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Abstract: Alzheimer’s disease (AD) is a severe neurodegenerative disorder of different brain regions
accompanied by distresses and affecting more than 25 million people in the world. This progressive
brain deterioration affects the central nervous system and has negative impacts on a patient’s
daily activities such as memory impairment. The most important challenge concerning AD is the
development of new drugs for long-term treatment or prevention, with lesser side effects and greater
efficiency as cholinesterases inhibitors and the ability to remove amyloid-beta(Aβ) deposits and
other related AD neuropathologies. Natural sources provide promising alternatives to synthetic
cholinesterase inhibitors and many have been reported for alkaloids while neglecting other classes
with potential cholinesterase inhibition. This review summarizes information about the therapeutic
potential of small natural molecules from medicinal herbs, belonging to terpenoids, coumarins, and
phenolic compounds, and others, which have gained special attention due to their specific modes of
action and their advantages of low toxicity and high efficiency in the treatment of AD. Some show
superior drug-like features in comparison to synthetic cholinesterase inhibitors. We expect that the
listed phytoconstituents in this review will serve as promising tools and chemical scaffolds for the
discovery of new potent therapeutic leads for the amelioration and treatment of Alzheimer’s disease.

Keywords: Alzheimer’s disease; cholinesterase inhibitors; terpenoids; phenolic compounds; coumarins

1. Introduction

The research of novel drug candidates has shown that natural products such as plant
extracts and plant-originated compounds have enormous potential to become drug leads
with neuroprotective activity. Several non-alkaloid phytochemicals have been obtained
from natural sources, including terpenoids, coumarins, flavonoids, and other phenolic
compounds which have beneficial neuroprotective properties particularly in cholinesterase
inhibition hence, they are potential drug candidates for the treatment of Alzheimer’s
disease (AD). Alzheimer’s disease (AD), one of the leading causes of dementia, is an
overwhelming neurodegenerative disease that particularly affects brain function, resulting
in memory loss and impairment of language, emotional disturbance, personality changes,
depression, behavioral problems, and judgment capacity [1,2]. Besides dementia, it is
a major cause of death amongst old people. In the brains of Alzheimer’s disease (AD)
patients, key neuropathological features of pathological protein deposits such as insoluble
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amyloid-β (Aβ peptides which form senile plaques) and hyperphosphorylated tau (which
aggregates into NFTs) have been revealed [3]. It was reported that 35.6 million individuals
suffered from AD in 2010, over 44 million people had dementia in 2013, and that the
number will increase regularly to around 115 to 135 million individuals by 2050 [4,5]. The
major physiological evidence of AD involves the degradation of cholinergic neurons and
reduction in acetylcholine.

Cholinergic neurotransmission is terminated by two cholinesterases acetylcholinesterase
(AChE) and butyrylcholinesterase (BChE), which play an essential role in the hydrolysis of
ACh [6]. According to the cholinergic hypothesis, memory impairment in Alzheimer’s disease
is due to the deficit of cholinergic function in the brain, thereby, reducing hippocampal and
cortical levels of the neurotransmitter acetylcholine (ACh) and associated enzyme choline
transferase [7,8]. In the healthy brain, acetylcholinesterase (AChE) is the most important
enzyme regulating the level of ACh, while butyrylcholinesterase (BChE) plays a minor role [1].
It is therefore expected that if the hydrolysis of ACh by AChE and BChE is inhibited in the
brain of an AD patient, the amount of ACh in the synapse will be significantly increased and
the neurotransmission mechanism will be more fluid [9]. For this reason, acetylcholinesterase
(AChE) and butyrylcholinesterase (BuChE) inhibitors such as galantamine, donepezil, and
rivastigmine are used in the management of AD, and the inhibition of the two types of
cholinesterase enzymes (AChE and BuChE) as remedial for such treatment [10]. However,
the high cost, non-selectivity, limited efficacy, poor bioavailability, and adverse cholinergic
side effects in the periphery, such as nausea, vomiting, diarrhea, dizziness, gastro-intestinal
disorders, moderate to low effectiveness, short half-life, and hepatotoxicity are the several
limitations of these drugs [11]. These reasons have prompted the search for newer molecules
from natural products by researchers worldwide because cholinesterase inhibitors are known
to occur in plants used traditionally for failing memory and other cognitive declines associ-
ated with age [12]. For example, galantamine, physostigmine, and huperzine A have been
isolated from Galanthus nivalis, Physostigma venenosum, and Huperzia serrata, respectively,
and clinically used for AD symptomatic management [13].

