0

i ), . . . , t
0
n)− f (t1, . . . , tn)+ f (2t0

1 − t1, . . . ,2t0
i − ti, . . . ,2t0

n − tn)

− f (t0
1 , . . . ,ρi(t0

i ), . . . , t
0
n)

=
n

∑
i=1

Ai[σi(t0
i )+2t0

i −2ti−ρi(t0
i )]+

n

∑
i=1

αi[σi(t0
i )+2t0

i −2ti−ρi(t0
i )]

where δ is sufficiently small positive number, Uδ (t0) is the δ -neighborhood of t0, and αi = αi(t0, t) defined on
Uδ (t0) such that it is equal to zero for t = t0 and lim

t→t0
αi = 0 for all i ∈ {1, . . . ,n}.
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Definition 2. [25] Let f : T1×T2→ R be a real valued function and (t0,s0) ∈ (T1)
κ

κ
× (T2)

κ

κ
. For all ε1 > 0,

there is an open (relative to the topology of T1×T2) neighborhood U1 of (t0,s) such that for all (t,s) ∈U1

|[ f (σ1(t0),s)− f (t,s)+ f (2t0− t,s)− f (ρ1(t0),s)]− f31 [σ1(t0)+2t0−2t−ρ1(t0)]|
≤ ε1 |σ1(t0)+2t0−2t−ρ1(t0)| .

Definition 3. [25] Let f : T1×T2→ R be a real valued function and (t0,s0) ∈ (T1)
κ

κ
× (T2)

κ

κ
. For all ε2 > 0,

there is an open (relative to the topology of T1×T2) neighborhood U2 of (t,s0) such that for all (t,s) ∈U2

|[ f (t,σ2(s0))− f (t,s)+ f (t,2s0− s)− f (t,ρ2(s0))]− f32 [σ2(s0)+2s0−2s−ρ2(s0)]|
≤ ε2 |σ2(s0)+2s0−2s−ρ2(s0)| .

In ∆− and ∇− calculus on time scales, the differentiability of functions defined on time scales comes up with
concepts called completely ∆− and completely ∇− differentiability [20, 29]. Basically, completely differentia-
bility hypotheses assume the equality of right and left hand side dynamic derivatives. If the point is left dense
and right scatter the σi-completely differentiability or if the point is right dense and left scatter the ρi-completely
differentiability concepts of the functions on Tn emerge. However, these hypotheses have strong restriction to
define geometric operators on time scales. Besides, geometric operators are not well-defined on isolated time
scales. For instance, in [24], authors defined the curvature of curves on time scales by using ∆-derivatives.
Analogously, the backward curvature can be defined by using ∇-derivatives. However, such definitions of the
curvature are not in unified way, hence would not be useful tool to mimetic discretization process. The intro-
duction of the symmetric dynamic calculus on time scales to overcome such geometric drawbacks are discussed
in [25] in details.

Definition 4. [25] Let S be a closed subset of R3. S is a surface if for each point P in S , there is a
neighborhood A of P and a function ϕ : U →S where U is a closed set in R2 and an open set in time scale
topology satisfying the following conditions:

i. ϕ : U → R3 is 3-differentiable and for all (t,s) ∈U

∂ϕ(t,s)
31t

× ∂ϕ(t,s)
32s

6= 0,

i.e., ϕ is 3-regular.

ii. ϕ(U) = S ∩A and ϕ : U → ϕ(U) is a homeomorphism.

The function ϕ : U→S is called a surface patch. S is called a 3-smooth surface if, for all points P in S there
exists a surface patch such that P ∈ ϕ(U).

