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Abstract: Mastitis is a common disease that prevails in cattle owing mainly to environmental
pathogens; they are also the most expensive disease for cattle in dairy farms. Several prevention and
treatment methods are available, although most of these options are quite expensive, especially for
small farms. In this study, we utilized a dataset of 6600 cattle along with several of their sensory
parameters (collected via inexpensive sensors) and their prevalence to mastitis. Supervised machine
learning approaches were deployed to determine the most effective parameters that could be utilized
to predict the risk of mastitis in cattle. To achieve this goal, 26 classification models were built,
among which the best performing model (the highest accuracy in the shortest time) was selected.
Hyper parameter tuning and K-fold cross validation were applied to further boost the top model’s
performance, while at the same time avoiding bias and overfitting of the model. The model was then
utilized to build a GUI application that could be used online as a web application. The application
can predict the risk of mastitis in cattle from the inhale and exhale limits of their udder and their
temperature with an accuracy of 98.1% and sensitivity and specificity of 99.4% and 98.8%, respectively.
The full potential of this application can be utilized via the standalone version, which can be easily
integrated into an automatic milking system to detect the risk of mastitis in real time.
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1. Introduction

The global dairy industry was valued at around 720 billion USD in 2019, contributing
to 54% of the global liquid milk share, and it is projected to grow to 1032 billion USD
by 2024 [1]. However, the industry is not invincible, as cattle, like any other animal, can
develop diseases. Among them is clinical mastitis, which is the single most expensive
disease among the dairy industry, resulting in a loss of around 6% of the production
value annually as a result of several factors such as reduction of production, treatment
expenses, and milk discard, while also being among the top reasons for permanent removal
of the cattle from the herd or even cattle mortality [2–4]. While 6% is not a high overall
amount, the loss is drastic to small farms as the loss per cow can be significant, around
100–500 kg/cow/lactation or around a 5–7% decrease in milk yield per lactation [4,5].
Aside from lower milk yield, prevalence of mastitis results in a financial burden to the
farmers as each clinical mastitis case involves therapeutic expenses, veterinary expenses,
labor expenses, premature culling loss, non-saleable milk losses, future reproductive loss,
replacement loss, and/or death loss, all of which could add up to 444 USD; this amount
could be massive for smaller farms or those in low-income countries [6]. Antibiotics alone
or in combination with non-steroidal anti-inflammatory drugs (NSAID) are often used
for preventing mastitis, and they do indeed work efficiently in preventing most of the
economic loss due to clinical mastitis; however, such a strategy should be strictly used for
treatment as long term use of such drugs for prevention rather than treatment results in
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antibiotics/drug residues reaching the end consumers, which results in drug/antibiotic
resistance-related health issues, which themselves cost the human health care industry
around 55 billion USD annually in the United States alone; in other words, the use of
antibiotics for preventive care magnifies the burden and transfers it to other sectors rather
than solving the core issue [7–9].

Mastitis is often caused by microbial infections (mainly bacterial) from the environ-
ment, either directly or through feed, eventually causing pathological lesions and inflam-
mation of the mammary glands that could result in progressive fibrosis or even occurrence
of severe toxemia in the cattle. The severity of the symptoms is determined mainly by the
type of the pathogen and the resistance of the cattle’s mammary gland [10,11]. The cattle’s
mammary gland is not entirely defenseless against these pathogens; the humoral and
acquired immune response of the cattle for the most part could successfully prevent these
pathogens from causing any damage; moreover, the lysosome enzyme found in the cattle’s
milk can also digest the peptidoglycan layer of the Gram-positive and Gram-negative
bacteria, causing their death. Another glycoprotein, lactoferrin, found in milk and other
secretions of the cattle, can also kill some bacterias by hindering their iron intake pathways;
furthermore, animal breeding activities also consider mastitis risk when breeding cattle.
One of the genetic traits considered is the somatic cell count (SCC), as SCCs contribute to
the cattle’s immune system, as low levels of SCC are directly correlated to higher risk of
environmental mastitis, breeding programs tend to favor cattle with high SCCs; however,
this approach is limited in practice [12].