Alkaloids include a high number of compounds with anticholinesterases, though
some terpenes, coumarins, and lignans have been shown to have this activity. Recently,
research has targeted alkaloid compounds as potent anticholinesterase compounds and
little attention has been given to other classes. In this review, we report a representative
update of terpenoids, phenolic, and coumarin compounds with their AChE and BChE
inhibitory potentials according to reports from 2009 to 2021.

2. Natural Non-Alkaloid Cholinesterase Inhibitors

Alzheimer’s disease (AD) is the most common form of dementia mostly in old peo-
ple, characterized by low acetylcholine levels and oxidative stress, involving progressive
neurodegeneration with the formation of amyloid-β deposits in the brain. The number of
individuals suffering from this disease and its related neuropathologies has been increasing
over the years and a majority of the patients are old people. A proper strategy to overcome
AD is by the inhibition of cholinesterase enzymes which helps to increase acetylcholine
levels in the brain which is necessary for neurotransmission, memory, reasoning, and other
cognitive activities. Though synthetic cholinesterase inhibitors, including rivastigmine,
donepezil, and galantamine are usually employed as a remedy to AD, there is a growing
interest in the search for new cholinesterase inhibitors from natural sources due to the
drawbacks of synthetic ones, and most non-alkaloid natural anticholinesterase compounds
are terpenoids, phenolic compounds, and coumarins, amongst others.

The Supplementary Material (Tables S1–S4) gives the representative non-alkaloid
naturally occurring compounds with useful anticholinesterase properties obtained mainly
from plants as summarized below (Figure 1). Figure 1 gives a vivid indication of sources
of starting material for cholinesterase inhibitory compounds and drugs. The compounds
obtained from these plants have been explored to target pathological features in neurode-
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generative diseases such as AD and can be also used as a starting point to design a new
library of potent derivatives.
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Figure 1. Non-alkaloid cholinesterases inhibitors and their natural sources.

3. Discussion
3.1. Terpenoids

Several terpenoids from natural sources have been reported as cholinesterase inhibi-
tors [14–42]. The compounds 1–11, as shown in Supplementary Material (Table S1),
are of the Abietane-type diterpene skeletons isolated from Salvia austriaca, Salvia gluti-
nosa, Caryopteris mongolica, and Perovskia atriplicifolia [14–16]. Between compounds 2–7,
there is an -OH group on the side chain, except for compound 5 which has a methoxy
(CH3O-) group on the side chain and has the highest AChE inhibition activity. The high
activity could be due to the presence of this methoxy group. In the same way, com-
pound 2 has good activity and possesses a methoxy group on ring C and has an IC50 of
27.9 ± 5.2 µM compared to compound 5 with an IC50 of 20.8 ± 7.1 µM. Compounds 8 to
11 are miltirone derivatives though with little structural differences, there is no significant
difference in their cholinesterase inhibition activity. Compounds 12–19 are tanshinone
derivatives [16]. Compounds 16 and 17 are the most active with percentage inhibitions
of 6.19 ± 3.91% and 5.55 ± 3.03%, respectively at 10 µg/mL. This could be attributed to
the conjugated double bond system in ring A which is particular to these two compounds.
Compound 20, a monoterpene glycoside nuciferoside, shows very high activity with an
IC50 value of 3.20 ± 0.22 µM [17]. Compounds 21–36 are cycloartanes triterpenoids iso-



