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ABSTRACT
In this study, a fractional Bernstein series solution method has been submitted to solve the
fractional-order biological population model with one carrying capacity. The numerical method
has been implemented by an effective algorithm written on the computer algebraic system
Maple 15. An error-bound analysis is performed by using a process similar to the RK45 method.
An error estimation technique relating to residual function is presented. In the numerical appli-
cation, the variations in the population of prey and predator with respect to time and situations
of these two species relative to each other are plotted. The outputs obtained from our method
are comparedwith thehomotopyperturbation Sumudu transformmethodand reproducing ker-
nel Hilbert space method. The approximate solutions gained from the Bernstein series method
are consistent with those of other methods. The advantage of our method is that it requires less
computational cost compared with methods involving more complex operations.
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1. Introduction

The interaction between species is one of the most
interesting dynamics in ecology and biology. Mathe-
matical models which include these relations are cate-
gorized as mutualism, competition and predator-prey
models [1]. In predator-prey relations, one species feeds
on another species. This interaction can take the formof
resource-consumer, plant-herbivore and parasite–host
systems [2]. There have been many theoretical and
numerical studies on these dynamics over the years
[3–6].

In recent years, fractional differential equations
(FDEs) are one of the more favoured tools; it models
complicated behaviours of dynamical systems from dif-
ferent fields. These include mechanics [7], electricity
[8], electrochemistry [9], economy [10], biology [11,12]
and epidemiology [13]. Since non-integer order deriva-
tives contain integer orders, FDEs are a generalization
of ordinary differential equations (ODEs). Systemsmod-
elled with FDEs reveal real-life phenomena more accu-
rately. This is because they give more detailed infor-
mation about the after-effects and memory of the sys-
tem [14–16]. FDEs have gained great importance and
popularity due to this feature, particularly in the field
of biology and ecology modelling [17–20]. Recently,
many studies have been published on systems mod-
elled by using distinct fractional derivatives defini-
tions. A new fractional model was proposed for the
human liver involving the Caputo–Fabrizio derivative

[21]. Boukhouima et al. [22] examined a fractional HIV
population model and fractional cellular model theo-
retically by using the Caputo derivative, Ghanbari et al.
[23], Bahaa and Hamiaz [24] analyzed the behaviour of
a dynamic system that includes the Atangana-Baleanu
fractional derivative.

Some of the proposed numerical methods for solv-
ing the systems of FDEs are the homotopy pertur-
bation method [25,26], implicit Euler’s approximation
method [27], the fractional B spline method [28], an
adaptive spectral collocationmethod [29], the fractional
Adams–Bashforth method [30].

In this work, a two-dimensional fractional-order bio-
logical population model with one carrying capacity is
examined. The model is described as:

Dα
t x(t) = x(t)

(
a1 − a1

K1
x(t)

)

− b1x(t)y(t) (1)

Dα
t y(t) = y(t)(−a2 + b2x(t)) (2)

with the initial conditions

x(0) = ξ1 and y(0) = ξ2, ξ1, ξ2 ∈ R
+. (3)

Here, 0 ≤ t ≤ b and Dα
t represent the Caputo fractional

derivative of order α where 0 < α ≤ 1. x(t) and y(t)
are respectively the population densities of the prey
and the predator, a1 is the prey’s intrinsic growth and
K1 is the carrying capacity. a2 denotes the predator’s

CONTACT Elçin Gökmen egokmen@mu.edu.tr Department of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University, 48000, Muğla,
Turkey

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.taibahu.edu.sa/Pages/EN/Home.aspx
http://www.tandfonline.com/tusc20
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/16583655.2021.1952750&domain=pdf&date_stamp=2021-07-12
http://orcid.org/0000-0003-1208-1875
mailto:egokmen@mu.edu.tr
http://creativecommons.org/licenses/by/4.0/


JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 219

growth rate, β1 and β2indicate the positive competition
coefficients.

For the research, it is assumed that all variables and
parameters of the model are non-negative at a ran-
dom point in time because the system (1)-(2) is defined
as the population of the species. Population densities
x(t)and y(t) which are the solutions of the system will
be restricted to the non-negative R

2+. For case α = 1,
the system has analytical solutions. From the two equa-
tions which give the solutions the positivity of x(t) and
y(t) is observed (see Theorem 1 in [31]).