As eradication of mastitis risk is rather quite difficult, preventive measures have been
studied extensively, with antibiotics and probiotics being in the front line of most of the
studies [13]. In a recent study on 108 Dutch dairy cattle, it was estimated that the cost of
preventive measures against mastitis in cattle was around €120/cow/year, of which €81.6
(or 68%) went towards labor expenses with another average of €301/cow/year in the case
of failure or clinical mastitis [14].

Several sensors based on factors such as milk color; temperature; SCC; electrical conduc-
tivity; thermal cameras; and/or enzyme based methods such as L-Lactate dehy-drogenase
(LDH), N-acetyl-beta-D-glucosaminidase (NAGase), and haptoglobin (Hp), have been de-
veloped for commercial use (commonly as biosensors or immunosensors) in automatic
milking systems in different farms to detect and alert the cattle at risk of mastitis before
its prevalence; however, such single parameters can limit the sensitivity and specificity of
the results, not to mention their expenses, cost of specialized labor and equipment, and
limitation to only automatic milking systems, all of which could further limit their use in
small farms and organic farms that do not utilize such advance systems [15–17].

A promising emerging approach in the early diagnosis of mastitis in cattle is the use
biosensors, as such devices are effective at detecting pathogens even at low concentration;
however, the pathogens found in cattle milk that could cause mastitis are quite diverse and
the research on the development of a multi-pathogen detecting biosensor is yet to de-liver
promising results. Among the largest projects aimed at delivering such technology was
the Pathomilk project (Grant agreement ID: 30392), which received €1.7 million of funding
for the development of a rapid biosensor that could potentially detect multiple pathogens
commonly found in milk. The initial technology was based on a DNA hybridization
coupled to surface plasmon resonance detection; however, with more than a decade past
since the project’s initiation, no significant outcomes have been reported. The use of
immunoassays for the detection of pathogens in the milk is also limited owing to the
heterogenous content of the milk that could hinder the antibody binding mechanisms
involved in such assays. Likewise, the use of standard PCR-based methods is limited as
the presence of ions (mainly calcium) plasmin, fats, and somatic cells makes it necessary to
perform several filtrations before the PCR reaction, eventually increasing the overall cost
of the diagnosis [18].

Recent developments in the field of artificial intelligence and machine learning have
revolutionized many fields in recent years, with biotechnology not left behind. Especially
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with Industry 4.0 initiatives, the internet of things (IoT) has made data acquisitions to
perform such analyses more feasible than ever. Recently, the “Sack for Data” approach
was proposed, which included four flex sensors and a temperature sensory to collect eight
udder parameters along with temperature of the udder using Arduino and Raspberry pi
boards only, which are extremely cheap to purchase and easy to use [19]. They have also
utilized cloud technology to automate the data maintenance and using K-nearest neighbor
(KNN) and support vector machine (SVM) algorithms, where they achieved 73% and 86%
mastitis prediction rates, respectively. While these percentages are not perfect, they serve
as a proof of concept to a cheap detection method for mastitis with affordable technology
and some data analytic approach [19].

By the end of 2009, 8000 dairy farms utilized AMS, with the number growing contin-
uously as AMS provides several benefits such as reduction in the labor cost, more time
flexibility, and overall higher milk yield as cattle within AMS can be milking multiple times
per day. Reports had also shown that cattle are calmer in such systems as they can be
milked whenever they are most comfortable [20–22]. Another advantage of AMS it is an
automated system that can collect consistent data, hence different sensors can be integrated
into them to collect specific data including the amount milk, heat, milking time, and so on.

The aim of this study is to utilize the latest trends in data science and machine learning
to develop semi-automated pipelines that could provide relief to farmers from the cost of
mastitis preventive measures, which could add up to €120/cow/year, or at least reduce
the contribution of labor expenses to €0 using the affordable Raspberry pi kits to manually
collect data and predict the risk of mastitis through an online webserver or by integrating
such kits to AMS for a fully automated data collection, which can be integrated into an
open-source application to predict the risk of mastitis in real time. Such a solution could
provide small farmers or farmers with limited technical background great advantages in
monitoring their cattle’s mastitis status without any external expenses and allow them to
save on revenues [19,23].

