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Abstract: This paper introduces a novel control architecture which combines nonlinear autoregressive moving average (NARMA)-L2 
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1. Introduction 
Controller design which is as simple as possible is an intended 
goal in terms of implementation and analysis of the control 
architectures. NARMA-L2, which is an affine linear structure 
derived from nonlinear dynamics using Taylor series expansion, 
is one of the most effective techniques to design control law for 
nonlinear systems. Since control signal is derived via 
subdynamics of the NARMA-L2 model, any additional control 
architecture is not needed. 
Literature contains numerous implementations of NARMA-L2 
based controllers. Majstorovic et al [1] deployed a NARMA-L2 
controller derived from offline NARMA model for a two-tank 
system. Pedro et al. realized NARMA-L2 to control slip in an 
anti-lock braking system (ABS) [2]. Hagan et al. utilized a 
NARMA-L2 control method using a neural network for a 
continuously stirred tank reactor (CSTR) system [3, 4]. To 
diminish oscillations in NARMA-L2 controller, Pukritttayakamee 
et al. [5] introduced to employ an additional term that includes a 
combination of reference and output signals. Wahyudi, Mokri and 
Shafie [6] utilized a smoothed NARMA-L2 controller to 
overcome the appearing nonlinearities and parametric 
uncertainties in a robotic link. The control of underactuated 
systems is difficult, and static feedback law can be deployed for 
asymptotically stabilization of the system, therefore Akbarimajd 
and Kia [7] applied NARMA-L2 control method for a 2-dof 
underactuated robot. Vesselenyi et al [8] used NARMA-L2 
position controller for a pneumatic actuator. The common point 
of the studies in literature is that NARMA-L2 controller is 
derived from the offline system model [1-9]. 
Presented work acquaints an original Runge-Kutta (RK) based 
NARMA-L2 control technique for nonlinear MIMO systems. 
Parameters are identified via a RK system model. Then, using the 
future system outputs, a NARMA-L2 control signal is derived. 
To assess the performance, three tank system (TTS) dynamics are 

used and controller has been compelled to work under various 
conditions vital for control. The performance of the controller has 
been compared with Runge-Kutta based generalized predictive 
control (GPC) introduced in [10]. The obtained results indicate 
that the RK-NARMA-L2 controller can be conveniently applied 
for nonlinear MIMO systems. 
The paper is organised as: NARMA model is overviewed in 
section 2. The details related to the introduced controller and 
Runge-Kutta identification technique are summarized in section 
3.  Results of the control performance assessment for nonlinear 
three tank system are illustrated in Section 4. The paper is 
finalized with detailed discussion in conclusion part.  

2. NARMA-L2 Model and Controller 
Nonlinear dynamical systems can be expressed via NARMA 
model around the equilibrium state [11]. NARMA model can be 
given in companion form: 

         (1) 
Here, d denotes relative degree [12][13]. For , if the 
NARMA model is rewritten as 

         (2)     
and if “n-1” is substituted in place of “n” time index, the model is 
obtained as 

         (3)     
NARMA-L2 model is a very effective system identification 
structure derived via Taylor expansion. For system model given 
in (3), NARMA-L2 model where control signal appears linearly 
[4],[7],[11]-[15] is written as 

                                                                 (4)     
where 

       (5) 

                                                 (6) 

It is possible to express Taylor expansion for MIMO system as: 
                                                       (7) 
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Fig. 1.  A schematic diagram of RKNARMA-L2   control architecture. 

In (7), 

 (8) 

q and m denote output and input dimensions and:   

                                                             (9) 

reference signal can be substituted in place of  
in order to attain control signal so that system output equals the 
reference signal. Required control input that forces the controlled 
outputs to reference signals is computed as follows: 

                                              (10) 
As observed in (8) and (9), the entries of the matrix are 
system Jacobian which is obtained using RK system model. 

3. Proposed RK NARMA-L2 controller 
Figure 1 demonstrates mechanism of RK NARMA-L2 controller 
where number of the system inputs-outputs are represented by R 
and Q respectively. The adjustment mechanism is composed of 
two crucial parts to be examined: RK NARMA-L2 controller to 
compute required control input and RK system model to estimate 
system dynamics required to constitute the  matrix. To 
enhance the understandability of the proposed control 
architecture, RKNARMA-L2 is used as an abbreviation to Runge-
Kutta NARMA-L2 controller  and RKmodel is utilized to denote 
Runge-Kutta system model. The adjustment mechanism given in 
Figure 1 consists of two main phases which are executed online 
consecutively: prediction and control phases. 
 