Proposition 1. Let U ⊂ T2 and f be a 3-differentiable function. Then, the set

S = {(t,s, f (t,s)) | (t,s) ∈ T1×T2}

determines a 3-smooth surface. Proof. Let {t,s} be the Euclidean coordinate system of T2. Since the coordinate
functions and f are 3-differentiable, ϕ : U → S is also 3-differentiable. Jacobian matrix of ϕ respect to
symmetric differentiation is

J(ϕ) =


∂ t
31t

∂ t
32s

∂ s
31t

∂ s
32s

∂ f (t,s)
31t

∂ f (t,s)
32s

=

 1 0
0 1

∂ f (t,s)
31t

∂ f (t,s)
32s

 .

rankJ(ϕ) = 2 for all (t,s) ∈U, hence ϕ is 3-regular. Besides it is trivial that ϕ mapping is a homeomorphism.

https://www.sciendo.com
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In this study, we determine the metric tensor of a surface S on time scales by the partial 3-derivatives of ϕ .

If
∂ϕ

31t
× ∂ϕ

32s
6=~0, the tangent plane to S is spanned by

∂ϕ

31t
and

∂ϕ

32s
. Hence, mimetically, the surface normal

vector can be compute as

~NT S =
∂ϕ

31t
× ∂ϕ

32s
.

In the calculation of the normal vector fields of surfaces, two cases emerge on finiteness of time scales. If
the time scales are isolated and infinite, then the normal vector fields can be computed directly by symmetric
differentiation. However, if the time scales are isolated and finite, then we need to compute the vector fields on
boundaries by using ∆ or ∇ differentiation. To see this, we give the following theorems:

Theorem 2. Let U and Ũ be nonempty closed subsets of R2 and ϕ : U →S be a 3-regular surface patch. If
φ : Ũ →U is diffeomorphism, then the function

ϕ̃ = ϕ ◦φ : Ũ → R3

is a 3-regular surface patch. Proof. Since ϕ is continuous and φ is in C∞
rld , it is straightforward that ϕ̃ is in

C∞
rld . Now let φ(t̃, s̃) = (t,s) for (t,s) ∈U and (t̃, s̃) ∈ Ũ . Let ϕ̃ be 3-differentiable. By the chain rule, we obtain

∂ ϕ̃

3(1)t̃
=

∂ t
3(1)t̃

∂ϕ

31t
+

∂ s
3(1)t̃

∂ϕ

32s

and
∂ ϕ̃

3(2)s̃
=

∂ t
3(2)s̃

∂ϕ

31t
+

∂ s
3(2)s̃

∂ϕ

32s
.

Hence,
∂ ϕ̃

3(1)t̃
× ∂ ϕ̃

3(2)s̃
=

(
∂ t

3(1)t̃
∂ s

3(s)s̃
− ∂ t

3(s)s̃
∂ s

3(1)t̃

)
∂ϕ

31t
× ∂ϕ

32s
. (1)

The coefficient at the right side of the equation (1) is equal to determinant of the jacobian matrix

J(φ) =


∂ t

3(1)t̃
∂ t

3(2)s̃
∂ s

3(1)t̃
∂ s

3(2)s̃

 .

This completes the proof.

Theorem 3. If f : T1×T2 → R is delta and nabla differentiable, then f is symmetric differentiable for each
(t,s) ∈ (T1)

κ

κ
× (T2)

κ

κ
with

∂ f (t,s)
31t

= γ1(t0)
∂ f (t0,s0)

∆1t
+(1− γ1(t0))

∂ f (t0,s0)

∇1t

and
∂ f (t,s)
32s

= γ2(s0)
∂ f (t0,s0)

∆2s
+(1− γ2(s0))

∂ f (t0,s0)

∇2s
,

where

γ1(t0) = lim
t→t0

σ1(t0)− t
σ1(t0)+2t0−2t−ρ1(t0)

and

γ2(s0) = lim
s→s0

σ2(s0)− s
σ2(s0)+2s0−2s−ρ2(s0)

.