2. Materials and Methods

The dataset used to train and build the machine learning model for predicting the
risk of mastitis in this study was obtained from recent research lead by Ankitha (2020) [24].
This dataset contains 6600 entries (three entries per cattle) for cattle with 15 attributes;
cow ID, date, breed, months since giving birth, previous occurrence of mastitis, front left
udder inhale limit (IUFL) front left udder exhale limit (EUFL), front right udder inhale
limit (IUFR), front right udder exhale limit (EUFR), rear left udder inhale limit (IURL) rear
left udder exhale limit (EURL), rear right udder inhale limit (IURR), rear right udder exhale
limit (EURR), temperature of the cow, the hardness of an udder (from user input via a
switch), pain due to swelling of the udder (manual user input), photographs of the cow’s
milk, and a binary class label (healthy or mastitis). Among the attributes, only those with
significant variance among the dataset and those that can be measured in a cost-effective
manner were selected.

The raw dataset was preprocessed via SciPy tools and Scikit-learn library’s feature
selection function; unnecessary attributes such as ID, breed, hardness, and pain (which
requires labor) were removed; and parameters that constituted less than 50% variance
among all the entries were also removed [25,26]. The raw dataset contained 6600 samples;
however, it was imbalanced with 3961 healthy cows (60.02%) and 2639 cows with mastitis
(39.98%). To overcome the bias that might arise owing to this imbalance, the RandomOver-
Sampler function from the imbalanced-learn library (within Scikit-learn) was utilized. This
function takes the underrepresented class (here, the cows with mastitis) and generates
sample inputs corresponding to it using its AI-based algorithm.

The balanced dataset was divided into training (6337 entries, 80%) and testing
(1585 entries, 20%) subsets and a total of 26 classification algorithms were utilized to build
26 classification models (RandomForestClassifier, XGBClassifier, LGBMClassifier, Bagging-
Classifier, DecisionTreeClassifier, ExtraTreeClassifier, KNeighborsClassifier, AdaBoostClas-
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sifier, LabelPropagation, LabelSpreading, SupportVectorClassifier, QuadraticDiscriminant-
Analysis, NuSupportVectorClassifier, SGDClassifier, RidgeClassifier, LogisticRegression,
LinearDiscriminantAnalysis, RidgeClassifierCV, CalibratedClassifierCV, LinearSupport-
VectorClassifier, GaussianNB, BernoulliNB, PassiveAggressiveClassifier, NearestCentroid,
DummyClassifier, and Perceptron). They were built without any hyperparameter tuning
(default parameters) and their accuracies were compared. The top performing classifier
was selected and hyper parameter tuning via the grid search method was performed. The
tuned model was then subjected to a 10-fold cross validation and its average mean accuracy
was calculated along with its sensitivity and specificity. The sensitivity and specificity of
the model were also calculated using Equation (1) and Equation (2) respectively.

Sensitivity =
True Positives

True Positives + False Negatives
(1)

Specificity =
True Negatives

True Negatives + False Positives
(2)

The true positives were calculated as the number of healthy cows that were predicted
correctly, false positives were calculated as the number of healthy cows predicted to be at
risk of mastitis, true negatives were calculated as the number of cows at risk of mastitis
that were correctly predicted, and false negatives were calculated as the number of cows at
risk of mastitis that were predicted to be healthy.

3. Results
3.1. Data Preprocessing

Following the preprocessing and features’ selection steps, the eight-udder parameter
(IUFL, EUFL, IUFR, EUFR, IURL, EURL, IURR, and EURR) and temperature attributes
of the cattle were sufficient to generate a functional model with significant accuracy. The
remaining attributes were dropped as their contributions were insignificant; photographs
of the milk and attributes like pain/hardness attributes were also dropped as they are
open to bias (by the labors’ interpretation) and would contribute to higher labor cost. This
dataset was further balanced with RandomOverSampler and the final dataset contained
50% healthy and 50% mastitis samples, totaling 7922 samples. The final curated dataset is
provided in Supplementary Material 1 (S1).

3.2. Model Fitting and Hyperparameter Optimization

The accuracy scores and time taken to build the models with the selected algorithms
are summarized in Table 1. The best performing model was random forest classifier with
an initial accuracy of 99.117%; the suggested parameters from the hyper tuning utilized to
build the final model are summarized in Table 2.