3.1 Prediction Phase (RKmodel) 
The candidate signal ( ) is calculated as given in (10) by 
using the system Jacobian derived via RKmodel. Then, to observe 

the system response to the acquired , it is applied to the 
RKmodel. RKmodel detailed in Figure 2 incorporates three sub-
blocks to capture the MIMO nonlinear system dynamics: raw 
Runge-Kutta system model, Runge-Kutta Model based 
EKF(RKEKF) and Runge-Kutta based Model parameter estimation 
(RKestimator ) sub-blocks[10],[16]–[18].  
 
3.1.1. Runge-Kutta System Model 

Let a nonlinear continuous-time MIMO system be represented 

by: 

                            (12) 

In (12) denotes state vector and 
stands for input vector, 

denotes system outputs,  and  are continuously differentiable 
functions with respect to system states and control inputs [10] 
[18]. The following constraints are valid for x and u [10, 16–18] 
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                                   (13) 

The continuous nonlinear system given in (12) and (13) can be  
discretized using 4th order RK integration method, and system 
states are approximated with: 

    (14) 

and 

                      (15) 

where 

                         (16) 

The discrete system model in (14)-(16) can be rewritten as 
follows: 

                             (17) 

Using approximated states as entry in (17) repetitively, a 
predictive model can be derived as: 

               (18) 

where K indicates prediction horizon. The model in (18) 
necessitates state information ( ) as well as 
accurate system parameters ( ) if there is deterioration in 
parameters. Therefore, RKEKF is utilized to obtain current system 
states and RKestimator is required to identify the uncertain 
parameters via optimization theory. Using the current system 
states and model parameters in recursive predictive model in (18), 
the system behavior can be accurately identified. 

  
3.1.2. An overview of RKEKF 

EKF is one of the effective filters to attain system states via 
observed system input-output. Let a discrete-time nonlinear 
MIMO system be represented with: 

                              (19) 

Here,  is system noise vector with covariance matrix ,  
expresses measurement noise vector with covariance matrix  
[10], [16]. In prediction phase of EKF, states and covariance 
matrix can be written with  state transition matrix as [10], 
[16], [19]: 

                             (20) 

 Then, Kalman gain matrix  is derived,   and  in 

prediction step can be straightened as [10], [16]: 

                             (21) 

 and  in (21) are derived as [10], [16]: 

                  (22) 

Here, 

                  (23) 

for i=1,..,N and j=1,…,N. 

                  (24) 

                              (25) 

   (26) 

   (27) 

       (28) 

3.1.3. An overview of RKestimator 

The identification performance of RKmodel is directly dependent 
on parametric accuracy of the model( ). If system model 
parameters diverge from their actual values or system model 
parameters cannot be measured accurately, success of the 
identification carried out by RKmodel gets worse[16]. Thus, in 
order to improve the identification performance of RKmodel, it is 
required to utilize online adjustment mechanism [16]. For this 
purpose, the following adjustment rule is deployed to optimize 
parameter vector of RKmodel ( )[10]: 

                                                   (29) 

where 

  (30) 

and 

                        (31) 

For the computation of Jacobian matrix in (30),   is 

required. The  term is derived as[10]:  

                      (32) 

min max
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     (33) 

3.2. Control Phase (RKNARMA-L2) 

In order to constitute control law in (10), it is required to compute
 matrix.  The Jacobian information can be approximated via 

RKmodel as follows [10]: 

            (34) 

 term is calculated as [10]:  

 (35) 

                                  (36) 

Thus, all derivations required to attain  matrix for the 
computation of   by RKNARMA-L2 controller are given in (7)-
(10) and (34)-(36). When NARMA controller is derived, some 
high order terms are neglected in Taylor expansion. Therefore, in 
order to minimize the tracking error resulting from linearization, 
a correction term for the control input ( ) is summed up 
with RKNARMA-L2 controller output. To compute , objective 
function given in (37) is minimized. 