The main aim of this article is to introduce the Bern-
stein series solutionmethodwhich comprises Bernstein
polynomials and collocation method [32,33] for model
(1)-(2) which was previously solved by homotopy per-
turbation Sumudu transformmethod (HPSTM) [31], and
which gives a semi-analytic solution and reproducing
kernel Hilbert space method (RKHSM) [34].

The other parts of the paper are arranged as fol-
lows. In section 2, some basic and necessary defini-
tions are given about fractional derivatives. In Section
3, the form of Bernstein polynomials, matrix relations of
expressions in the model (1)-(2) are given and the pro-
cedure is constituted. Error analysis of the method is
presented in Section 4. In this section, first, the residual
correction procedure is clarified. This process estimates
the absolute error and also obtains new approximate
solutions. Additionally, for the second analysis, another
procedure that includes similar steps to RK45 meth-
ods is performed. The advantage of these methods is
that both can be used even if the exact solution is not
known. In Section 5, numerical outcomes are submitted
by graphics and tables to show the effectiveness and
simple applicability of the method. In the last section,
the results are interpreted.

2. Some basic information regarding
fractional calculus

In this section, some necessary definitions and some
properties of the Caputo fractional derivatives are
reminded.

Definition 1: ([35]) The Riemann-Liouville fractional
integration of order α is defined as:

Iαy(x) =
⎧⎨
⎩

1
�(α)

∫x0 (x − s)α−1y(s)ds, α > 0, x > 0

y(x) α = 0.
(4)

If α,α1,α2 ≥ 0 and y defined over [0,∞) then the fol-
lowing properties verify

(1) Iα1 Iα2y(x) = Iα1+α2y(x),

(2) Iα1 Iα2y(x) = Iα2 Iα1y(x),

(3) Iαxβ = �(β+1)
�(α+β+1)x

α+β .

Definition 2: ([36]) The fractional derivative of y(x) by
means of Caputo sense is defined as

Dαy(x) = 1
�(n − α)

x
∫
0
(x − s)n−α−1 y(n)(s)ds,

n − 1 < α ≤ n, n ∈ N (5)

where y defined over [0,∞).
The Caputo derivative has some features as:

(1) Dα Iαy(x) = y(x),

(2) IαDαy(x) = y(x) −
n−1∑
i=0

y(i)(0) x
i

i! ,

(3) Dαxβ =
{
0, for β ∈ N0 and β < α,

�(β+1)
�(β+1−α)

xβ−α , for β ∈ N0 and β ≥ α

(4) Dαc = 0, (c is constant).

3. Description of themethod

In this section, we introduce the Bernstein series solu-
tion method to get the approximate solutions of the
model (1)-(2). This technique depends on Bernstein
polynomials and collocationmethods. For this purpose,
each term of the system (1)-(2) and the initial conditions
(3) are formulated as matrix representations through
the Bernstein polynomials.

The Bernstein polynomials of degree n defined on
the interval [0, L] are given by

Bk,n(t) =
(

n
k

)
tk(L − t)n−k

L n , k = 0, 1, . . . , n (6)

If tβ is substituted into t in the relation (6), the frac-
tional Bernstein polynomials of degree n are attained
as

Bβ

k,n(t) =
(

n
k

)
tkβ(L − tβ)

n−k

L n ,

k = 0, 1, . . . , n, x ∈ [0, b]. (7)

Thus, the fractional Bernstein series solutions are rep-
resented in the following forms

xn,β(t) =
n∑

k=0

ckB
β

k,n(t − c) (8)

yn,β(t) =
n∑

k=0

hkB
β

k,n(t − c) (9)

where 0 < β < 1, ck and hk , k = 0, 1, . . . , n are the Bern-
stein coefficients.

If the solutions (8), (9) wanted to be specified in the
matrix form, the following relations are given.

xn,β(t) = Cφ(t) (10)

yn,β(t) = Hφ(t) (11)
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where

C = [
c0 c1 . . . cn

]
H = [

h0 h1 . . . hn
]

φ(t) =
[
Bβ
0,n Bβ

1,n . . . Bβ
n,n

]T
.

The expression of φ(x) can be written as

φ(t) = SX(t) (12)

where

S =

⎡
⎢⎢⎢⎣
s00 s01 . . . s0n
s10 s11 . . . s1n

...
sn0

...
sn1

. . .
. . .