Table 1. Accuracy benchmarks and time taken to build each of the selected 26 models.

Model Name M Accuracy (%) L Time Taken (s)

RandomForestClassifier 99.12 0.60
XGBClassifier 98.68 0.38

LGBMClassifier 98.61 0.17
BaggingClassifier 98.55 0.17

DecisionTreeClassifier 97.85 0.07
ExtraTreeClassifier 96.97 0.04

KNeighborsClassifier 93.56 0.13
AdaBoostClassifier 93.19 0.50
LabelPropagation 91.74 1.82
LabelSpreading 91.48 2.65

SupportVectorClassifier 87.89 0.61
QuadraticDiscriminantAnalysis 87.63 0.05
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Table 1. Cont.

Model Name M Accuracy (%) L Time Taken (s)

NuSupportVectorClassifier 87.44 1.55
SGDClassifier 87.13 0.09

RidgeClassifier 86.69 0.05
LinearDiscriminantAnalysis 86.62 0.07

RidgeClassifierCV 86.62 0.10
CalibratedClassifierCV 86.50 1.25

LinearSVC 86.44 0.32
LogisticRegression 86.06 0.11

Perceptron 83.41 0.05
PassiveAggressiveClassifier 71.67 0.05

GaussianNB 69.34 0.04
BernoulliNB 67.89 0.04

NearestCentroid 62.08 0.05
DummyClassifier 49.21 0.03

All models were generated with default parameters using their respective Scikit-learn classifier/algorithm (via
lazypredict library). M All models were build using the same training and testing sets (same random 80–20 split).
L Accuracy percentages are from the respective model’s performance on the testing set.

Table 2. Parameters used to build the best performing model.

Model name Parameters

Random Forest Classifier

bootstrap=True, ccp_alpha=0.0, class_weight=None,
criterion='entropy', max_depth=None,

max_features='auto', max_leaf_nodes=None,
max_samples=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,

min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=100, n_jobs=None, oob_score=False,
random_state=1000, verbose=0, warm_start=False

Figure 1 depicts the confusion matrix of the best performing model (i.e., hyper
parametrized random forest model). The sensitivity (the percentage of cows in risk of
mastitis that were correctly predicted) and specificity (the percentage of cows possessing
no risk to mastitis that were correctly predicted) of the model calculated from the confusion
matrix were calculated via Equations (1) and (2), and were found to be 99.36% and 98.77%,
respectively. The mean accuracy of the model following the 10-fold cross validation was
calculated to be 98.10%, with a standard deviation of 0.043.

Figure 1. Confusion matrix of the top model (based on the random forest algorithm). The matrix is based
on the performance of the model on the test set comprising 1585 samples (780 healthy and 805 mastitis).
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3.3. Web App Usage and Local Deployment

The web application developed based on the top model build can be accessed at
https://share.streamlit.io/naeemmrz/maspa.py/main/MasPA.py (accessed on 2 August
2021); the user needs to input the eight-udder inhale and exhale limits and the temperature
of the cattle (with an optional identifier for each row); a sample input file is provided in
Supplementary Material 2 (S2) and can be downloaded from the web interface as well,
and the general interface of the web app is explained in Figure 2. For real-time usage or
integration with automatic milking systems, both the model “RndmForest_mastistis.pkl”
and the application source code “MasPA.py” are available as open source at the author’s
GitHub page along with a step-by-step guide https://github.com/naeemmrz/MasPA.py
(accessed on 2 August 2021).

Figure 2. The MasPA interface. (a) Link to input example/template, (b) options to add input file,
(c) authors and affiliations, (d) preview of the user input, and (e) prediction results and link to
download the results as a comma separated file (.csv).

4. Discussion

Mastitis single-handedly costs the dairy industry around 6% of its production value,
and this contribution is expected to grow as the demand for more milk production per
cattle increases [4]. While several preventive measures are available for early diagnosis of
mastitis in cattle, most of these measurements are either too expensive or impractical and
inaccessible for small farmers or farmers from low-income countries. The cost of preventive
measures for early diagnosis of mastitis in cattle for farmers is up to €120/cow/year, which
could contribute a significant amount to the budget [14].