Proof. See [25].
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As a result of Theorem 2, we may remark that if T1×T2 is an infinite isolated time scale, then it is possible
to find a coordinate change which makes the point in (T̃1)

κ
κ × (T̃2)

κ
κ . Hence, normal vector field of a surface on

time scales can be computed directly by symmetric differentiation. If T1×T2 is a finite time scale, the natural
boundaries of the surface arise at the end points of time scales. Let tm

0 and sm
0 be the minimum points and tM

0 and
sM

0 be the maximum points of T1 and T2, respectively. By Theorem 3,

∂ϕ(t,s)
31t

=
∂ϕ(t,s)

∆1t

for all (t,s) ∈ tm
0 ×T2,

∂ϕ(t,s)
31t

=
∂ϕ(t,s)

∇1t

for all (t,s) ∈ tM
0 ×T2,

∂ϕ(t,s)
32s

=
∂ϕ(t,s)

∆2s

for all (t,s) ∈ T1× sm
0 , and

∂ϕ(t,s)
32s

=
∂ϕ(t,s)

∇2s

for all (t,s) ∈ T1× sM
0 .

In Figure 1, we present a surface parameterized on a finite isolated time scale T1 × T2, where T1 =
{t1, t2, t3, t4} and T2 = {s1,s2,s3,s4}. This figure also serves a good example of a non-regular rectangular grids
which has vertices on a surface parameterized on an isolated time scale. In this figure, the arrows represent the
normal vectors at respected points. T1 and T2 both have the usual time scale topology which is respect to partial
order of the indices. Hence, the only non-boundary point is ϕ(t2,s2) on the surface. Thus, the normal vectors
can be computed as

~N1 =
∂ϕ(t1,s2)

∆1t
× ∂ϕ(t1,s2)

32s
, ~N2 =

∂ϕ(t2,s2)

31t
× ∂ϕ(t2,s2)

32s

~N3 =
∂ϕ(t4,s2)

∇1t
× ∂ϕ(t4,s2)

32s
, ~N4 =

∂ϕ(t3,s4)

31t
× ∂ϕ(t3,s4)

∇2s

~N5 =
∂ϕ(t2,s1)

31t
× ∂ϕ(t2,s1)

∆2s
.

3 Method

3D point clouds represent a discrete representation of the surfaces, namely discrete manifolds, present in the
real world. If this sample is obtained from range sensors such as 3D scanners, noise is expected in the sample.
Because of this type of noise, clear information about surface orientation and curvature can be lost. The normal
vector estimate tries to reconstruct this information by creating a set of vectors perpendicular to the tangential
plane of each surface [30–32]. In particular, the resulting normal vector is a reasonable procedure for integrating
each data item into a feature space corresponding to a point of the point cloud. In this section, we present a
method by using the concept of symmetric differential for predicting normal vectors on a discrete representation
of surfaces existing in the real world.

Our approach is based on considering the points of point clouds as the points on a surface patch parameter-
ized on two isolated time scales. However, the direct implementation of this approach has two major drawbacks.
First drawback emerges when the points on discrete manifold are not aligned on grid-like structure. In this case
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t1 t2 t3 t4

s1
s2

s3
s4

ϕ(t1, s2)

ϕ(t2, s2)

ϕ(t3, s4)

ϕ(t4, s2)

ϕ(t2, s1)

~N5

~N1

~N2

~N3

~N4

Fig. 1 A finite surface with the patch ϕ on T1×T2.

it becomes impossible to determine the forward or backward jumps of the coordinate variable, therefore the
dynamic differentiation even in symmetric sense is not well-defined. To cope with this drawback, we give the
following proposition:

Proposition 4. Let M ⊂ R3 be the set of non-uniform points and S be a surface with an atlas on T1×T2.
Then, M can be given a symmetric differentiable structure in such way that the inclusion i : M → S is an
embedding. Proof. Let F : R2 → M and S be a surface with an atlas on T1×T2 with the coordinate chart
(x,y). Let us first fix x ∈M. Now choose the homeomorphism ξx : F−1

x →S with x ∈ F−1∩(T1×T2). Since the
symmetric covariant derivative 3yξx is injective, we can choose a bijection γ : {1,2,3}→ {1,2,3} such that the
rows γ(1),γ(2),γ(3) of 3yξx are linearly independent. Define π : S →S ′ by π(x,y,z)→ (x′,y′,z′). Then, the
3y(π ◦ξx) is an isomorphism. Hence there are open sets in the time scale topology A⊆ F−1(M) and B⊆ π(S )
and the map ηx : B→ A is the inverse of π ◦ξx.