...
snn

⎤
⎥⎥⎥⎦ ,

X(t) =

⎡
⎢⎢⎢⎢⎢⎣

1
tβ

t2β

...
tnβ

⎤
⎥⎥⎥⎥⎥⎦

and

sij =
⎧⎨
⎩

(−1)j−i

bj

(
n
i

) (
n − i
j − i

)
, i ≤ j.

0, i > j.

Hence, the fundamental matrix relations of solutions
are in the form as

xn,β(t) = CSX(t) (13)

yn,β(t) = HSX(t). (14)

Similarly, α order Caputo derivative of solutions
stated in Equations (10) and (11) are written as

Dαxn,β(t) = CDαφ(t),

Dαyn,β(t) = HDαφ(t).

Since Dαφ(t) = S dα

dxα X(t),then

Dαφ(t) = SX∗(t) (15)

where

X∗(t) =

⎡
⎢⎢⎢⎢⎢⎣

0
Dαtβ

Dαt2β

...
Dαtnβ

⎤
⎥⎥⎥⎥⎥⎦ .

Here components of a matrix X∗(t) are calculated by
using property 3 in Definition 2.2. Hence, the fractional-
order derivative of xn,β(t) and yn,β(t) are converted into
a matrix form:

Dαxn,β(t) = CSX∗(t), (16)

Dαyn,β(t) = HSX∗(t). (17)

If the relations (13), (14), (16), (17) are substituted
into the system (1)-(2), the following system of matrix
equations are acquired as:⎧⎪⎪⎨

⎪⎪⎩
CSX∗(t) − a1CSX(t) + a1

K1
(C S X(t))2

+b1(C S X(t))(H S X(t)) = 0

HSX∗(t) + a2HSX(t) − b2(C S X(t))(H S X(t)) = 0.
(18)

To find the matrix form of the initial conditions (13) and
(14) are used in Equation (3) and therefore, matrix forms
of conditions are gained as:

CSX(0) = ξ1, (19)

HSX(0) = ξ2. (20)

Finally, by substituting the collocationpointsdefined
by

ti = b

n
i, i = 0, 1, . . . , n (21)

into Equation (18), the system of 2(n + 1) equations
with the unknown coefficients ck and hk,k = 0, 1, . . . , n
is attained. By solving the system, the fractional Bern-
stein series solutions xn,β(t) and yn,β(t) are obtained.

4. Error analysis

In this part of the study, two error analyses for the
method are given. One of these processes is the residual
correction procedure. The second is similar to the error
analysis of the RK45 method.

To constitute the residual correction procedure, let
us put the fractional Bernstein series solutions xn,β(t),
yn,β(t) into the system (1)-(2) and call

R1n = Dαxn,β(t) − xn,β(t)

(
a1 − a1

K1
xn,β(t)

)

+ b1 xn,β(t) yn,β(t), (22)

R2n = Dα
t yn,β(t) + a2 yn,β(t) − b2 xn,β(t) yn,β(t). (23)

Subtracting R1n from both sides of (1), the following
equation is acquired as:

Dαe1n,β(t) − a1e1n,β(t)+ a1
K1

e21n,β(t)+b1e1n,β(t)e2n,β(t)

+ 2
a1
K1

e1n,β(t)xn,β(t) + b1xn,β(t)e2n,β(t)

+ b1yn,β(t)e1n,β(t) = −R1n (24)

where

e1n,β(t) = x(t) − xn,β(t).

If a similar process is applied for R2n and equation (2),
the relation is obtained as:

Dαe2n,β(t) + a2 e2n,β(t) − b2 e1n,β(t) e2n,β(t)

− b2 xn,β(t) e2n,β(t) − b2 yn,β(t) e1n,β(t) = −R2n
(25)
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where

e2n,β(t) = y(t) − yn,β(t).

Since the exact solutions and the fractional Bern-
stein series solutions satisfy the initial conditions, the
conditions for the errors are

e1n,β(0) = 0 and e2n,β(0) = 0 (26)

By applying the method to the system (24)-(26) for m
not necessarily different from n, the fractional Bernstein
series solutions for the error equation are obtained.
These solutions are indicated by e1mn,β and e2mn,β . One
advantage of the procedure is to obtain new approx-
imate solutions by adding e1mn,β to xn,β(t) and e2mn,β to
yn,β(t). The new approximate solutions named as the
corrected fractional Bernstein series solutions are rep-
resented as

xmn,β(t) = xn,β(t) + e1
m
n,β(t) (27)

ymn,β(t) = yn,β(t) + e2
m
n,β(t) (28)

If ‖ en,β(t) − emn,β(t) ‖ <‖ x(t) − xn,β(t) ‖ , then xmn,β is
a better approach than xn,β . On the other hand, we can
estimate the error en,β(t) by emn,β whenever ‖ en,β(t) −
emn,β(t) ‖ < ε. In practice, the absolute errors can be
estimated by emn,β form > n.