 
      

 (37) 

Here, . By considering a small 
deviation as  from control signal, the objective function in 
(37) can be expanded via Taylor expansion: 

  (38) 

Using first order optimality conditions, it is possible to acquire 
correction term as follows: 

        (39) 

By approximating the Hessian as [10] 

            (40) 

is calculated as [10] 
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Fig. 3.  Three Tank System [10, 16, 17, 22, 23]. 
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In a nutshell, the suboptimal correction term ( )  is summed 
up to the control signal computed with RKNARMA-L2 controller, 
optimal control vector ( ) is attained as 

 [10, 16]. 

4. Simulation Results 
Proposed RKNARMA-L2 controller has been assessed by simulations 
performed on TTS. Figure 3 illustrates a schematic diagram of 
TTS which is a benchmark system formed by interconnecting 
three ideal cylindrical tanks serially [10, 16, 17, 20-23].  
Table 1. Parameters for TTS [10, 16, 17, 22, 23]. 
Symbol Parameter description Value 

 coefficient  of outflow 
(among tank 1 and tank 3) 

0.52         

 coefficient of outflow 
(among tank 3 and tank 2) 

0.55 

 coefficient of outflow 
(from tank 1 to the reservoir) 

0.26 

 coefficient outflow 
(from tank 2 to the reservoir) 

0.28 

 coefficient of outflow 
(from tank 3 to the reservoir) 

0.45 

 cylinderal cross section 0.0154[  ] 
 Cross section of connection pipe n  
 gravitational constant  

 

Two pumps above the tanks are deployed to pump the water, and 
valves restrict the flow between tanks [10, 16, 17, 20, 21]. The 
differential equations given in (43) represent the dynamics of 
TTS: 

                  (43) 

where; 

               (44) 

 shows height of the liquid, indicates the control 
signal, is rate of flow between tanks [10][16],[17],[22]. The 
description of the symbols in (43),(44) and Figure 2 are given in 
Table 1. In this context,  and  represent outputs to be 
controlled,  and  are control input signals.  is 
an uncontrollable system dynamic [21].  
The control signal limitations of the TTS are given as 

 and  and Ts=1s in 
the simulations [10],[16][23]. The RKNARMA-L2 controller 
performance is compared with RKGPC for nominal, measurement 
and parametric uncertainty cases. 
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4.1. Nominal Case 

The reference tracking performance of RKNARMA-L2 is given in 
Figure 4 (a,d). Control inputs and correction terms computed by 
RKNARMA-L2 are also depicted in Figure 4 (b,c,e,f). It is clearly 
seen from Figure 4 that RKNARMA-L2 controller provides small 
tracking errors for controlled outputs. The impact percentage of 
the RKNARMA-L2 controller and correction terms on construction of 
control signal is illustrated in Figure 5. It can be seen that almost 
all control task is carried out by RKNARMA-L2 controller. 
 

4.2. Measurement Noise Case 

The RKNARMA-L2 controller performance has been assessed for the 
case where measurement devices are contaminated by 
measurement noise. Therefore, ,  are incurred 

measurement noise having standard deviation values 휎 (푡) =
휎 (푡) = 0.03 . Closed –loop performance is depictured in Figure 
6. Also, Figure 7 illustrates percentage of control task. 

4.3. Parametric Uncertainty 

By considering the outflow parameter as the parameter with 
uncertainty given as 푎푧 (푡) = 0.52 + 0.28 sin(0.0133 휋푡), 
prediction achievement of RKestimator subblock in RKmodel ,and 
tracking ability of  RKNARMA-L2 controller can be examined as 
given in Figure 8. The convergence of the uncertain parameter to 
its actual value is illustrated in Figure 8(g). The control task share 
is given in Figure 9. 

4.4. Computation Time 

In this section, the computational load of the algorithms has been 
examined. For this purpose, the total computation times of the 
algorithm have been illustrated for the mentioned three different 
cases in Figure 10. In Figure 10 (a,b,c), the computation times for 

 1y t  2y t

Fig. 6.  (a,d) Outputs of the system, (b,e) control inputs and (c,f) correction terms for measurement noise case. 

Fig. 7.  Percentage of control task share between (a)RKNARMA-L2 
controller and (b)correction terms ( ) for measurement noise case. δu

Fig. 5.  Percentage of control task share between (a) RKNARMA-L2 
controller and (b) correction terms( δu ) for the nominal case. 
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nominal case, and for the cases where measurement noise and 

parametric uncertainty are implemented are illustrated 
respectively. Maximum computational time is less than 5 ms.  
Thus, controller is convenient for real time applications. 