Define A = {ϕx = ηx ◦ π | x ∈ M}. For x1 6= x2, we have ϕx2 ◦ϕ−1
x2

= ϕx2 ◦ ξx1 . Therefore, A is a sym-
metric differentiable atlas making M into a symmetric differentiable surface. The inclusion i : M → S is a
homeomorphism, and for any patch we have Id ◦ i◦η−1

x , which has injective symmetric derivative.

The second drawback is subject to determining the parameterizations of the surface patches. When the
unorganized points are the subject, there are several ways to interpolate them [35–37]. In this study, we use the
quadratic surface fitting.

A quadratic surface passing through origin is

z(x,y) = A1x+A2y+A3x2 +A4xy+A5x2y+A6xy2 +A7y2 +A8x2y2. (2)

It can be seen that the surface with the Equation 2 requires eight other given points (xi,yi,zi), i = 1, . . . ,8, and is
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expressed by the system 
x1 y1 x2

1 x1y1 x2
1y1 x1y2

1 y2
1 x2

1y2
1

x2 y2 x2
2 x2y2 x2

2y2 x2y2
1 y2

2 x2
2y2

2
...

...
...

...
...

...
...

...
x8 y8 x2

8 x8y8 x2
8y8 x8y2

8 y2
8 x2

8y2
8




A1
A2
...

A8

=


z1
z2
...

z8

 . (3)

The accuracy of the fitting method is directly depending conditioning of the matrix in Equation 3.
Let us assume that the patch in Equation 2 is expressed in vector form as

R(x,y) =

 x
y

z(x,y)

 .

From Proposition 1, we may conclude that the eight-point neighborhood of the R(0,0) is a 3-smooth surface.
Now, let us consider this neighborhood as in Figure 2.

O = R(0, 0) P1 = R(σ1(0), 0)

P2 = R(σ1(0), σ2(0))P3 = R(0, σ2(0))P4 = R(ρ1(0), σ2(0))

P5 = R(ρ1(0), 0)

P6 = R(ρ1(0), ρ2(0)) P7 = R(0, ρ2(0)) P8 = R(σ1(0), ρ2(0))

Fig. 2 Eight neighbouring non-uniform data points of O = R(0,0).

Hence, the partial symmetric dynamic derivatives are

∂R(0,0)
31x

=
P1−P5

σ1(0)−ρ1(0)
=

∂R(0,0)
∂x

+

 O(max{σ2
1 (x),ρ

2
1 (x)})

O(max{σ2
2 (x),ρ

2
2 (x)})

O(max{σ2
1 (x),ρ

2
1 (x),σ

2
2 (y),ρ

2
2 (y)})


and

∂R(0,0)
32y

=
P3−P7

σ2(0)−ρ2(0)
=

∂R(0,0)
∂y

+

 O(max{σ2
1 (x),ρ

2
1 (x)})

O(max{σ2
2 (x),ρ

2
2 (x)})

O(max{σ2
1 (x),ρ

2
1 (x),σ

2
2 (y),ρ

2
2 (y)})

 .

Therefore, accuracy of our method is order two with O(max{σ2
1 (x),ρ

2
1 (x),σ

2
2 (y),ρ

2
2 (y)}). If T1×T2 ≡ hZ×hZ

or T1×T2 ≡ R×hZ or T1×T2 ≡ hZ×R, then the accuracy becomes of order two with O(h2).
Given an non-uniform set of points M in R3, it is possible to determine the 3-smooth surface S containing

M by parametrization of F : R2→M. We can say from Proposition 4 that the symmetrical differential structure
of S is also in M by the embedding i : M→S . With the parametrization of M, the geometric structure of S ,
that is, the vertices of the non-regular rectangular grid structure, which contains the M, can be determined as S
be the cardinally smallest 3-smooth surface due to reduce computational costs.