As the second analysis, we get xn,β and xs,β which are
any two Bernstein series solutions of (1)-(2). Suppose

‖ x(t) − xs,β(t) ‖<‖ x(t) − xn,β(t) ‖ .

Let ‖ x(t) − xn,β(t) ‖ = C ‖ x(t) − xs,β(t) ‖ .
By using triangle inequality, we obtain

‖ x(t) − xs,β(t) ‖< 1
C − 1

‖ xn,β(t) − xs,β(t) ‖ C >1.

(29)
Note that ‖ en,β(t) ‖ can be bounded by the difference
between any two approximate solutions. Thus, if 〈‖
en,β(t) ‖〉 is a monotone sequence, then ‖ xn+1,β(t) −
xn,β(t) ‖ may nearly bound each of consecutive abso-
lute errors.

5. Numerical application

In this section, the fractional biologicalmodel described
in (1)-(2) is examined for different values of frac-
tional order α. In the computations, we use Maple 15
computer algebraic system. The following norms are
employed to measure the size of the error:

‖ f1 ‖ =
1
∫
0
|f (t)|dt,

‖ f∞ ‖ = sup
0≤t≤b|f (t)|.

We apply the method to the model for L = 1 and the
dimensionless parameters a1 = a2 = 0.05, b1 = 0.04,
b2 = 0.01, K1 = 20, ξ1 = 20, ξ2 = 15. As α parameters

vary, it can be observed how the population densi-
ties of prey (x) and predator (y) change in time and
how their situations are observed in relation to each
other in the same period. In Figures 1 and 2, for α =
0.65, 0.75, 0.90, 1 the variations of population densi-
ties of x(t) and y(t) are plotted respectively. It can
be inferred from Figure 1 that the prey population
decreases with respect to time t while α decreases.
Figure 2 displays that the predator population increases
as time progresses and α decreases. The interactions of
two species for distinct α parameters are represented
in Figures 3–8. Also in these figures, reproducing kernel
Hilbert spacemethod (RKHSM), homotopyperturbation
Sumudu transform method (HPSTM) and the Bernstein
series method are compared. From these illustrations, it
can be concluded that the results of all numerical meth-

Figure 1. The graphs for variation of x(t) for different values of
α and n = 5.

Figure 2. The graphs for variation of y(t) for different values of
α and n = 5.
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Figure 3. Comparison of the numerical solutions for α = 1.

Figure 4. Comparison of the numerical solutions for α = 1.

ods are consistentwith each other. It is also inferred that
the numerical results depend continuously on α.

The results for different values of n are tabulated in
Table 1 to show the dependency of the method on the
value of n. In Table 1, we give the norms of the differ-
ence between consecutive approximate solutions and
the estimations of the absolute errors by residual cor-
rections. From this table, it can be said that both error
estimation methods support each other.

The accuracies of the approximate solutions are
checked bymeasuring Rin, i = 1, 2. Since the exact solu-
tions of the model are unknown, we give the accu-
racies of the approximate solutions, estimated abso-
lute errors in Tables 2 and 3 for different n values,
m = 17 and α = 0.75. Also, the running time of the
programme is shown in these tables. When n values

Figure 5. Comparison of the numerical solutions for α = 0.95.

Figure 6. Comparison of the numerical solutions for α = 0.95.

Figure 7. Comparison of the numerical solutions for α = 0.90.
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Figure 8. Comparison of the numerical solutions for α = 0.90.

increase, residues decrease except n = m. Also, the run-
ning time of the programme gets bigger as n increases.
In Table 4, some information about the computational
costs of the method is pointed out. We can observe
from this table that if the value of n is increased, more
computational costs are required.