Molecules 2021, 26, 5582 4 of 13

lated from Cimicifuga dahurica and Nelumbo nucifera [17,18]. Amongst them, compound
25 is the most active with a percentage inhibition of 15.8 ± 4.3% and 14.0 ± 2.6% on
AChE and BChE, respectively, at 100 µM. This could possibly be attributed to the ab-
sence of the double bond in ring B of this compound. Compounds 37–42 are lupane
type triterpenoids isolated from Garcinia hombroniana and Xylia xylocarpa and they show
relatively low activities [19,20]. The oleanane triterpenoids 43, 44, and 45 isolated from
Xylia xylocarpa and Rhynchospora corymbose show low activities [19,21]. The sterols 46 and
47 from Rhynchospora corymbose show low activities as well as the monoterpenes 48, 49, and
50 from Pimpinella anisoides [21,22]. Sesquiterpene lactones from 51–64 isolated from Inula
spp., Cynara cornigera, and Amberboa ramosa show good anticholinesterase activities [23–25].
Compounds 58–61 are amberbin C, amberin, amberbin A, and amberbin B, and have
high anticholinesterase activity [24]. Amongst them, those possessing sugar moieties,
amberin (IC50 17.5 ± 0.01 µM and 2.7 ± 0.02 µM for AChE and BChE, respectively) and
amberin B (IC50 0.91 ± 0.015 µM and 2.5 ± 0.15 µM for AChE and BChE, respectively)
are the most active and the structural difference between them is the interchange of the
positions of an acetyl group and sugar moiety. The agarofuran derivatives 62–73 isolated
from Euonymus japonicus and Maytenus disticha have low activities [25,26]. The taraxaranes
74, 75, and 76, oleananes 77, 78, and 79, as well as the ursane tritepenoids 80 and 81,
have relatively low activities except for compound 74 with IC50 values of 13.5 ± 0.95 µM
and 10.6 ± 0.54 µM on AChE and BChE inhibitions [20,27,28]. Its relatively high activity
could be attributed to the presence of the caffeoyl group at position 3. It can be concluded
that amongst the terpenoids, sesquiterpenes are the most active compounds, especially
sesquiterpene lactones.

3.2. Phenolic Compounds

Phenolic compounds from natural sources have shown anticholinesterase activity in
several studies [34,43–84]. Phenolic compounds whose anticholinesterase activities have
been reported are given in the Supplementary Material (Table S2). Compounds 1–19 are
flavone derivatives with a double bond in ring C and a carbonyl at position 4 [34,43–53].
There is no observable regular pattern of variation in activity. However, compounds with
no hydroxyl group on position 3 show seemingly high cholinesterase inhibition activity,
for example, compounds 4 and 5. However, compounds 16–19 do not have a hydroxyl
group at position 3 but their activities are low and could be accounted for by the occurrence
of methoxy groups on the other rings. There is an observable decrease in cholinesterase
inhibition in flavones with methoxy substituents, for example, compounds 13 and 14, and
compounds 7 and 8. This observation is not true for compounds 14 and 15 as 14 has a
methoxy group on ring B but is more active than 15 without a methoxy group. This could be
due to the absence of a substituent on ring B of compound 15. Between cirsilineol (18) and
isothymusin (19), an additional hydroxy group on ring A causes a decrease in cholinesterase
inhibition. For the flavonoid glycosides, compounds 20–33 [43,45,46,49,50,54,55], those
with a sugar moiety at position 7, have higher activities than the others, for example, 27, 28,
and 29 isolated from Achillea millefolium. If the sugar has substituents, as is the case of 32
and 33, the activity is further reduced. Compounds 34 to 38, isolated from Dodonaea viscosa,
have isoprenyl substituents but, however, show no significant difference in their activi-
ties [51]. Rather, their activities are lower than their corresponding compounds without
isoprenyl substituents. Compounds 39–41 have acetyl groups and their BChE inhibitory
activity decreases with an increase in the number of acetyl groups [21]. The phenolic
acid compounds 42–45, and compound 44 ferulic acid methyl ester have a good percent-
age of cholinesterase inhibition [17,18,57]. The presence of sugar substituents causes a
decrease in cholinesterase inhibition as seen in compounds 46–48 [17,58], while an addi-
tional phenolic group causes an increase in cholinesterase inhibition as seen in compounds
49–64 [16,18,47,52,59–62]. Amongst the biphenyl compounds, 58, 59, 60, and 61 isolated
from Myristica cinnamomea have high activity, and in these compounds, the carbonyl func-
tion is adjacent to one of the phenyl groups (phenyl carbonyl). Isoflavones compounds
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65–79 isolated from Iris pseudopumila, Maclura pomifera, and Belamcandae chinensis rhizoma
have low activities [52,54,59,63]. Amongst them, methoxy substituents cause no significant
change in cholinesterase inhibition while the presence of sugar molecules causes a decrease
in this activity. For those with prenyl groups (75–79) isolated from Maclura pomifera, there
was no observable effect due to the presence of the prenyls, but an -OH group on ring B
caused an increase in activity between compounds 75 and 76. Catechin and its derivatives
79 to 84 isolated from Eugenia dysenterica and Orostachys japonicus had no good activity and
no significant difference despite structural differences except between compound 82 and 83
where the additional benzoic acid substituent increased AChE and BChE inhibition activi-
ties [40,44,57]. This observation was similar for the flavanones 85 to 89, though the addition
of sugar molecules caused an increase in AChE and BChE inhibitions in compound 90
compared to compound 85 [50,51,56,64]. The xanthones compound 95–101 isolated from
Garcinia mangostana and Belamcandae chinensis rhizoma showed moderate to good AChE
and BChE inhibition activities [19,66,67]. Evidently, an increase in the hydroxyl groups
causes an increase in the cholinesterase inhibitory activity of these xanthones, while no
significant difference in cholinesterase inhibition is observed for the prenyl groups. For the
chalcones 102 to 105 isolated from Humulus lupulus, the activity decreases from compound
102 to 105 with a decrease in the number of hydroxyl (-OH) substituents [56]. Aurones
106–109 isolated from Morus alba have low activities though 109 had BChE inhibition with
an IC50 of 7.22 ± 0.22 µM [68]. Amongst the tannin compounds 110 to 115, isolated from
Cornus officinalis, Phyllanthus niruri, and Calceolaria talcana, compound 114 (Isocorilagin) is
the most active with an IC50 of 0.49 µM and 4.20 µM on AChE and BChE inhibition, re-
spectively [28,32,36,69,70]. This could be because it is less bulky, having only three benzoyl
groups as compared to compounds 112 and 113 with five benzoyl groups and 110 and 111
with four benzoyl groups. The triflavanone Garcineflavanone A and biflavonol Garcine-
flavonol A isolated from Garcinia atroviridis both showed good percentage inhibition of
cholinesterase. M. charantia extract showed many inhibitory activities, however, ligballinol
a lignan found in extract showed relatively high activity. According to previous studies,
not many lignans have been reported to exhibit cholinesterase inhibitory activity [85].