4.5. Comparison with Runge-Kutta based GPC 

The performance of the controller has been compared with 
Runge-Kutta GPC(RKGPC) proposed in [10] to provide a basis for 
evaluation. Since RKNARMA-L2 controller is constructed via one-

step ahead model behavior, and to carry out a fair evaluation, the 

prediction horizon for predictive mechanism is chosen as “1”.  

Fig. 8.  (a,d) Outputs of the system, (b,e) control inputs, (c,f) correction terms ,(g)  uncertain parameter 푎푧 ( ) and its estimation for parametric 
uncertainty case. 

Fig. 9.  Percentage of control task share between (a)RKNARMA-L2 
controller and (b)correction terms ( ) for parametric uncertainty δu

Fig. 10.  Computation times[ms] for (a) nominal, (b) measurement 
noise and (c) parametric uncertainty cases. 
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The tracking performance of RKGPC is depicted in Figure 11 for 
nominal condition. The performance of the RKGPC for 
measurement noise and parametric uncertainty cases are 

illustrated in Figure 12 and 13, respectively. The magnitude of 

chattering control signals is larger in RKGPC compared to 
RKNARMA-L2 This chattering can be suppressed by increasing the 
prediction horizon. The following performance index function is 

deployed to constitute Table 2 for performance comparison.  

Fig. 12.  (a,d) Outputs of the system, (b,e) control inputs and (c,f) correction terms for measurement noise case(RKGPC). 

Fig. 11.  (a,d) Outputs of the system, (b,e) control inputs and (c,f) correction terms for nominal case(RKGPC). 
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(45) 

 Table 2. Performance Comparison via (45). 

Cases\Controller RKNARMA-L2 RKGPC 

Nominal 216.9048 220.1724 
Measurement Noise 216.8309 244.0223 
Parametric Uncertainty 609.0902 627.7495 
 
As can be seen from Table 2, RKNARMA-L2  has better performance 
than RKGPC. It is observed that RKNARMA-L2 is 1.4841 %, 11.1430 
% and 2.9724 % better than RKGPC for nominal, measurement 
noise and parametric uncertainty cases, respectively.  In order to 
evaluate the applicability of the control algorithms, the 
computation times are illustrated in Figure 10 and Figure 14 for 
RKNARMA-L2 and RKGPC respectively. Table 3 is obtained by 
considering the maximum computation times of RKNARMA-L2 and 
RKGPC  for each case. 
As can be seen from Figures 4,6,8, RKNARMA-L2 controller has 
small steady state error owing to the negligence of high order 
terms in Taylor expansion. RKNARMA-L2 controller has no 
chattering in comparison with RKGPC. Chattering in RKGPC can be 
enhanced by increasing prediction horizon. However, the 
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Fig. 13.  (a,d) Outputs of the system, (b,e) control inputs, (c,f) correction terms ,(e)  uncertain parameter 푎푧 ( ) and its estimation for parametric 
uncertainty case(RKGPC). 

Fig. 14.  Computation times[ms] for (a) nominal, (b) measurement 
noise and (c) parametric uncertainty cases (RKGPC). 
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prediction horizon was chosen as “1” to avoid injustice to 
RKNARMA-L2 controller and to provide a fair comparison. 
 
Table 3. Computation times [ms] for RKNARMA-L2  and RKGPC. 

Cases\Controller RKNARMA-L2 RKGPC 

Nominal 2.7561 5.7146 
Measurement Noise 2.5959 5.7053 
Parametric Uncertainty 3.9749 5.8008 
 

5. Conclusion 
In this study, a new control architecture with a RKNARMA-L2 
controller is proposed for MIMO and nonlinear systems. Control 
performance is evaluated for three different operating conditions 
on TTS. RKGPC is utilized to evaluate the control performance of 
the introduced controller. The computational loads of the control 
algorithms have also been evaluated to justify the real time 
applicability of the methods. The attained results and 
computational loads indicate that it is possible to employ the 
proposed RKNARMA-L2 control architecture successfully. 
It is intended to work on stable and adaptive control methods 
derived via Runge-Kutta identification method in future studies. 
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