Different farms around the world opt for different preventive measures depending
on their geographic region, size of herd, and their revenue; these measures could range
from classical inexpensive methods such as temperature monitoring and forestripping that
can be performed by any labor, to more sophisticated methods such as LDH, NAGase,
immunoassays, and biosensors that provide much higher accuracy, but have higher costs
higher, and access could be limited by region [17,18].

https://share.streamlit.io/naeemmrz/maspa.py/main/MasPA.py
https://share.streamlit.io/naeemmrz/maspa.py/main/MasPA.py
https://github.com/naeemmrz/MasPA.py
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Recent developments in the field of data science and artificial intelligence have opened
a lot of opportunities in developing new methods of diagnosis and detection of diseases by
deploying sophisticated algorithms to these problems. Several attempts have been made in
diseases affecting humans, including many other species of plants and animals [19,27–30].

The aim of this study was to integrate these recent developments in the field of data
science to derive a solution in predicting the risk of mastitis in cattle before it occurred
so as to reduce the high cost of treatment, encourage farmers to avoid using antibiotics
as a preventive measure, and reduce unnecessary veterinary expenses by providing an
open-source tool accessible online free-of-cost.

The integration of machine learning and deep learning technologies for the prediction
of clinical and sub-clinical mastitis in cattle is not a novel approach. Indeed, quite recently,
Ebrahimi (2019) analyzed parameters such as milk volume, lactose concentration, electrical
conductivity, protein concentration, peak flow, and milking time for 364,249 milking
instances in cattle, and applied several deep learning and machine learning algorithms
to determine the best statistical model that could predict the risk of sub-clinical mastitis.
Their study concluded that the gradient-boosted tree algorithm provided the best accuracy
of 84.9% from the former parameters, with the random forest algorithm ranking as the
worst performing algorithm, with an accuracy of 82.3% [31]. Following a similar path,
Fadul-Pacheco (2021) investigated the efficiency of naïve Bayes, random forest, and extreme
gradient boosting on the dataset from the Dairy Brain project for early prediction of clinical
mastitis. Their study, however, concluded with random forest being the best performing
algorithm, with an accuracy of 71% for the first lactation and 85% for the continuous
(follow up) model, respectively [32]. These results indicate that different algorithms
perform differently when applied to different parameters/attributes. As shown in Table 1,
the random forest algorithm performed the best on the attributes in the dataset used for
this study.

MasPA is an ML-based solution that can predict the risk of mastitis in the cattle from
the inhale and exhale limits for each of the cattle’s four udders and the cattle’s temperature,
which can be collected via highly affordable sensors either manually (for farms with
conventional milking systems) or by integrating such sensors into AMS. As shown in
Figure 1, MasPA is based on the random forest algorithm, and can predict the risk of
mastitis in cattle with a near-perfect accuracy of 98.10%. The application is available as a
web application, free of any cost and/or limitations.

To address the inaccessibility to internet for some farms/farmers, we also provided a
standalone package MasPA.py (Supplementary Material 3 (S3)) that can run almost on any
computer locally while providing the same web interface. Considering the potential lack
of technical literacy in some farmers, the interface of the package was made to be as simple
as possible (Figure 2); furthermore, the source code of the application is also available open
source, so anyone could modify, optimize, or integrate it into their local system (such as
AMS) and/or modify and apply it to different datasets to predict different diseases.

5. Conclusions

The proposed web application, MasPA, which is based on the random forest algorithm,
can predict the risk of mastitis in cattle from the inhale and exhale limits of their udder and
their temperature with an accuracy of 98.10% and sensitivity and specificity of 99.4% and
98.8%, respectively. The full potential of this application can be utilized via the standalone
version (available as open source), which can be easily integrated into AMS to detect the
risk of mastitis in real time.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriengineering3030037/s1, S1: Curated data used for model building (.csv); S2: Sample input
file (.csv); and S3: MasPA.py source code (python code).

https://www.mdpi.com/article/10.3390/agriengineering3030037/s1
https://www.mdpi.com/article/10.3390/agriengineering3030037/s1
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