3.3. Coumarins

Coumarins constitute another important class of cholinesterase inhibitors as seen in
some scientific reports [86–95]. Compounds 1–6 (Table S3) isolated from Angelica archangel-
ica, Caryopteris odorata, and Mutellina purpurea showed low activities, and although with
slight structural differences, there is no significant difference in their activities [86–89].
Between compounds 6 and 7, the addition of a prenyl group decreases the percentage
inhibition. Compound 9, Umbelliprenin, isolated from Heptaptera cilicica, shows good
activity with IC50 values of 5.86 ± 0.030 µM and 1.10 ± 0.190 µM on AChE and BChE
inhibition [90,91]. By adding hydroxyl (-OH), carboxyl (-COOH), or acetyl substituent to
compounds 10, 11, and 12, respectively, the percentage inhibitions increase as compared
to compound 7 [90]. Subsequent addition of isoprenyl groups, as seen in compounds 13
and 14, decreases the percentage cholinesterase inhibition [90]. This effect is illustrated
with compounds 15 and 16 in which addition of one isoprenyl group to compound 15 to
obtain 16 decreases AChE percentage inhibition from 11.47 ± 1.73% to 7.03 ± 2.08% and
also between compound 17 and 19 where the addition of one isoprenyl decrease BChE
inhibition from 51.04 ± 1.88% to 23.82 ± 2.41% [90]. For di-o prenylated coumarins, 22
with two O-geranyl groups and 23 with two O-farnesyl groups, 23 shows a higher per-
centage inhibition than 22, and this could be attributed to the additional isoprene unit
in 23 [90]. For the coumarins 24 to 32, the only structural difference is on the side chain
and this causes a significant difference in the cholinesterase inhibition activity of the corre-
sponding compounds [90]. For these compounds, unsaturation in the side chain caused
no significant change in the cholinesterase inhibition activity. However, compound 26
having a styryloxy group has the highest AChE inhibition percentage while compound
30 with the isobutyloxy group has the highest BChE inhibition activity. Compounds 33 to
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41, isolated from Angelica officinalis, Leiotulus dasyanthus, and Angelica archangelica, did not
show significant activity [45,88,89,92]. The umbelliferone and its derivatives, compounds
42 to 46 isolated from Angelica archangelica, Leiotulus dasyanthus, and Heptaptera cilicica,
showed good activity [45,88,91]. The most active umbelliferone derivatives were conferone
(IC50 3.31 ± 0.014 µM and 9.31 ± 0.280 µM on AChE and BChE respectively), mogoltacin
(IC50 1.95 ± 0.050 µM and 9.74 ± 0.003 µM on AChE and BChE respectively), and feselol
(IC50 1.26 ± 0.010 µM and 9.98 ± 0.240 µM on AChE and BChE respectively) and were
all isolated from Heptaptera cilicica. It can be concluded that, in the class of coumarins,
umbelliferone derivatives are the most potent cholinesterase inhibitory compounds.