A quadratic surface patch to model an entire surface is not convenient but it is good for modeling neighbor-
hood around a point. If an entire surface needs to be modelled, then we may implement our method to cubic
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splines [33,34]. However this is totally subject to another study. To determine neighborhood of the data point in
M for fitting quadratic surface, we use the closeness relation of 3D data points. That is, we obtain an appropriate
graph G = (V,E), where V is the set of points and E is the set of edges with E = {e = (vi,v j) | vi,v j ∈V}.

In our study, the procedure in Table 1 is applied to achieve the bundle S =
⋃

S . The computational com-
plexity of the procedure is directly dependent on the size of M and the size of neighborhood of i-th point. Since
quadratic fitting needs only eight points, this complexity can be reduced to O(|M|).

Input: M
Build: G=(V,E), V=M
for i=1 to |M| do

N(i) = {wi : wi is adjacent to i in G}∪ i
Πl : l− th coordinate function
Fit quadratic z(x,y) in N(i)
for j=1 to |N(i)| do

for k=1 to |N(i)| do
S ←

{
Π1(w j),Π2(wk),z(w j,wk)

}
end for

end for
end for
Output: Bundle S =

⋃
S

Table 1 The procedure to obtain the bundle of 3-smooth surfaces on M.

4 Results

In computer graphics and engineering analyses, the triangular meshing of surfaces plays a key role. A
surface meshing can be achieved by mapping meshes in parameter space onto surfaces where the meshes can
be triangular or rectangular grids [38,39]. A good looking mesh in the parameter space may have a problematic
image on surface under these mappings since the transformation of geometry from the parameter space to the
surface may be twisted along some directions. In many engineering applications including Finite Element
analysis the triangular mesh is the most popular choice to get over this problem.

The de facto method to obtain triangular surface meshes is the Delaunay triangulation. Traditionally, the De-
launay triangulation is a cell complex that subdivides the convex hull of the discrete points in R3 in which every
circum-circle of a triangle is an empty circle [40]. The algorithmic complexity of the Delaunay triangulation of
M ⊂ R3 is O(|M|2). However, if the points in M are well distributed on a smooth surface, then the Delaunay
triangulation has the reduced complexity O(|M| log |M|) [41].

Let M ⊂ R3 be the set of discrete points and the Delaunay triangulation of D(M) composed of the points P.
For a local triangular mesh of a surface interpolating M with K triangles, the normal vector~n at P ∈M is equal
to

~ND =
∑

K
i=1 wi~ni

∑
K
i=1 wi

,

where~ni and wi are the normal vector and weight of the i-th triangle PiPPi+1, respectively. The weight wi of the

i-th triangle can be computed as wi =
| ~PPi× ~PPi+1|

2
[31].

In this section, to make the comparative analysis, we give the computational results of the normal fields of
our method and Delaunay triangulation. To see the comparison, we use the two parametric surfaces and mea-
sure the vector errors with infinity norm. The first surface has the parametrization as ϕ1(t,s) = (ts2, t2s,1−
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√
t2 + s2) for t,s ∈ [−1,1], and the second surface has the parametrization as ϕ2(t,s) = ((1,16s)coss(1 +

cos t),−1.16s sins(1+ cos t),−2(1,16s)(1+ sin t)) for t ∈ [0,2π] and s ∈ [−15,6]. The smooth surfaces and
points of M sampled on them are presented in Figure 3. The Delaunay triangulations of M are also presented in
Figure 4.

Fig. 3 The surfaces with the parameterizations φ1(t,s) (on the left) and φ2(t,s) (on the right), and the points sampled on
them.