Table 4. The computational costs of the method in the Maple
code for the Example.

n Multiplications Additions Subscripts Functions

5 1481 981 1027 486
7 3890 2766 2842 1102
8 5843 4269 4363 1548
10 11,846 9036 9172 2776
12 21,585 17,197 17,197 4532
15 46,086 37,666 37,942 8366

6. Conclusions

In this paper, we propose a numerical method to solve
the fractional biological model with carrying capac-
ity. This is a procedure that depends on Bernstein
polynomials, collocation method and Caputo fractional
derivative, also named as the Bernstein series solu-
tion method. Then, we give two techniques to esti-
mate and bound the absolute error. One of these tech-
niques is the residual error correction and the other
is the difference between any approximate solutions.
It should be stated that these two techniques can be
applied to the problem even if the exact solution is
unknown. The mentioned method and error analysis
procedures are applied to a test example. Error estima-
tions obtained from two different procedures overlap
as can be seen in Table 1. From Tables 2–4, we can
observe that increasing node numbers yield decreas-
ing residues but it results in more computational costs.

Table 1. The norms of the difference between consecutive approximate solutions and
the estimations of the absolute errors by residual corrections for α = 1,m = 14 on [0, 1].

n ‖ xn+1(t) − xn(t) ‖∞ ‖ e∗1n,14 ‖∞ ‖ yn+1(t) − yn(t) ‖∞ ‖ e∗2n,14 ‖∞

5 3.22 × 10−5 3.50 × 10−5 1.00 × 10−5 1.08 × 10−5

6 2.60 × 10−6 2.17 × 10−6 8.43 × 10−7 7.09 × 10−7

7 4.46 × 10−7 4.27 × 10−7 1.40 × 10−7 1.34 × 10−7

8 1.83 × 10−8 1.98 × 10−8 5.66 × 10−9 5.92 × 10−9

9 1.74 × 10−9 1.09 × 10−9 3.60 × 10−10 3.66 × 10−10

10 3.64 × 10−10 2.14 × 10−10 9.01 × 10−11 6.75 × 10−11

11 2.41 × 10−11 1.10 × 10−11 4.36 × 10−11 3.36 × 10−11

Table 2. The norms of the accuracy of the approximate solution and the estimation of the errors of x(t)
for α = 0.75.

n n = 10 n = 11 n = 12 n = 13 n = 14

‖ R1,n(t) ‖1 9.98 × 10−2 8.79 × 10−2 7.83 × 10−2 7.06 × 10−2 6.41 × 10−2

‖ e∗1n,17 ‖∞ 8.80 × 10−2 6.80 × 10−2 5.20 × 10−2 3.81 × 10−2 2.68 × 10−2

Run time in seconds 0.858 1.123 1.404 1.810 2.247

n n = 15 n = 16 n = 17 n = 18 n = 19

‖ R1,n(t) ‖1 5.86 × 10−2 5.39 × 10−2 4.98 × 10−2 4.64 × 10−2 4.33 × 10−2

‖ e∗1n,17 ‖∞ 1.46 × 10−2 7.80 × 10−3 3.76 × 10−41 2.95 × 10−3 2.90 × 10−3

Run time in seconds 2.637 3.183 4.040 4.852 5.834

Table 3. The norms of the accuracy of the approximate solution and the estimation of the errors
of y(t) for α = 0.75.

n n = 10 n = 11 n = 12 n = 13 n = 14

‖ R2,n(t) ‖1 1.89 × 10−2 1.66 × 10−2 1.48 × 10−2 1.33 × 10−2 1.21 × 10−2

‖ e∗2n,17 ‖∞ 1.64 × 10−2 1.28 × 10−2 8.80 × 10−3 7.20 × 10−3 5.00 × 10−3

n n = 15 n = 16 n = 17 n = 18 n = 19

‖ R2,n(t) ‖1 1.10 × 10−2 1.02 × 10−2 9.39 × 10−3 8.72 × 10−3 8.14 × 10−3

‖ e∗1n,17 ‖∞ 3.10 × 10−3 1.46 × 10−3 2.74 × 10−40 5.42 × 10−4 5.40 × 10−4
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When Figures 1 and 2 are analyzed, we can see the
population of prey x(t) decrease and the population of
predator y(t) increase with respect to time t. In these
two figures, the numerical solutions converge to ana-
lytical solutions as α converges to 1. Figures 3–8 show
the interactions of the prey and predator species for
different α values. The approximate solutions attained
from the mentioned method are also compared with
the results obtained from HPSTM and RKHSM for the
same α values. We can deduce from the computations
and analysis that our method gives compatible approx-
imate solutions with the semi-analytical methods. Also,
the method includes simpler equations in comparison
with the other methods.
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