Other miscellenous compounds (Table S4) have equally shown interesting acetylcho-
linesterase and butyrylcholinesterase inhibitory activities [96–116].

3.4. Some Considerations on Terpenoids, Phenolic Compounds, and Coumarins as
Cholinesterase Inhibitors

It is important to search for new therapies which are more effective than those cur-
rently existing, and which can both prevent neurodegenerative diseases such as AD and
block the progression of these pathologies at their early stages, thereby reducing the socioe-
conomic costs involved in the management of AD and the patients [117]. Acetylcholine
is a key neurotransmitter involved in cognitive activities, but its activity can be reduced
by AChE and BChE which hydrolyze acetylcholine into choline and acetic acid causing
the cholinergic neurotransmission to decrease. The development of many therapies for
AD is based mainly on this cholinergic hypothesis, and the remediation of acetylcholine
levels and cholinergic function in the central nervous system through the inhibition of
cholinesterase enzymes (AChE and BChE) can eliminate the pathologies of AD. The classes
of cholinesterase inhibitors discussed here are mainly terpenoids, phenolic compounds,
and coumarins, and some of these compounds have shown high potency. In order to
consider which classes are most suitable, based on the benefits and drawbacks, certain
structural features of each class will be of great importance. Using chalcones as an example,
it is believed that besides economical and cost-effective production, small molecular size
and flexibility for modifications to improve lipophilicity necessary for blood-brain barrier
permeability are important to consider for a preferred potential therapeutic candidate for
AD [118]. Terpenoids are able to inhibit cholinesterases in different ways. It has been
shown that 1,8-cineole, α-pinene, and camphor could inhibit AChE reversibly [119]. Cer-
tain tanshinone derivatives could be noncompetitive inhibitors of AChE and BChE in
humans and are able to bind to the allosteric site of cholinesterases principally through
hydrophobic interactions and also through hydrogen bonds with Tyr337 and Gly120 of
AChE [120]. Carbonyl function in terpenes can bind by covalent arrangement to the
free amino or sulfhydryl groups of the enzyme while phenolic hydroxyl groups bind
proteins, leading to the conformational change of the enzyme [121]. Terpene alcohols
and terpene hydrocarbon compounds possess identical cholinesterase inhibition while
terpenoids with a ketone group exhibit stronger cholinesterase inhibition and an allylic
group increases activity [121,122]. Amongst the terpenoids, monoterpenoids are the most
promising because the inhibition of AChE has been shown to remedy AD by inhibiting
amyloid-beta-induced neurotoxicity and also clearing it, tau-protein phosphorylation, and
oxidative stress by boosting antioxidant defenses, neuroinflammation, restoration of mito-
chondrial function, initiation of processes with simultaneous inhibition of pro-apoptotic
genes and proteins [123]. In the phenolic compounds, inhibitory activity is influenced by
the position and number of hydroxyl and methoxyl groups bonded to the phenol ring,
and the methoxy substitution on the phenol ring improves cholinesterase inhibitory ac-
tivity and phenolic acids are capable of inhibiting the formation of amyloid β-peptide
(Aβ) fibrils [124]. Phenolic compounds exert neuroprotective effects, though it is assumed
that the transfer of polyphenols through the blood–brain barrier is limited, likewise, a
considerable number of reports discuss the absorption and presence of phenolic acids in
the brain [125]. Phenolic compounds are able to bind to the active sites of AChE or BChE
resulting in the inhibition of these enzymes [126]. Aromatic ring moieties are suggested to
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be involved in the selection and stabilization of the positive charge of the quaternary group
in the acetylcholine, and some of the flavonoids can induce modifications in the structure
of cholinesterase enzymes blocking entrance into the active site and those with free OH-
groups are also more potent than glycosylated ones. Phenolic compounds structurally
similar to caffeic acid are capable of fitting into the gorge of the active site of AChE and are
more potent [127]. In coumarins, it has been shown that those with larger substituents at
position 7 have a higher inhibitory effect than those with small substituent groups at the
same position, and equally, compounds that contain a coumarin nucleus and a long-chain
substituent with some phenyl and aryl/benzyl-piperazines groups can be more potent
inhibitors of cholinesterase [128,129]. The anticholinesterase activity of coumarins is mostly
dependent on their binding ability on the enzyme, and this activity is greatly improved
in the scaffolds with some cholinesterase inhibitory drugs [129]. Moreover, the structure
of coumarins is highly modifiable through chemical means, thereby presenting them as
suitable starting materials for the synthesis of drugs. Many cholinesterase drugs with a
coumarin nucleus have been reported, making coumarin a priority pharmacophore for
cholinesterase inhibitors. In a study in which 36 isolated compounds were classified and
discussed according to their anti-AChE pharmacological potency, phenolic compounds
and flavonoids were mostly found in the low activity zone of natural acetylcholinesterase
inhibitors according to their ability to bind to the active site of acetylcholinesterase [130].
Coumarins and terpenoids occupied zones indicated as moderate to high activity and
capacity of binding to the active site of acetylcholinesterase [130].