Fig. 4 The Delaunay triangulations of the point set M sampled on φ1(t,s) and φ2(t,s).

The graphs derived from the Delaunay triangulation are called the Delaunay graph of M. The procedure
presented in Table 1 initially starts with a graph representation of M. Hence, to see the effectiveness of our
method, we use the Delaunay graph of M as G = (V,E), where M is chosen as well distributed to reduce time
complexity. Besides, the quadratic surface fit requires eight other given points. Therefore, if the 1-neighborhood
N(i) does not composed of nine points, then we extend the neighborhood to k-neighborhood in which composed
of optimally many points.

In order to measure the error in normal vectors, we need to measure the size or norm of the vectors ||~N−
~ND||∞ and ||~N−~NT S||∞ at P ∈ M, where ~N is the unit normal vector of the parameterized surfaces, ~ND is the
unit normal vector obtained by the Delaunay triangulation, and ~NT S is the unit normal vector obtained by our
method. The measured errors are presented in Figures 5-6.

The error measurements show us that the present method based on symmetric dynamic derivatives yields
better approximations for certain points of both ϕ1(t,s) and ϕ2(t,s). The numbers of sampled points on ϕ1(t,s)
and ϕ2(t,s) are 2571 and 2295, respectively. The lesser error are obtained at 962 many points of ϕ1(t,s) and 113
many points of ϕ2(t,s) by using our method. Besides, the min{||~N−~NT S||∞}= 9.24888×10−5 and min{||~N−
~ND||∞} = 0.5777× 10−1 for ϕ1(t,s), and the min{||~N−~NT S||∞} = 1.19273× 10−2 and min{||~N−~ND||∞} =
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Fig. 5 The error in unit normal vectors for φ1(t,s).
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Fig. 6 The error in unit normal vectors for φ2(t,s).

3.38129× 10−1 for ϕ2(t,s). The points where our method yields better approximation than the ~ND to unit
normal vectors is presented in Figure 7.

Fig. 7 The points where the unit normal is approximated better for φ1(t,s) and φ2(t,s).

5 Conclusions

The mimetic discretization of continuous operators yields us efficient way to model continuous theory un-
derlying the physical problem. For the mimetic discretization process the theory of time scale calculus emerge
as an efficient mathematical theory. If the nature of the problem involves the forward or backward discretiza-
tion, then the delta or nabla dynamic differentiation may dominate the modelling and solutions. However, in
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geometric point of view, the symmetric dynamic differentiation mimics the discrete counterpart of the geometric
modelling, since it ensures that the protected geometric properties such as curvatures are maximized.

In this study, we consider a surface on time scales as the vertex set of non-regular rectangular grids. Then,
we determine the normal vector fields of surfaces parameterized by the tensor product of two time scales by
using symmetric dynamic differentiation. If we have such a closed subset set of R2 as the parameter domain of
a surface, then the most basic mapping ϕ(t,s) = (t,s, f (t,s)) yields us a 3-smooth surface. Besides, if a surface
patch has a finite geometry, then the symmetric differential acts as forward or backward dynamic derivatives on
boundaries.

In real world applications, a set of discrete points in R3 does not involve a regular geometric structure. In this
paper, we also present an algorithmic procedure to approximate normal fields of such sets which are sampled on
a smooth surface. Our procedure first start with the geometric closeness relation of discrete points. This relation
is expressed as a finite graph. Then, by using the neighborhood of points in the graph, we fit a quadratic surface
to approximate the parameter of underlying smooth surface. Afterwards, we assign a non-regular rectangular
grid like structure to this parametrization and consider the embedding as a surface on time scales. We also show
that such immersion of discrete points to surface on time scales is an embedding. Therefore, these discrete points
also have the symmetric dynamic differential structure of a surface on time scales. Subsequently, the normal
vector fields are determined by symmetric dynamic derivatives.
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