However, preclinical, clinical safety, selectivity, and toxicity of these compounds
are not established, and classification of these compounds based on their benefits and
drawbacks will be controversial and non-conclusive. However, a common point seems to
be the overall size of the compound which should generally be small so as to be able to
cross the blood–brain barrier and exerts its function.

4. Conclusions

Neurodegenerative disease is a generic term applied to a variety of conditions arising
from a chronic breakdown and deterioration of the central nervous system (CNS) neu-
rons. Many of these diseases exist, but Alzheimer’s disease (AD) is the most prevalent.
Alzheimer’s disease (AD) patients present a progressive loss of cholinergic synapses in the
brain regions associated with a decrease in the acetylcholine (ACh), a neurotransmitter,
which appears to be a critical element in the development of dementia. Hence, AD and
other forms of dementia could be treated by the use of agents that restore the level of acetyl-
choline through the inhibition of both major forms of cholinesterase: acetylcholinesterase
(AChE) and butyrylcholinesterase (BChE). Loizzo and co-workers postulated that AD
causes and progression involves four relevant pathogenic events: primary events (genetic
alterations, neuronal apoptosis-like processes leading to premature neuronal death and
brain dysfunction), secondary events (β-amyloid deposition in senile plaques and brain
vessels, neurofibrillary tangles due to the hyperphosphorylation of tau proteins, synaptic
loss), tertiary events (neurotransmitter deficits, neurotrophic alterations, neuroimmune
dysfunction, neuroinflammatory processes), and quaternary events (accelerated neuronal
death due to excitotoxic reactions, alterations in calcium homeostasis, free radical for-
mation, cerebrovascular dysfunction) [117]. The potential use of natural products in the
treatment of neurodegenerative disorders has also been successfully demonstrated in the
field of AD, and also to treat other forms of dementia including vascular dementia, Parkin-
son’s dementia, dementia/Lewy body, and cognitive symptoms associated with multiple
sclerosis and Down syndrome. However, much attention is focused on alkaloids while
little is given to phenolics, terpenoids, and coumarins, and this review gives an update of
representative non-alkaloid compounds with anticholinesterase activity.
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